from __future__ import annotations import pickle from abc import ABC, abstractmethod from pathlib import Path from shutil import rmtree from typing import Any import onnx import onnxruntime as ort from huggingface_hub import snapshot_download from onnx.shape_inference import infer_shapes from onnx.tools.update_model_dims import update_inputs_outputs_dims from typing_extensions import Buffer import ann.ann from app.models.constants import STATIC_INPUT_PROVIDERS, SUPPORTED_PROVIDERS from ..config import get_cache_dir, get_hf_model_name, log, settings from ..schemas import ModelRuntime, ModelType from .ann import AnnSession class InferenceModel(ABC): _model_type: ModelType def __init__( self, model_name: str, cache_dir: Path | str | None = None, providers: list[str] | None = None, provider_options: list[dict[str, Any]] | None = None, sess_options: ort.SessionOptions | None = None, preferred_runtime: ModelRuntime | None = None, **model_kwargs: Any, ) -> None: self.loaded = False self.model_name = model_name self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default self.providers = providers if providers is not None else self.providers_default self.provider_options = provider_options if provider_options is not None else self.provider_options_default self.sess_options = sess_options if sess_options is not None else self.sess_options_default self.preferred_runtime = preferred_runtime if preferred_runtime is not None else self.preferred_runtime_default def download(self) -> None: if not self.cached: log.info( f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while." ) self._download() def load(self) -> None: if self.loaded: return self.download() log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory") self._load() self.loaded = True def predict(self, inputs: Any, **model_kwargs: Any) -> Any: self.load() if model_kwargs: self.configure(**model_kwargs) return self._predict(inputs) @abstractmethod def _predict(self, inputs: Any) -> Any: ... def configure(self, **model_kwargs: Any) -> None: pass def _download(self) -> None: ignore_patterns = [] if self.preferred_runtime == ModelRuntime.ARMNN else ["*.armnn"] snapshot_download( get_hf_model_name(self.model_name), cache_dir=self.cache_dir, local_dir=self.cache_dir, local_dir_use_symlinks=False, ignore_patterns=ignore_patterns, ) @abstractmethod def _load(self) -> None: ... def clear_cache(self) -> None: if not self.cache_dir.exists(): log.warning( f"Attempted to clear cache for model '{self.model_name}', but cache directory does not exist", ) return if not rmtree.avoids_symlink_attacks: raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform") if self.cache_dir.is_dir(): log.info(f"Cleared cache directory for model '{self.model_name}'.") rmtree(self.cache_dir) else: log.warning( ( f"Encountered file instead of directory at cache path " f"for '{self.model_name}'. Removing file and replacing with a directory." ), ) self.cache_dir.unlink() self.cache_dir.mkdir(parents=True, exist_ok=True) def _make_session(self, model_path: Path) -> AnnSession | ort.InferenceSession: if not model_path.is_file(): onnx_path = model_path.with_suffix(".onnx") if not onnx_path.is_file(): raise ValueError(f"Model path '{model_path}' does not exist") log.warning( f"Could not find model path '{model_path}'. " f"Falling back to ONNX model path '{onnx_path}' instead.", ) model_path = onnx_path if any(provider in STATIC_INPUT_PROVIDERS for provider in self.providers): static_path = model_path.parent / "static_1" / "model.onnx" static_path.parent.mkdir(parents=True, exist_ok=True) if not static_path.is_file(): self._convert_to_static(model_path, static_path) model_path = static_path match model_path.suffix: case ".armnn": session = AnnSession(model_path) case ".onnx": session = ort.InferenceSession( model_path.as_posix(), sess_options=self.sess_options, providers=self.providers, provider_options=self.provider_options, ) case _: raise ValueError(f"Unsupported model file type: {model_path.suffix}") return session def _convert_to_static(self, source_path: Path, target_path: Path) -> None: inferred = infer_shapes(onnx.load(source_path)) inputs = self._get_static_dims(inferred.graph.input) outputs = self._get_static_dims(inferred.graph.output) # check_model gets called in update_inputs_outputs_dims and doesn't work for large models check_model = onnx.checker.check_model try: def check_model_stub(*args: Any, **kwargs: Any) -> None: pass onnx.checker.check_model = check_model_stub