mirror of
https://github.com/immich-app/immich.git
synced 2024-12-26 10:50:29 +02:00
cuda for arm64
separate base image fix name make sure onnxruntime-gpu is installed use cuda again add targetarch to build stage
This commit is contained in:
parent
944ea7dbcd
commit
c855a72eb9
2
.github/workflows/docker.yml
vendored
2
.github/workflows/docker.yml
vendored
@ -105,7 +105,7 @@ jobs:
|
||||
- platforms: linux/amd64,linux/arm64
|
||||
device: cpu
|
||||
|
||||
- platforms: linux/amd64
|
||||
- platforms: linux/amd64,linux/arm64
|
||||
device: cuda
|
||||
suffix: -cuda
|
||||
|
||||
|
@ -17,7 +17,7 @@ RUN mkdir /opt/armnn && \
|
||||
|
||||
FROM builder-${DEVICE} AS builder
|
||||
|
||||
ARG DEVICE
|
||||
ARG DEVICE TARGETARCH
|
||||
ENV PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PIP_NO_CACHE_DIR=true \
|
||||
@ -32,7 +32,11 @@ RUN poetry config installer.max-workers 10 && \
|
||||
RUN python3 -m venv /opt/venv
|
||||
|
||||
COPY poetry.lock pyproject.toml ./
|
||||
RUN poetry install --sync --no-interaction --no-ansi --no-root --with ${DEVICE} --without dev
|
||||
RUN if [ "$DEVICE" = "cuda" ] && [ "$TARGETARCH" = "arm64" ]; then \
|
||||
# hack to work around poetry not setting the right filename for the wheel https://github.com/python-poetry/poetry/issues/4472
|
||||
wget -q -O onnxruntime_gpu-1.18.0-cp311-cp311-manylinux_aarch64.whl https://nvidia.box.com/shared/static/fy55jvniujjbigr4gwkv8z1ma6ipgspg.whl; fi && \
|
||||
poetry install --sync --no-interaction --no-ansi --no-root --with ${DEVICE} --without dev && \
|
||||
if [ "$DEVICE" = "cuda" ] && [ "$TARGETARCH" = "arm64" ]; then rm onnxruntime_gpu-1.18.0-cp311-cp311-manylinux_aarch64.whl; fi
|
||||
|
||||
FROM python:3.11-slim-bookworm@sha256:5148c0e4bbb64271bca1d3322360ebf4bfb7564507ae32dd639322e4952a6b16 AS prod-cpu
|
||||
|
||||
@ -49,13 +53,21 @@ RUN apt-get update && \
|
||||
apt-get remove wget -yqq && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
FROM nvidia/cuda:12.2.2-runtime-ubuntu22.04@sha256:94c1577b2cd9dd6c0312dc04dff9cb2fdce2b268018abc3d7c2dbcacf1155000 AS prod-cuda
|
||||
|
||||
FROM nvidia/cuda:12.2.2-runtime-ubuntu22.04@sha256:94c1577b2cd9dd6c0312dc04dff9cb2fdce2b268018abc3d7c2dbcacf1155000 AS prod-cuda-amd64
|
||||
RUN apt-get update && \
|
||||
apt-get install --no-install-recommends -yqq libcudnn9-cuda-12 && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
FROM nvidia/cuda:12.2.2-runtime-ubuntu22.04@sha256:94c1577b2cd9dd6c0312dc04dff9cb2fdce2b268018abc3d7c2dbcacf1155000 AS prod-cuda-arm64
|
||||
RUN apt-get update && \
|
||||
apt-get install --no-install-recommends -yqq libcudnn8 && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
ENV LD_LIBRARY_PATH=/usr/local/cuda-12/compat:$LD_LIBRARY_PATH
|
||||
|
||||
FROM prod-cuda-${TARGETARCH} AS prod-cuda
|
||||
|
||||
COPY --from=builder-cuda /usr/local/bin/python3 /usr/local/bin/python3
|
||||
COPY --from=builder-cuda /usr/local/lib/python3.11 /usr/local/lib/python3.11
|
||||
COPY --from=builder-cuda /usr/local/lib/libpython3.11.so /usr/local/lib/libpython3.11.so
|
||||
@ -81,10 +93,10 @@ COPY --from=builder-armnn \
|
||||
/opt/armnn/
|
||||
|
||||
FROM prod-${DEVICE} AS prod
|
||||
ARG DEVICE
|
||||
ARG DEVICE TARGETARCH
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends tini $(if ! [ "$DEVICE" = "openvino" ]; then echo "libmimalloc2.0"; fi) && \
