1
0
mirror of https://github.com/immich-app/immich.git synced 2025-03-11 15:09:45 +02:00

disable algo caching

This commit is contained in:
mertalev 2025-03-05 09:36:27 -05:00
parent 7ac30995a8
commit f19cf206ba
No known key found for this signature in database
GPG Key ID: 3A2B5BFC678DBC80
3 changed files with 181 additions and 158 deletions

View File

@ -1,150 +0,0 @@
From 350e3237eadb738a0d96295a62f2eed96653c315 Mon Sep 17 00:00:00 2001
From: mertalev <101130780+mertalev@users.noreply.github.com>
Date: Fri, 20 Dec 2024 00:59:21 -0500
Subject: [PATCH 1/1] fix: avoid race condition for rocm conv algo caching
---
onnxruntime/core/providers/rocm/nn/conv.cc | 8 ++++----
onnxruntime/core/providers/rocm/nn/conv.h | 14 ++++++++++++--
.../core/providers/rocm/nn/conv_transpose.cc | 8 ++++----
3 files changed, 20 insertions(+), 10 deletions(-)
diff --git a/onnxruntime/core/providers/rocm/nn/conv.cc b/onnxruntime/core/providers/rocm/nn/conv.cc
index d7f47d07a8..98b6b69212 100644
--- a/onnxruntime/core/providers/rocm/nn/conv.cc
+++ b/onnxruntime/core/providers/rocm/nn/conv.cc
@@ -127,7 +127,6 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
if (w_dims_changed) {
s_.last_w_dims = gsl::make_span(w_dims);
- s_.cached_benchmark_fwd_results.clear();
}
ORT_RETURN_IF_ERROR(conv_attrs_.ValidateInputShape(X->Shape(), W->Shape(), channels_last, channels_last));
@@ -278,7 +277,8 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
HIP_CALL_THROW(hipMemsetAsync(s_.b_zero, 0, malloc_size, Stream(context)));
}
- if (!s_.cached_benchmark_fwd_results.contains(x_dims_miopen)) {
+ const std::size_t algo_key = HashConvAlgoKey(x_dims_miopen, w_dims);
+ if (!s_.cached_benchmark_fwd_results.contains(algo_key)) {
miopenConvAlgoPerf_t perf;
int algo_count = 1;
const ROCMExecutionProvider* rocm_ep = static_cast<const ROCMExecutionProvider*>(this->Info().GetExecutionProvider());
@@ -301,9 +301,9 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
algo_search_workspace.get(),
max_ws_size,
false)); // Do not do exhaustive algo search.
- s_.cached_benchmark_fwd_results.insert(x_dims_miopen, {perf.fwd_algo, perf.memory});
+ s_.cached_benchmark_fwd_results.insert(algo_key, {perf.fwd_algo, perf.memory});
}
- const auto& perf = s_.cached_benchmark_fwd_results.at(x_dims_miopen);
+ const auto& perf = s_.cached_benchmark_fwd_results.at(algo_key);
s_.fwd_algo = perf.fwd_algo;
s_.workspace_bytes = perf.memory;
} else {
diff --git a/onnxruntime/core/providers/rocm/nn/conv.h b/onnxruntime/core/providers/rocm/nn/conv.h
index bc9846203e..b1ca5f8e4b 100644
--- a/onnxruntime/core/providers/rocm/nn/conv.h
+++ b/onnxruntime/core/providers/rocm/nn/conv.h
@@ -43,6 +43,11 @@ struct vector_hash {
}
};
+inline std::size_t HashConvAlgoKey(const TensorShapeVector& x_dims, const TensorShapeVector& w_dims) {
+ vector_hash vh;
+ return vh(x_dims) ^ vh(w_dims);
+}
+
template <typename Key, typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
@@ -52,6 +57,7 @@ class lru_unordered_map {
lru_unordered_map(size_t max_size) : max_size_(max_size) {}
void insert(const Key& key, const T& value) {
+ std::lock_guard<std::mutex> guard(mutex_);
auto it = items_.find(key);
if (it != items_.end()) {
it->second.value = value;
@@ -69,6 +75,7 @@ class lru_unordered_map {
}
T& at(const Key& key) {
+ std::lock_guard<std::mutex> guard(mutex_);
auto it = items_.find(key);
if (it == items_.end()) {
throw std::out_of_range("There is no such key in cache");
@@ -78,6 +85,7 @@ class lru_unordered_map {
}
bool contains(const Key& key) const {
+ std::lock_guard<std::mutex> guard(mutex_);
return items_.find(key) != items_.end();
}
@@ -86,6 +94,7 @@ class lru_unordered_map {
}
void clear() {
+ std::lock_guard<std::mutex> guard(mutex_);
items_.clear();
lru_list_.clear();
}
@@ -106,6 +115,7 @@ class lru_unordered_map {
size_t max_size_;
std::unordered_map<Key, value_type, Hash, KeyEqual, MapAllocator> items_;
list_type lru_list_;
+ mutable std::mutex mutex_;
};
// cached miopen descriptors
@@ -148,8 +158,8 @@ struct MiopenConvState {
decltype(AlgoPerfType().memory) memory;
};
- lru_unordered_map<TensorShapeVector, PerfFwdResultParams, vector_hash> cached_benchmark_fwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
- lru_unordered_map<TensorShapeVector, PerfBwdResultParams, vector_hash> cached_benchmark_bwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
+ lru_unordered_map<std::size_t, PerfFwdResultParams> cached_benchmark_fwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
+ lru_unordered_map<std::size_t, PerfBwdResultParams> cached_benchmark_bwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
// Some properties needed to support asymmetric padded Conv nodes
bool post_slicing_required;
diff --git a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
index 7447113fdf..dea9bf2a05 100644
--- a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
+++ b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
@@ -76,7 +76,6 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
if (w_dims_changed) {
s_.last_w_dims = gsl::make_span(w_dims);
- s_.cached_benchmark_bwd_results.clear();
}
ConvTransposeAttributes::Prepare p;
@@ -127,7 +126,8 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
y_data = reinterpret_cast<HipT*>(p.Y->MutableData<T>());
- if (!s_.cached_benchmark_bwd_results.contains(x_dims)) {
+ const std::size_t algo_key = HashConvAlgoKey(x_dims, w_dims);
+ if (!s_.cached_benchmark_bwd_results.contains(algo_key)) {
IAllocatorUniquePtr<void> algo_search_workspace = GetScratchBuffer<void>(AlgoSearchWorkspaceSize, context->GetComputeStream());
miopenConvAlgoPerf_t perf;
@@ -147,10 +147,10 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
algo_search_workspace.get(),
AlgoSearchWorkspaceSize,
false));
- s_.cached_benchmark_bwd_results.insert(x_dims, {perf.bwd_data_algo, perf.memory});
+ s_.cached_benchmark_bwd_results.insert(algo_key, {perf.bwd_data_algo, perf.memory});
}
- const auto& perf = s_.cached_benchmark_bwd_results.at(x_dims);
+ const auto& perf = s_.cached_benchmark_bwd_results.at(algo_key);
s_.bwd_data_algo = perf.bwd_data_algo;
s_.workspace_bytes = perf.memory;
}
--
2.43.0

