1
0
mirror of https://github.com/laurent22/joplin.git synced 2025-12-23 23:33:01 +02:00

CLI v1.0.168

This commit is contained in:
Laurent Cozic
2020-09-14 09:48:52 +01:00
parent 0f1156ab9c
commit 3179e26b0e
1925 changed files with 1333985 additions and 2 deletions

View File

@@ -0,0 +1,16 @@
This folder contains extensions and utility programs intended to analyze
live database files, detect problems, and possibly fix them.
As SQLite is being used on larger and larger databases, database sizes
are growing into the terabyte range. At that size, hardware malfunctions
and/or cosmic rays will occasionally corrupt a database file. Detecting
problems and fixing errors a terabyte-sized databases can take hours or days,
and it is undesirable to take applications that depend on the databases
off-line for such a long time.
The utilities in the folder are intended to provide mechanisms for
detecting and fixing problems in large databases while those databases
are in active use.
The utilities and extensions in this folder are experimental and under
active development at the time of this writing (2017-10-12). If and when
they stabilize, this README will be updated to reflect that fact.

View File

@@ -0,0 +1,299 @@
/*
** 2017 October 11
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This module exports a single C function:
**
** int sqlite3_check_freelist(sqlite3 *db, const char *zDb);
**
** This function checks the free-list in database zDb (one of "main",
** "temp", etc.) and reports any errors by invoking the sqlite3_log()
** function. It returns SQLITE_OK if successful, or an SQLite error
** code otherwise. It is not an error if the free-list is corrupted but
** no IO or OOM errors occur.
**
** If this file is compiled and loaded as an SQLite loadable extension,
** it adds an SQL function "checkfreelist" to the database handle, to
** be invoked as follows:
**
** SELECT checkfreelist(<database-name>);
**
** This function performs the same checks as sqlite3_check_freelist(),
** except that it returns all error messages as a single text value,
** separated by newline characters. If the freelist is not corrupted
** in any way, an empty string is returned.
**
** To compile this module for use as an SQLite loadable extension:
**
** gcc -Os -fPIC -shared checkfreelist.c -o checkfreelist.so
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#ifndef SQLITE_AMALGAMATION
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include <assert.h>
# define ALWAYS(X) 1
# define NEVER(X) 0
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#define get4byte(x) ( \
((u32)((x)[0])<<24) + \
((u32)((x)[1])<<16) + \
((u32)((x)[2])<<8) + \
((u32)((x)[3])) \
)
#endif
/*
** Execute a single PRAGMA statement and return the integer value returned
** via output parameter (*pnOut).
**
** The SQL statement passed as the third argument should be a printf-style
** format string containing a single "%s" which will be replace by the
** value passed as the second argument. e.g.
**
** sqlGetInteger(db, "main", "PRAGMA %s.page_count", pnOut)
**
** executes "PRAGMA main.page_count" and stores the results in (*pnOut).
*/
static int sqlGetInteger(
sqlite3 *db, /* Database handle */
const char *zDb, /* Database name ("main", "temp" etc.) */
const char *zFmt, /* SQL statement format */
u32 *pnOut /* OUT: Integer value */
){
int rc, rc2;
char *zSql;
sqlite3_stmt *pStmt = 0;
int bOk = 0;
zSql = sqlite3_mprintf(zFmt, zDb);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
}
if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
*pnOut = (u32)sqlite3_column_int(pStmt, 0);
bOk = 1;
}
rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_ERROR;
return rc;
}
/*
** Argument zFmt must be a printf-style format string and must be
** followed by its required arguments. If argument pzOut is NULL,
** then the results of printf()ing the format string are passed to
** sqlite3_log(). Otherwise, they are appended to the string
** at (*pzOut).
*/
static int checkFreelistError(char **pzOut, const char *zFmt, ...){
int rc = SQLITE_OK;
char *zErr = 0;
va_list ap;
