1
0
mirror of https://github.com/immich-app/immich.git synced 2025-01-26 17:21:29 +02:00
immich/machine-learning/app/test_main.py
Mert 95cfe22866
feat(ml)!: cuda and openvino acceleration (#5619)
* cuda and openvino ep, refactor, update dockerfile

* updated workflow

* typing fixes

* added tests

* updated ml test gh action

* updated README

* updated docker-compose

* added compute to hwaccel.yml

* updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

give up

* remove cuda/arm64 build

* add hwaccel image tags to docker-compose

* remove unnecessary quotes

* add suffix to git tag

* fixed kwargs in base model

* armnn ld_library_path

* update pyproject.toml

* add armnn workflow

* formatting

* consolidate hwaccel files, update docker compose

* update hw transcoding docs

* add ml hwaccel docs

* update dev and prod docker-compose

* added armnn prerequisite docs

* support 3.10

* updated docker-compose comments

* formatting

* test coverage

* don't set arena extend strategy for openvino

* working openvino

* formatting

* fix dockerfile

* added type annotation

* add wsl configuration for openvino

* updated lock file

* copy python3

* comment out extends section

* fix platforms

* simplify workflow suffix tagging

* simplify aio transcoding doc

* update docs and workflow for `hwaccel.yml` change

* revert docs
2024-01-21 18:22:39 -05:00

429 lines
18 KiB
Python

import json
import pickle
from io import BytesIO
from pathlib import Path
from typing import Any, Callable
from unittest import mock
import cv2
import numpy as np
import onnxruntime as ort
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from pytest_mock import MockerFixture
from .config import log, settings
from .models.base import InferenceModel, PicklableSessionOptions
from .models.cache import ModelCache
from .models.clip import OpenCLIPEncoder
from .models.facial_recognition import FaceRecognizer
from .schemas import ModelType
class TestBase:
CPU_EP = ["CPUExecutionProvider"]
CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"]
CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"]
TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"]
@pytest.mark.providers(CPU_EP)
def test_sets_cpu_provider(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP)
def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@pytest.mark.providers(OV_EP)
def test_sets_openvino_provider_if_available(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.OV_EP
@pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@pytest.mark.providers(TRT_EP)
def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
def test_sets_provider_kwarg(self) -> None:
providers = ["CUDAExecutionProvider"]
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=providers)
assert encoder.providers == providers
def test_sets_default_provider_options(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
assert encoder.provider_options == [
{},
{"arena_extend_strategy": "kSameAsRequested"},
]
def test_sets_provider_options_kwarg(self) -> None:
encoder = OpenCLIPEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
)
assert encoder.provider_options == []
def test_sets_default_sess_options(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
assert encoder.sess_options.inter_op_num_threads == 1
assert encoder.sess_options.intra_op_num_threads == 2
assert encoder.sess_options.enable_cpu_mem_arena is False
def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
assert encoder.sess_options.inter_op_num_threads == 0
assert encoder.sess_options.intra_op_num_threads == 0
def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None:
mock_settings = mocker.patch("app.models.base.settings", autospec=True)
mock_settings.model_inter_op_threads = 2
mock_settings.model_intra_op_threads = 4
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
assert encoder.sess_options.inter_op_num_threads == 2
assert encoder.sess_options.intra_op_num_threads == 4
def test_sets_sess_options_kwarg(self) -> None:
sess_options = ort.SessionOptions()
encoder = OpenCLIPEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
sess_options=sess_options,
)
assert sess_options is encoder.sess_options
def test_sets_default_cache_dir(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.cache_dir == Path("/cache/clip/ViT-B-32__openai")
def test_sets_cache_dir_kwarg(self) -> None:
cache_dir = Path("/test_cache")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == cache_dir
def test_casts_cache_dir_string_to_path(self) -> None:
cache_dir = "/test_cache"
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == Path(cache_dir)
def test_clear_cache(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
info = mocker.spy(log, "info")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_called_once_with(encoder.cache_dir)
info.assert_called_once()
def test_clear_cache_warns_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = False