View File

@ -15,15 +15,13 @@ RUN mkdir /opt/armnn && \
cd /opt/ann && \
sh build.sh
# Warning: 26.3Gb of disk space required to pull this image
# https://github.com/microsoft/onnxruntime/blob/main/dockerfiles/Dockerfile.rocm
# 6.2 or later fails to build as of writing
# Warning: 25GiB+ disk space required to pull this image
# TODO: find a way to reduce the image size
FROM rocm/dev-ubuntu-22.04:6.3.1-complete AS builder-rocm
WORKDIR /code
RUN apt-get update && apt-get install -y --no-install-recommends wget git python3.10-venv
# Install same version as the Dockerfile provided by onnxruntime
RUN wget -nv https://github.com/Kitware/CMake/releases/download/v3.30.1/cmake-3.30.1-linux-x86_64.sh && \
chmod +x cmake-3.30.1-linux-x86_64.sh && \
mkdir -p /code/cmake-3.30.1-linux-x86_64 && \
@ -32,13 +30,12 @@ RUN wget -nv https://github.com/Kitware/CMake/releases/download/v3.30.1/cmake-3.
ENV PATH=/code/cmake-3.30.1-linux-x86_64/bin:${PATH}
# Prepare onnxruntime repository & build onnxruntime
# 1.20.1 fails to build as of writing
RUN git clone --single-branch --branch v1.20.1 --recursive "https://github.com/Microsoft/onnxruntime" onnxruntime
WORKDIR /code/onnxruntime
# Fix for multi-threading based on comments in https://github.com/microsoft/onnxruntime/pull/19567
COPY ./0001-fix-rocm-conv-thread-safety.patch /tmp/
RUN git apply /tmp/0001-fix-rocm-conv-thread-safety.patch
# TODO: find a way to fix this without disabling algo caching
COPY ./rocm-PR19567.patch /tmp/
RUN git apply /tmp/rocm-PR19567.patch
RUN /bin/sh ./dockerfiles/scripts/install_common_deps.sh
# Note: the `parallel` setting uses a substantial amount of RAM