updated_model = update_inputs_outputs_dims(inferred, inputs, outputs) finally: onnx.checker.check_model = check_model onnx.save( updated_model, target_path, save_as_external_data=True, all_tensors_to_one_file=False, size_threshold=1048576, ) def _get_static_dims(self, graph_io: Any, dim_size: int = 1) -> dict[str, list[int]]: return { field.name: [ d.dim_value if d.HasField("dim_value") else dim_size for shape in field.type.ListFields() if (dim := shape[1].shape.dim) for d in dim ] for field in graph_io } @property def model_type(self) -> ModelType: return self._model_type @property def cache_dir(self) -> Path: return self._cache_dir @cache_dir.setter def cache_dir(self, cache_dir: Path) -> None: self._cache_dir = cache_dir @property def cache_dir_default(self) -> Path: return get_cache_dir(self.model_name, self.model_type) @property def cached(self) -> bool: return self.cache_dir.is_dir() and any(self.cache_dir.iterdir()) @property def providers(self) -> list[str]: return self._providers @providers.setter def providers(self, providers: list[str]) -> None: log.debug( (f"Setting '{self.model_name}' execution providers to {providers}, " "in descending order of preference"), ) self._providers = providers @property def providers_default(self) -> list[str]: available_providers = set(ort.get_available_providers()) log.debug(f"Available ORT providers: {available_providers}") return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers] @property def provider_options(self) -> list[dict[str, Any]]: return self._provider_options @provider_options.setter def provider_options(self, provider_options: list[dict[str, Any]]) -> None: log.info(f"Setting execution provider options to {provider_options}") self._provider_options = provider_options @property def provider_options_default(self) -> list[dict[str, Any]]: options = [] for provider in self.providers: match provider: case "CPUExecutionProvider" | "CUDAExecutionProvider": option = {"arena_extend_strategy": "kSameAsRequested"} case "OpenVINOExecutionProvider": try: device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids() log.debug(f"Available OpenVINO devices: {device_ids}") gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")] option = {"device_id": gpu_devices[0]} if gpu_devices else {} except AttributeError as e: log.warning("Failed to get OpenVINO device IDs. Using default options.") log.error(e) option = {} case _: option = {} options.append(option) return options @property def sess_options(self) -> ort.SessionOptions: return self._sess_options @sess_options.setter def sess_options(self, sess_options: ort.SessionOptions) -> None: log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}") log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}") log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}") self._sess_options = sess_options @property def sess_options_default(self) -> ort.SessionOptions: sess_options = PicklableSessionOptions() sess_options.enable_cpu_mem_arena = False # avoid thread contention between models if settings.model_inter_op_threads > 0: sess_options.inter_op_num_threads = settings.model_inter_op_threads # these defaults work well for CPU, but bottleneck GPU elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]: sess_options.inter_op_num_threads = 1 if settings.model_intra_op_threads > 0: sess_options.intra_op_num_threads = settings.model_intra_op_threads elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]: sess_options.intra_op_num_threads = 2 if sess_options.inter_op_num_threads > 1: sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL return sess_options @property def preferred_runtime(self) -> ModelRuntime: return self._preferred_runtime @preferred_runtime.setter def preferred_runtime(self, preferred_runtime: ModelRuntime) -> None: log.debug(f"Setting preferred runtime to {preferred_runtime}") self._preferred_runtime = preferred_runtime @property def preferred_runtime_default(self) -> ModelRuntime: return ModelRuntime.ARMNN if ann.ann.is_available and settings.ann else ModelRuntime.ONNX # HF deep copies configs, so we need to make session options picklable class PicklableSessionOptions(ort.SessionOptions): # type: ignore[misc] def __getstate__(self) -> bytes: return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))]) def __setstate__(self, state: Buffer) -> None: self.__init__() # type: ignore[misc] attrs: list[tuple[str, Any]] = pickle.loads(state) for attr, val in attrs: setattr(self, attr, val)