mirror of
https://github.com/immich-app/immich.git
synced 2024-12-23 02:06:15 +02:00
c73832bd9c
* download facial recognition models * download hf models * simplified logic * updated `predict` for facial recognition * ensure download method is called * fixed repo_id for clip * fixed download destination * use st's own `snapshot_download` * conditional download * fixed predict method * check if loaded * minor fixes * updated mypy overrides * added pytest-mock * updated tests * updated lock
91 lines
2.7 KiB
Python
91 lines
2.7 KiB
Python
from __future__ import annotations
|
|
|
|
from abc import ABC, abstractmethod
|
|
from pathlib import Path
|
|
from shutil import rmtree
|
|
from typing import Any
|
|
|
|
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
|
|
|
|
from ..config import get_cache_dir
|
|
from ..schemas import ModelType
|
|
|
|
|
|
class InferenceModel(ABC):
|
|
_model_type: ModelType
|
|
|
|
def __init__(
|
|
self, model_name: str, cache_dir: Path | str | None = None, eager: bool = True, **model_kwargs: Any
|
|
) -> None:
|
|
self.model_name = model_name
|
|
self._loaded = False
|
|
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
|
loader = self.load if eager else self.download
|
|
try:
|
|
loader(**model_kwargs)
|
|
except (OSError, InvalidProtobuf):
|
|
self.clear_cache()
|
|
loader(**model_kwargs)
|
|
|
|
def download(self, **model_kwargs: Any) -> None:
|
|
if not self.cached:
|
|
self._download(**model_kwargs)
|
|
|
|
def load(self, **model_kwargs: Any) -> None:
|
|
self.download(**model_kwargs)
|
|
self._load(**model_kwargs)
|
|
self._loaded = True
|
|
|
|
def predict(self, inputs: Any) -> Any:
|
|
if not self._loaded:
|
|
self.load()
|
|
return self._predict(inputs)
|
|
|
|
@abstractmethod
|
|
def _predict(self, inputs: Any) -> Any:
|
|
...
|
|
|
|
@abstractmethod
|
|
def _download(self, **model_kwargs: Any) -> None:
|
|
...
|
|
|
|
@abstractmethod
|
|
def _load(self, **model_kwargs: Any) -> None:
|
|
...
|
|
|
|
@property
|
|
def model_type(self) -> ModelType:
|
|
return self._model_type
|
|
|
|
@property
|
|
def cache_dir(self) -> Path:
|
|
return self._cache_dir
|
|
|
|
@cache_dir.setter
|
|
def cache_dir(self, cache_dir: Path) -> None:
|
|
self._cache_dir = cache_dir
|
|
|
|
@property
|
|
def cached(self) -> bool:
|
|
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
|
|
|
|
@classmethod
|
|
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
|
|
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
|
|
if model_type not in subclasses:
|
|
raise ValueError(f"Unsupported model type: {model_type}")
|
|
|
|
return subclasses[model_type](model_name, **model_kwargs)
|
|
|
|
def clear_cache(self) -> None:
|
|
if not self.cache_dir.exists():
|
|
return
|
|
if not rmtree.avoids_symlink_attacks:
|
|
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
|
|
|
|
if self.cache_dir.is_dir():
|
|
rmtree(self.cache_dir)
|
|
else:
|
|
self.cache_dir.unlink()
|
|
self.cache_dir.mkdir(parents=True, exist_ok=True)
|