View File

@ -0,0 +1,176 @@
From a598a88db258f82a6e4bca75810921bd6bcee7e0 Mon Sep 17 00:00:00 2001
From: David Nieto <dmnieto@gmail.com>
Date: Sat, 17 Feb 2024 11:23:12 -0800
Subject: [PATCH] Disable algo caching in ROCM EP
Similar to the work done by Liangxijun-1001 in
https://github.com/apache/tvm/pull/16178 the ROCM spec mandates calling
miopenFindConvolution*Algorithm() before using any Convolution API
This is the link to the porting guide describing this requirement
https://rocmdocs.amd.com/projects/MIOpen/en/latest/MIOpen_Porting_Guide.html
Thus, this change disables the algo cache and enforces the official
API semantics
Signed-off-by: David Nieto <dmnieto@gmail.com>
---
onnxruntime/core/providers/rocm/nn/conv.cc | 61 +++++++++----------
onnxruntime/core/providers/rocm/nn/conv.h | 6 --
.../core/providers/rocm/nn/conv_transpose.cc | 17 +++---
3 files changed, 36 insertions(+), 48 deletions(-)
diff --git a/onnxruntime/core/providers/rocm/nn/conv.cc b/onnxruntime/core/providers/rocm/nn/conv.cc
index 6214ec7bc0ea..b08aceca48b1 100644
--- a/onnxruntime/core/providers/rocm/nn/conv.cc
+++ b/onnxruntime/core/providers/rocm/nn/conv.cc
@@ -125,10 +125,8 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
if (input_dims_changed)
s_.last_x_dims = gsl::make_span(x_dims);
- if (w_dims_changed) {
+ if (w_dims_changed)
s_.last_w_dims = gsl::make_span(w_dims);
- s_.cached_benchmark_fwd_results.clear();
- }
ORT_RETURN_IF_ERROR(conv_attrs_.ValidateInputShape(X->Shape(), W->Shape(), channels_last, channels_last));
@@ -277,35 +275,6 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
HIP_CALL_THROW(hipMalloc(&s_.b_zero, malloc_size));
HIP_CALL_THROW(hipMemsetAsync(s_.b_zero, 0, malloc_size, Stream(context)));
}
-
- if (!s_.cached_benchmark_fwd_results.contains(x_dims_miopen)) {
- miopenConvAlgoPerf_t perf;
- int algo_count = 1;
- const ROCMExecutionProvider* rocm_ep = static_cast<const ROCMExecutionProvider*>(this->Info().GetExecutionProvider());
- static constexpr int num_algos = MIOPEN_CONVOLUTION_FWD_ALGO_COUNT;
- size_t max_ws_size = rocm_ep->GetMiopenConvUseMaxWorkspace() ? GetMaxWorkspaceSize(GetMiopenHandle(context), s_, kAllAlgos, num_algos)
- : AlgoSearchWorkspaceSize;
- IAllocatorUniquePtr<void> algo_search_workspace = GetTransientScratchBuffer<void>(max_ws_size);
- MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionForwardAlgorithm(
- GetMiopenHandle(context),
- s_.x_tensor,
- s_.x_data,
- s_.w_desc,
- s_.w_data,
- s_.conv_desc,
- s_.y_tensor,
- s_.y_data,
- 1, // requestedAlgoCount
- &algo_count, // returnedAlgoCount
- &perf,
- algo_search_workspace.get(),
- max_ws_size,
- false)); // Do not do exhaustive algo search.
- s_.cached_benchmark_fwd_results.insert(x_dims_miopen, {perf.fwd_algo, perf.memory});
- }
- const auto& perf = s_.cached_benchmark_fwd_results.at(x_dims_miopen);
- s_.fwd_algo = perf.fwd_algo;
- s_.workspace_bytes = perf.memory;
} else {
// set Y
s_.Y = context->Output(0, TensorShape(s_.y_dims));
@@ -319,6 +288,34 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
s_.y_data = reinterpret_cast<HipT*>(s_.Y->MutableData<T>());
}
}
+ {
+ /* FindConvolution must always be called by the runtime */
+ TensorShapeVector x_dims_miopen{x_dims.begin(), x_dims.end()};
+ miopenConvAlgoPerf_t perf;
+ int algo_count = 1;
+ const ROCMExecutionProvider* rocm_ep = static_cast<const ROCMExecutionProvider*>(this->Info().GetExecutionProvider());