va_start(ap, zFmt);
zErr = sqlite3_vmprintf(zFmt, ap);
if( zErr==0 ){
rc = SQLITE_NOMEM;
}else{
if( pzOut ){
*pzOut = sqlite3_mprintf("%s%z%s", *pzOut?"\n":"", *pzOut, zErr);
if( *pzOut==0 ) rc = SQLITE_NOMEM;
}else{
sqlite3_log(SQLITE_ERROR, "checkfreelist: %s", zErr);
}
sqlite3_free(zErr);
}
va_end(ap);
return rc;
}
static int checkFreelist(
sqlite3 *db,
const char *zDb,
char **pzOut
){
/* This query returns one row for each page on the free list. Each row has
** two columns - the page number and page content. */
const char *zTrunk =
"WITH freelist_trunk(i, d, n) AS ("
"SELECT 1, NULL, sqlite_readint32(data, 32) "
"FROM sqlite_dbpage(:1) WHERE pgno=1 "
"UNION ALL "
"SELECT n, data, sqlite_readint32(data) "
"FROM freelist_trunk, sqlite_dbpage(:1) WHERE pgno=n "
")"
"SELECT i, d FROM freelist_trunk WHERE i!=1;";
int rc, rc2; /* Return code */
sqlite3_stmt *pTrunk = 0; /* Compilation of zTrunk */
u32 nPage = 0; /* Number of pages in db */
u32 nExpected = 0; /* Expected number of free pages */
u32 nFree = 0; /* Number of pages on free list */
if( zDb==0 ) zDb = "main";
if( (rc = sqlGetInteger(db, zDb, "PRAGMA %s.page_count", &nPage))
|| (rc = sqlGetInteger(db, zDb, "PRAGMA %s.freelist_count", &nExpected))
){
return rc;
}
rc = sqlite3_prepare_v2(db, zTrunk, -1, &pTrunk, 0);
if( rc!=SQLITE_OK ) return rc;
sqlite3_bind_text(pTrunk, 1, zDb, -1, SQLITE_STATIC);
while( rc==SQLITE_OK && sqlite3_step(pTrunk)==SQLITE_ROW ){
u32 i;
u32 iTrunk = (u32)sqlite3_column_int(pTrunk, 0);
const u8 *aData = (const u8*)sqlite3_column_blob(pTrunk, 1);
u32 nData = (u32)sqlite3_column_bytes(pTrunk, 1);
u32 iNext = get4byte(&aData[0]);
u32 nLeaf = get4byte(&aData[4]);
if( nLeaf>((nData/4)-2-6) ){
rc = checkFreelistError(pzOut,
"leaf count out of range (%d) on trunk page %d",
(int)nLeaf, (int)iTrunk
);
nLeaf = (nData/4) - 2 - 6;
}
nFree += 1+nLeaf;
if( iNext>nPage ){
rc = checkFreelistError(pzOut,
"trunk page %d is out of range", (int)iNext
);
}
for(i=0; rc==SQLITE_OK && i<nLeaf; i++){
u32 iLeaf = get4byte(&aData[8 + 4*i]);
if( iLeaf==0 || iLeaf>nPage ){
rc = checkFreelistError(pzOut,
"leaf page %d is out of range (child %d of trunk page %d)",
(int)iLeaf, (int)i, (int)iTrunk
);
}
}
}
if( rc==SQLITE_OK && nFree!=nExpected ){
rc = checkFreelistError(pzOut,
"free-list count mismatch: actual=%d header=%d",
(int)nFree, (int)nExpected
);
}
rc2 = sqlite3_finalize(pTrunk);
if( rc==SQLITE_OK ) rc = rc2;
return rc;
}
int sqlite3_check_freelist(sqlite3 *db, const char *zDb){
return checkFreelist(db, zDb, 0);
}
static void checkfreelist_function(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
const char *zDb;
int rc;
char *zOut = 0;
sqlite3 *db = sqlite3_context_db_handle(pCtx);
assert( nArg==1 );
zDb = (const char*)sqlite3_value_text(apArg[0]);
rc = checkFreelist(db, zDb, &zOut);
if( rc==SQLITE_OK ){
sqlite3_result_text(pCtx, zOut?zOut:"ok", -1, SQLITE_TRANSIENT);
}else{
sqlite3_result_error_code(pCtx, rc);
}
sqlite3_free(zOut);
}
/*
** An SQL function invoked as follows:
**
** sqlite_readint32(BLOB) -- Decode 32-bit integer from start of blob
*/
static void readint_function(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
const u8 *zBlob;
int nBlob;
int iOff = 0;
u32 iRet = 0;
if( nArg!=1 && nArg!=2 ){
sqlite3_result_error(
pCtx, "wrong number of arguments to function sqlite_readint32()", -1
);
return;
}
if( nArg==2 ){
iOff = sqlite3_value_int(apArg[1]);
}
zBlob = sqlite3_value_blob(apArg[0]);
nBlob = sqlite3_value_bytes(apArg[0]);
if( nBlob>=(iOff+4) ){
iRet = get4byte(&zBlob[iOff]);
}
sqlite3_result_int64(pCtx, (sqlite3_int64)iRet);
}
/*
** Register the SQL functions.
*/
static int cflRegister(sqlite3 *db){
int rc = sqlite3_create_function(
db, "sqlite_readint32", -1, SQLITE_UTF8, 0, readint_function, 0, 0
);
if( rc!=SQLITE_OK ) return rc;
rc = sqlite3_create_function(
db, "checkfreelist", 1, SQLITE_UTF8, 0, checkfreelist_function, 0, 0
);
return rc;
}
/*
** Extension load function.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_checkfreelist_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
return cflRegister(db);
}

