1
0
mirror of https://github.com/immich-app/immich.git synced 2024-11-24 08:52:28 +02:00

chore(ml): move to fastAPI (#2336)

This commit is contained in:
Alex 2023-04-26 05:39:24 -05:00 committed by GitHub
parent 6631b286c1
commit 7e965cb6d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 73 additions and 70 deletions

View File

@ -6,9 +6,10 @@ ENV PYTHONDONTWRITEBYTECODE=1 \
RUN python -m venv /opt/venv
RUN /opt/venv/bin/pip install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
RUN /opt/venv/bin/pip install transformers tqdm numpy scikit-learn scipy nltk sentencepiece flask Pillow gunicorn
RUN /opt/venv/bin/pip install transformers tqdm numpy scikit-learn scipy nltk sentencepiece fastapi Pillow uvicorn[standard]
RUN /opt/venv/bin/pip install --no-deps sentence-transformers
FROM python:3.10-slim
ENV NODE_ENV=production
@ -23,5 +24,5 @@ ENV TRANSFORMERS_CACHE=/cache \
WORKDIR /usr/src/app
COPY . .
CMD ["gunicorn", "src.main:server"]
ENV PYTHONPATH=`pwd`
CMD ["python", "main.py"]

View File

@ -1,29 +0,0 @@
"""
Gunicorn configuration options.
https://docs.gunicorn.org/en/stable/settings.html
"""
import os
# Set the bind address based on the env
port = os.getenv("MACHINE_LEARNING_PORT") or "3003"
listen_ip = os.getenv("MACHINE_LEARNING_IP") or "0.0.0.0"
bind = [f"{listen_ip}:{port}"]
# Preload the Flask app / models etc. before starting the server
preload_app = True
# Logging settings - log to stdout and set log level
accesslog = "-"
loglevel = os.getenv("MACHINE_LEARNING_LOG_LEVEL") or "info"
# Worker settings
# ----------------------
# It is important these are chosen carefully as per
# https://pythonspeed.com/articles/gunicorn-in-docker/
# Otherwise we get workers failing to respond to heartbeat checks,
# especially as requests take a long time to complete.
workers = 2
threads = 4
worker_tmp_dir = "/dev/shm"
timeout = 60

View File

@ -1,58 +1,77 @@
import os
from flask import Flask, request
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from fastapi import FastAPI
import uvicorn
import os
from pydantic import BaseModel
class MlRequestBody(BaseModel):
thumbnailPath: str
class ClipRequestBody(BaseModel):
text: str
is_dev = os.getenv('NODE_ENV') == 'development'
server_port = os.getenv('MACHINE_LEARNING_PORT', 3003)
server_host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
classification_model = os.getenv('MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
app = FastAPI()
"""
Model Initialization
"""
classification_model = os.getenv(
'MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny')
clip_image_model = os.getenv('MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
clip_text_model = os.getenv('MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
clip_image_model = os.getenv(
'MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
clip_text_model = os.getenv(
'MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
_model_cache = {}
def _get_model(model, task=None):
global _model_cache
key = '|'.join([model, str(task)])
if key not in _model_cache:
if task:
_model_cache[key] = pipeline(model=model, task=task)
else:
_model_cache[key] = SentenceTransformer(model)
return _model_cache[key]
server = Flask(__name__)
@server.route("/ping")
@app.get("/")
async def root():
return {"message": "Immich ML"}
@app.get("/ping")
def ping():
return "pong"
@server.route("/object-detection/detect-object", methods=['POST'])
def object_detection():
@app.post("/object-detection/detect-object", status_code=200)
def object_detection(payload: MlRequestBody):
model = _get_model(object_model, 'object-detection')
assetPath = request.json['thumbnailPath']
return run_engine(model, assetPath), 200
assetPath = payload.thumbnailPath
return run_engine(model, assetPath)
@server.route("/image-classifier/tag-image", methods=['POST'])
def image_classification():
@app.post("/image-classifier/tag-image", status_code=200)
def image_classification(payload: MlRequestBody):
model = _get_model(classification_model, 'image-classification')
assetPath = request.json['thumbnailPath']
return run_engine(model, assetPath), 200
assetPath = payload.thumbnailPath
return run_engine(model, assetPath)
@server.route("/sentence-transformer/encode-image", methods=['POST'])
def clip_encode_image():
@app.post("/sentence-transformer/encode-image", status_code=200)
def clip_encode_image(payload: MlRequestBody):
model = _get_model(clip_image_model)
assetPath = request.json['thumbnailPath']
return model.encode(Image.open(assetPath)).tolist(), 200
assetPath = payload.thumbnailPath
return model.encode(Image.open(assetPath)).tolist()
@server.route("/sentence-transformer/encode-text", methods=['POST'])
def clip_encode_text():
@app.post("/sentence-transformer/encode-text", status_code=200)
def clip_encode_text(payload: ClipRequestBody):
model = _get_model(clip_text_model)
text = request.json['text']
return model.encode(text).tolist(), 200
text = payload.text
return model.encode(text).tolist()
def run_engine(engine, path):
result = []
@ -69,5 +88,17 @@ def run_engine(engine, path):
return result
def _get_model(model, task=None):
global _model_cache
key = '|'.join([model, str(task)])
if key not in _model_cache:
if task:
_model_cache[key] = pipeline(model=model, task=task)
else:
_model_cache[key] = SentenceTransformer(model)
return _model_cache[key]
if __name__ == "__main__":
server.run(debug=is_dev, host=server_host, port=server_port)
uvicorn.run("main:app", host=server_host,
port=int(server_port), reload=is_dev, workers=1)