1
0
mirror of https://github.com/immich-app/immich.git synced 2024-11-30 09:47:31 +02:00
immich/machine-learning/app/test_main.py
Mert c73832bd9c
refactor(ml): model downloading (#3545)
* download facial recognition models

* download hf models

* simplified logic

* updated `predict` for facial recognition

* ensure download method is called

* fixed repo_id for clip

* fixed download destination

* use st's own `snapshot_download`

* conditional download

* fixed predict method

* check if loaded

* minor fixes

* updated mypy overrides

* added pytest-mock

* updated tests

* updated lock
2023-08-05 21:45:13 -05:00

257 lines
11 KiB
Python

from io import BytesIO
from typing import TypeAlias
from unittest import mock
import cv2
import numpy as np
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from pytest_mock import MockerFixture
from .config import settings
from .models.cache import ModelCache
from .models.clip import CLIPSTEncoder
from .models.facial_recognition import FaceRecognizer
from .models.image_classification import ImageClassifier
from .schemas import ModelType
ndarray: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
class TestImageClassifier:
classifier_preds = [
{"label": "that's an image alright", "score": 0.8},
{"label": "well it ends with .jpg", "score": 0.1},
{"label": "idk, im just seeing bytes", "score": 0.05},
{"label": "not sure", "score": 0.04},
{"label": "probably a virus", "score": 0.01},
]
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(ImageClassifier, "download")
mock_load = mocker.patch.object(ImageClassifier, "load")
classifier = ImageClassifier("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
assert classifier.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(ImageClassifier, "download")
mock_load = mocker.patch.object(ImageClassifier, "load")
face_model = ImageClassifier("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert face_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_min_score(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
mocker.patch.object(ImageClassifier, "load")
classifier = ImageClassifier("test_model_name", min_score=0.0)
assert classifier.min_score == 0.0
classifier.model = mock.Mock()
classifier.model.return_value = self.classifier_preds
all_labels = classifier.predict(pil_image)
classifier.min_score = 0.5
filtered_labels = classifier.predict(pil_image)
assert all_labels == [
"that's an image alright",
"well it ends with .jpg",
"idk",
"im just seeing bytes",
"not sure",
"probably a virus",
]
assert filtered_labels == ["that's an image alright"]
class TestCLIP:
embedding = np.random.rand(512).astype(np.float32)
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "download")
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
assert clip_model.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(CLIPSTEncoder, "download")
mock_load = mocker.patch.object(CLIPSTEncoder, "load")
clip_model = CLIPSTEncoder("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert clip_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_basic_image(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "load")
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
clip_encoder.model = mock.Mock()
clip_encoder.model.encode.return_value = self.embedding
embedding = clip_encoder.predict(pil_image)
assert isinstance(embedding, list)
assert len(embedding) == 512
assert all([isinstance(num, float) for num in embedding])
clip_encoder.model.encode.assert_called_once()
def test_basic_text(self, mocker: MockerFixture) -> None:
mocker.patch.object(CLIPSTEncoder, "load")
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
clip_encoder.model = mock.Mock()
clip_encoder.model.encode.return_value = self.embedding
embedding = clip_encoder.predict("test search query")
assert isinstance(embedding, list)
assert len(embedding) == 512
assert all([isinstance(num, float) for num in embedding])
clip_encoder.model.encode.assert_called_once()
class TestFaceRecognition:
def test_eager_init(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "download")
mock_load = mocker.patch.object(FaceRecognizer, "load")
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=True, test_arg="test_arg")
assert face_model.model_name == "test_model_name"
mock_load.assert_called_once_with(test_arg="test_arg")
def test_lazy_init(self, mocker: MockerFixture) -> None:
mock_download = mocker.patch.object(FaceRecognizer, "download")
mock_load = mocker.patch.object(FaceRecognizer, "load")
face_model = FaceRecognizer("test_model_name", cache_dir="test_cache", eager=False, test_arg="test_arg")
assert face_model.model_name == "test_model_name"
mock_download.assert_called_once_with(test_arg="test_arg")
mock_load.assert_not_called()
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
faces = face_recognizer.predict(cv_image)
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
assert isinstance(face["embedding"], list)
assert len(face["embedding"]) == 512
assert all([isinstance(num, float) for num in face["embedding"]])
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION, cache_dir="test_cache")
mock_get_model.assert_called_once_with(
ModelType.IMAGE_CLASSIFICATION, "test_model_name", cache_dir="test_cache"
)
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_image_model_name", ModelType.CLIP)
await model_cache.get("test_text_model_name", ModelType.CLIP)
mock_get_model.assert_has_calls(
[
mock.call(ModelType.CLIP, "test_image_model_name"),
mock.call(ModelType.CLIP, "test_text_model_name"),
]
)
assert len(model_cache.cache._cache) == 2
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100)
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100, revalidate=True)
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
@pytest.mark.skipif(
not settings.test_full,
reason="More time-consuming since it deploys the app and loads models.",
)
class TestEndpoints:
def test_tagging_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
headers = {"Content-Type": "image/jpg"}
response = deployed_app.post(
"http://localhost:3003/image-classifier/tag-image",
content=byte_image.getvalue(),
headers=headers,
)
assert response.status_code == 200
def test_clip_image_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
headers = {"Content-Type": "image/jpg"}
response = deployed_app.post(
"http://localhost:3003/sentence-transformer/encode-image",
content=byte_image.getvalue(),
headers=headers,
)
assert response.status_code == 200
def test_clip_text_endpoint(self, deployed_app: TestClient) -> None:
response = deployed_app.post(
"http://localhost:3003/sentence-transformer/encode-text",
json={"text": "test search query"},
)
assert response.status_code == 200
def test_face_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
headers = {"Content-Type": "image/jpg"}
response = deployed_app.post(
"http://localhost:3003/facial-recognition/detect-faces",
content=byte_image.getvalue(),
headers=headers,
)
assert response.status_code == 200