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
warning.assert_called_once()
def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = False
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
with pytest.raises(RuntimeError):
encoder.clear_cache()
mock_rmtree.assert_not_called()
def test_clear_cache_replaces_file_with_dir_if_path_is_file(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = False
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
mock_cache_dir.unlink.assert_called_once()
mock_cache_dir.mkdir.assert_called_once()
warning.assert_called_once()
def test_make_session_return_ann_if_available(self, mocker: MockerFixture) -> None:
mock_cache_dir = mocker.Mock()
mock_cache_dir.is_file.return_value = True
mock_cache_dir.with_suffix.return_value = mock_cache_dir
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", True)
mock_session = mocker.patch("app.models.base.AnnSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder._make_session(mock_cache_dir)
mock_session.assert_called_once()
def test_make_session_return_ort_if_available_and_ann_is_not(self, mocker: MockerFixture) -> None:
mock_cache_dir = mocker.Mock()
mock_cache_dir.is_file.return_value = True
mock_cache_dir.with_suffix.return_value = mock_cache_dir
mocker.patch.object(settings, "ann", False)
mocker.patch("ann.ann.is_available", False)
mock_session = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder._make_session(mock_cache_dir)
mock_session.assert_called_once()
def test_make_session_raises_exception_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
mock_cache_dir = mocker.Mock()
mock_cache_dir.is_file.return_value = False
mock_cache_dir.with_suffix.return_value = mock_cache_dir
mocker.patch("ann.ann.is_available", False)
mock_ann = mocker.patch("app.models.base.ort.InferenceSession")
mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
with pytest.raises(ValueError):
encoder._make_session(mock_cache_dir)
mock_ann.assert_not_called()
mock_ort.assert_not_called()
class TestCLIP:
embedding = np.random.rand(512).astype(np.float32)
cache_dir = Path("test_cache")
def test_basic_image(
self,
pil_image: Image.Image,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="vision")
embedding = clip_encoder.predict(pil_image)
assert clip_encoder.mode == "vision"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_basic_text(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
embedding = clip_encoder.predict("test search query")
assert clip_encoder.mode == "text"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
class TestFaceRecognition:
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
faces = face_recognizer.predict(cv_image)
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
assert isinstance(face["embedding"], np.ndarray)
assert face["embedding"].shape[0] == 512
assert face["embedding"].dtype == np.float32
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, cache_dir="test_cache")
mock_get_model.assert_called_once_with(ModelType.FACIAL_RECOGNITION, "test_model_name", cache_dir="test_cache")
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_image_model_name", ModelType.CLIP)
await model_cache.get("test_text_model_name", ModelType.CLIP)
mock_get_model.assert_has_calls(
[
mock.call(ModelType.CLIP, "test_image_model_name"),
mock.call(ModelType.CLIP, "test_text_model_name"),
]
)
assert len(model_cache.cache._cache) == 2
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100, revalidate=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
@pytest.mark.skipif(
not settings.test_full,
reason="More time-consuming since it deploys the app and loads models.",
)
class TestEndpoints:
def test_clip_image_endpoint(
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
response = deployed_app.post(
"http://localhost:3003/predict",
data={"modelName": "ViT-B-32__openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
files={"image": byte_image.getvalue()},
)
assert response.status_code == 200
assert response.json() == responses["clip"]["image"]
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "ViT-B-32__openai",
"modelType": "clip",
"text": "test search query",
"options": json.dumps({"mode": "text"}),
},
)
assert response.status_code == 200
assert response.json() == responses["clip"]["text"]
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "buffalo_l",
"modelType": "facial-recognition",
"options": json.dumps({"minScore": 0.034}),
},
files={"image": byte_image.getvalue()},
)
assert response.status_code == 200
assert response.json() == responses["facial-recognition"]
def test_sess_options() -> None:
sess_options = PicklableSessionOptions()
sess_options.intra_op_num_threads = 1
sess_options.inter_op_num_threads = 1
pickled = pickle.dumps(sess_options)
unpickled = pickle.loads(pickled)
assert unpickled.intra_op_num_threads == 1
assert unpickled.inter_op_num_threads == 1