|
||||
apt-get install -y --no-install-recommends tini $(if ! { [ "$DEVICE" = "openvino" ] || { [ "$DEVICE" = "cuda" ] && [ "$TARGETARCH" = "arm64" ]; }; }; then echo "libmimalloc2.0"; fi) && \
|
||||
apt-get autoremove -yqq && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
25
machine-learning/poetry.lock
generated
25
machine-learning/poetry.lock
generated
@ -2090,6 +2090,28 @@ packaging = "*"
|
||||
protobuf = "*"
|
||||
sympy = "*"
|
||||
|
||||
[[package]]
|
||||
name = "onnxruntime-gpu"
|
||||
version = "1.18.0"
|
||||
description = "ONNX Runtime is a runtime accelerator for Machine Learning models"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "onnxruntime_gpu-1.18.0-cp311-cp311-manylinux_aarch64.whl", hash = "sha256:7bdd6c373611235e43c8707fa528539327ff17a969448adf956ddf177d5fc8e7"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
coloredlogs = "*"
|
||||
flatbuffers = "*"
|
||||
numpy = ">=1.26.4"
|
||||
packaging = "*"
|
||||
protobuf = "*"
|
||||
sympy = "*"
|
||||
|
||||
[package.source]
|
||||
type = "file"
|
||||
url = "onnxruntime_gpu-1.18.0-cp311-cp311-manylinux_aarch64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "onnxruntime-gpu"
|
||||
version = "1.19.2"
|
||||
@ -2806,7 +2828,6 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||
@ -3778,4 +3799,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<4.0"
|
||||
content-hash = "b690d5fbd141da3947f4f1dc029aba1b95e7faafd723166f2c4bdc47a66c095e"
|
||||
content-hash = "b2b053886ca1dd3a3305c63caf155b1976dfc4066f72f5d1ecfc42099db34aab"
|
||||
|
@ -45,7 +45,10 @@ onnxruntime = "^1.15.0"
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.cuda.dependencies]
|
||||
onnxruntime-gpu = {version = "^1.17.0", source = "cuda12"}
|
||||
onnxruntime-gpu = [
|
||||
{ version = "^1.17.0", source = "cuda12", markers = "platform_machine == 'x86_64'" },
|
||||
{ python = "3.11", path = "onnxruntime_gpu-1.18.0-cp311-cp311-manylinux_aarch64.whl", markers = "platform_machine == 'aarch64'" }
|
||||
]
|
||||
|
||||
[tool.poetry.group.openvino]
|
||||
optional = true
|
||||
|
@ -1,19 +1,26 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
lib_path="/usr/lib/$(arch)-linux-gnu/libmimalloc.so.2"
|
||||
# mimalloc seems to increase memory usage dramatically with openvino, need to investigate
|
||||
if ! [ "$DEVICE" = "openvino" ]; then
|
||||
export LD_PRELOAD="$lib_path"
|
||||
export LD_BIND_NOW=1
|
||||
: "${MACHINE_LEARNING_WORKER_TIMEOUT:=120}"
|
||||
else
|
||||
: "${MACHINE_LEARNING_WORKER_TIMEOUT:=300}"
|
||||
mimalloc="/usr/lib/$(arch)-linux-gnu/libmimalloc.so.2"
|
||||
if [ -f "$mimalloc" ]; then
|
||||
export LD_PRELOAD="$mimalloc"
|
||||
fi
|
||||
|
||||
if { [ "$DEVICE" = "cuda" ] && [ "$(arch)" = "aarch64" ]; }; then
|
||||
lib_path="/usr/lib/$(arch)-linux-gnu/libmimalloc.so.2"
|
||||
export LD_PRELOAD="$lib_path"
|
||||
fi
|
||||
export LD_BIND_NOW=1
|
||||
|
||||
: "${IMMICH_HOST:=[::]}"
|
||||
: "${IMMICH_PORT:=3003}"
|
||||
: "${MACHINE_LEARNING_WORKERS:=1}"
|
||||
: "${MACHINE_LEARNING_HTTP_KEEPALIVE_TIMEOUT_S:=2}"
|
||||
if [ "$DEVICE" = "openvino" ]; then
|
||||
: "${MACHINE_LEARNING_WORKER_TIMEOUT:=300}"
|
||||
else
|
||||
: "${MACHINE_LEARNING_WORKER_TIMEOUT:=120}"
|
||||
fi
|
||||
|
||||
gunicorn app.main:app \
|
||||
-k app.config.CustomUvicornWorker \
|
||||
|
Loading…
Reference in New Issue
Block a user