+ static constexpr int num_algos = MIOPEN_CONVOLUTION_FWD_ALGO_COUNT;
+ size_t max_ws_size = rocm_ep->GetMiopenConvUseMaxWorkspace() ? GetMaxWorkspaceSize(GetMiopenHandle(context), s_, kAllAlgos, num_algos)
+ : AlgoSearchWorkspaceSize;
+ IAllocatorUniquePtr<void> algo_search_workspace = GetTransientScratchBuffer<void>(max_ws_size);
+ MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionForwardAlgorithm(
+ GetMiopenHandle(context),
+ s_.x_tensor,
+ s_.x_data,
+ s_.w_desc,
+ s_.w_data,
+ s_.conv_desc,
+ s_.y_tensor,
+ s_.y_data,
+ 1, // requestedAlgoCount
+ &algo_count, // returnedAlgoCount
+ &perf,
+ algo_search_workspace.get(),
+ max_ws_size,
+ false)); // Do not do exhaustive algo search.
+ s_.fwd_algo = perf.fwd_algo;
+ s_.workspace_bytes = perf.memory;
+ }
return Status::OK();
}
diff --git a/onnxruntime/core/providers/rocm/nn/conv.h b/onnxruntime/core/providers/rocm/nn/conv.h
index bc9846203e57..d54218f25854 100644
--- a/onnxruntime/core/providers/rocm/nn/conv.h
+++ b/onnxruntime/core/providers/rocm/nn/conv.h
@@ -108,9 +108,6 @@ class lru_unordered_map {
list_type lru_list_;
};
-// cached miopen descriptors
-constexpr size_t MAX_CACHED_ALGO_PERF_RESULTS = 10000;
-
template <typename AlgoPerfType>
struct MiopenConvState {
// if x/w dims changed, update algo and miopenTensors
@@ -148,9 +145,6 @@ struct MiopenConvState {
decltype(AlgoPerfType().memory) memory;
};
- lru_unordered_map<TensorShapeVector, PerfFwdResultParams, vector_hash> cached_benchmark_fwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
- lru_unordered_map<TensorShapeVector, PerfBwdResultParams, vector_hash> cached_benchmark_bwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
-
// Some properties needed to support asymmetric padded Conv nodes
bool post_slicing_required;
TensorShapeVector slice_starts;
diff --git a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
index 7447113fdf84..45ed4c8ac37a 100644
--- a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
+++ b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
@@ -76,7 +76,6 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
if (w_dims_changed) {
s_.last_w_dims = gsl::make_span(w_dims);
- s_.cached_benchmark_bwd_results.clear();
}
ConvTransposeAttributes::Prepare p;
@@ -127,12 +126,13 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
y_data = reinterpret_cast<HipT*>(p.Y->MutableData<T>());
- if (!s_.cached_benchmark_bwd_results.contains(x_dims)) {
- IAllocatorUniquePtr<void> algo_search_workspace = GetScratchBuffer<void>(AlgoSearchWorkspaceSize, context->GetComputeStream());
-
- miopenConvAlgoPerf_t perf;
- int algo_count = 1;
- MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionBackwardDataAlgorithm(
+ }
+ // The following is required before calling convolution, we cannot cache the results
+ {
+ IAllocatorUniquePtr<void> algo_search_workspace = GetScratchBuffer<void>(AlgoSearchWorkspaceSize, context->GetComputeStream());
+ miopenConvAlgoPerf_t perf;
+ int algo_count = 1;
+ MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionBackwardDataAlgorithm(
GetMiopenHandle(context),
s_.x_tensor,
x_data,
@@ -147,10 +147,7 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
algo_search_workspace.get(),
AlgoSearchWorkspaceSize,
false));
- s_.cached_benchmark_bwd_results.insert(x_dims, {perf.bwd_data_algo, perf.memory});
- }
- const auto& perf = s_.cached_benchmark_bwd_results.at(x_dims);
s_.bwd_data_algo = perf.bwd_data_algo;
s_.workspace_bytes = perf.memory;
}