from typing import Any from app.models.base import InferenceModel from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder from app.models.clip.visual import OpenClipVisualEncoder from app.schemas import ModelSource, ModelTask, ModelType from .constants import get_model_source from .facial_recognition.detection import FaceDetector from .facial_recognition.recognition import FaceRecognizer def get_model_class(model_name: str, model_type: ModelType, model_task: ModelTask) -> type[InferenceModel]: source = get_model_source(model_name) match source, model_type, model_task: case ModelSource.OPENCLIP | ModelSource.MCLIP, ModelType.VISUAL, ModelTask.SEARCH: return OpenClipVisualEncoder case ModelSource.OPENCLIP, ModelType.TEXTUAL, ModelTask.SEARCH: return OpenClipTextualEncoder case ModelSource.MCLIP, ModelType.TEXTUAL, ModelTask.SEARCH: return MClipTextualEncoder case ModelSource.INSIGHTFACE, ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION: return FaceDetector case ModelSource.INSIGHTFACE, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION: return FaceRecognizer case _: raise ValueError(f"Unknown model combination: {source}, {model_type}, {model_task}") def from_model_type(model_name: str, model_type: ModelType, model_task: ModelTask, **kwargs: Any) -> InferenceModel: return get_model_class(model_name, model_type, model_task)(model_name, **kwargs) def get_model_deps(model_name: str, model_type: ModelType, model_task: ModelTask) -> list[tuple[ModelType, ModelTask]]: return get_model_class(model_name, model_type, model_task).depends