1
0
mirror of https://github.com/immich-app/immich.git synced 2025-01-17 16:25:03 +02:00

dev(ml): fixed docker-compose.dev.yml, updated locust (#3951)

* fixed dev docker compose

* updated locustfile

* deleted old script, moved comments to locustfile
This commit is contained in:
Mert 2023-09-01 21:59:17 -04:00 committed by GitHub
parent bea287c5b3
commit b7fd5dcb4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 64 additions and 48 deletions

View File

@ -34,7 +34,7 @@ services:
ports:
- 3003:3003
volumes:
- ../machine-learning/app:/usr/src/app
- ../machine-learning:/usr/src/app
- model-cache:/cache
env_file:
- .env

View File

@ -1,24 +0,0 @@
export MACHINE_LEARNING_CACHE_FOLDER=/tmp/model_cache
export MACHINE_LEARNING_MIN_FACE_SCORE=0.034 # returns 1 face per request; setting this to 0 blows up the number of faces to the thousands
export MACHINE_LEARNING_MIN_TAG_SCORE=0.0
export PID_FILE=/tmp/locust_pid
export LOG_FILE=/tmp/gunicorn.log
export HEADLESS=false
export HOST=127.0.0.1:3003
export CONCURRENCY=4
export NUM_ENDPOINTS=3
export PYTHONPATH=app
gunicorn app.main:app --worker-class uvicorn.workers.UvicornWorker \
--bind $HOST --daemon --error-logfile $LOG_FILE --pid $PID_FILE
while true ; do
echo "Loading models..."
sleep 5
if cat $LOG_FILE | grep -q -E "startup complete"; then break; fi
done
# "users" are assigned only one task, so multiply concurrency by the number of tasks
locust --host http://$HOST --web-host 127.0.0.1 \
--run-time 120s --users $(($CONCURRENCY * $NUM_ENDPOINTS)) $(if $HEADLESS; then echo "--headless"; fi)
if [[ -e $PID_FILE ]]; then kill $(cat $PID_FILE); fi

View File

@ -1,13 +1,32 @@
from io import BytesIO
import json
from typing import Any
from locust import HttpUser, events, task
from locust.env import Environment
from PIL import Image
from argparse import ArgumentParser
byte_image = BytesIO()
@events.init_command_line_parser.add_listener
def _(parser: ArgumentParser) -> None:
parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
parser.add_argument("--face-model", type=str, default="buffalo_l")
parser.add_argument("--tag-min-score", type=int, default=0.0,
help="Returns all tags at or above this score. The default returns all tags.")
parser.add_argument("--face-min-score", type=int, default=0.034,
help=("Returns all faces at or above this score. The default returns 1 face per request; "
"setting this to 0 blows up the number of faces to the thousands."))
parser.add_argument("--image-size", type=int, default=1000)
@events.test_start.add_listener
def on_test_start(environment, **kwargs):
def on_test_start(environment: Environment, **kwargs: Any) -> None:
global byte_image
image = Image.new("RGB", (1000, 1000))
assert environment.parsed_options is not None
image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
byte_image = BytesIO()
image.save(byte_image, format="jpeg")
@ -19,34 +38,55 @@ class InferenceLoadTest(HttpUser):
headers: dict[str, str] = {"Content-Type": "image/jpg"}
# re-use the image across all instances in a process
def on_start(self):
def on_start(self) -> None:
global byte_image
self.data = byte_image.getvalue()
class ClassificationLoadTest(InferenceLoadTest):
class ClassificationFormDataLoadTest(InferenceLoadTest):
@task
def classify(self):
self.client.post(
"/image-classifier/tag-image", data=self.data, headers=self.headers
)
def classify(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class CLIPLoadTest(InferenceLoadTest):
class CLIPTextFormDataLoadTest(InferenceLoadTest):
@task
def encode_image(self):
self.client.post(
"/sentence-transformer/encode-image",
data=self.data,
headers=self.headers,
)
def encode_text(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "text"})),
("text", "test search query")
]
self.client.post("/predict", data=data)
class RecognitionLoadTest(InferenceLoadTest):
class CLIPVisionFormDataLoadTest(InferenceLoadTest):
@task
def recognize(self):
self.client.post(
"/facial-recognition/detect-faces",
data=self.data,
headers=self.headers,
)
def encode_image(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "vision"})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class RecognitionFormDataLoadTest(InferenceLoadTest):
@task
def recognize(self) -> None:
data = [
("modelName", self.environment.parsed_options.face_model),
("modelType", "facial-recognition"),
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)