View File

@@ -0,0 +1,927 @@
/*
** 2017 October 27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
/*
** Stuff that is available inside the amalgamation, but which we need to
** declare ourselves if this module is compiled separately.
*/
#ifndef SQLITE_AMALGAMATION
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include <assert.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#define get4byte(x) ( \
((u32)((x)[0])<<24) + \
((u32)((x)[1])<<16) + \
((u32)((x)[2])<<8) + \
((u32)((x)[3])) \
)
#endif
typedef struct CidxTable CidxTable;
typedef struct CidxCursor CidxCursor;
struct CidxTable {
sqlite3_vtab base; /* Base class. Must be first */
sqlite3 *db;
};
struct CidxCursor {
sqlite3_vtab_cursor base; /* Base class. Must be first */
sqlite3_int64 iRowid; /* Row number of the output */
char *zIdxName; /* Copy of the index_name parameter */
char *zAfterKey; /* Copy of the after_key parameter */
sqlite3_stmt *pStmt; /* SQL statement that generates the output */
};
typedef struct CidxColumn CidxColumn;
struct CidxColumn {
char *zExpr; /* Text for indexed expression */
int bDesc; /* True for DESC columns, otherwise false */
int bKey; /* Part of index, not PK */
};
typedef struct CidxIndex CidxIndex;
struct CidxIndex {
char *zWhere; /* WHERE clause, if any */
int nCol; /* Elements in aCol[] array */
CidxColumn aCol[1]; /* Array of indexed columns */
};
static void *cidxMalloc(int *pRc, int n){
void *pRet = 0;
assert( n!=0 );
if( *pRc==SQLITE_OK ){
pRet = sqlite3_malloc(n);
if( pRet ){
memset(pRet, 0, n);
}else{
*pRc = SQLITE_NOMEM;
}
}
return pRet;
}
static void cidxCursorError(CidxCursor *pCsr, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
assert( pCsr->base.pVtab->zErrMsg==0 );
pCsr->base.pVtab->zErrMsg = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
}
/*
** Connect to the incremental_index_check virtual table.
*/
static int cidxConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
int rc = SQLITE_OK;
CidxTable *pRet;
#define IIC_ERRMSG 0
#define IIC_CURRENT_KEY 1
#define IIC_INDEX_NAME 2
#define IIC_AFTER_KEY 3
#define IIC_SCANNER_SQL 4
rc = sqlite3_declare_vtab(db,
"CREATE TABLE xyz("
" errmsg TEXT," /* Error message or NULL if everything is ok */
" current_key TEXT," /* SQLite quote() text of key values */
" index_name HIDDEN," /* IN: name of the index being scanned */
" after_key HIDDEN," /* IN: Start scanning after this key */
" scanner_sql HIDDEN" /* debuggingn info: SQL used for scanner */
")"
);
pRet = cidxMalloc(&rc, sizeof(CidxTable));
if( pRet ){
pRet->db = db;
}
*ppVtab = (sqlite3_vtab*)pRet;
return rc;
}
/*
** Disconnect from or destroy an incremental_index_check virtual table.
*/
static int cidxDisconnect(sqlite3_vtab *pVtab){
CidxTable *pTab = (CidxTable*)pVtab;
sqlite3_free(pTab);
return SQLITE_OK;
}
/*
** idxNum and idxStr are not used. There are only three possible plans,
** which are all distinguished by the number of parameters.
**
** No parameters: A degenerate plan. The result is zero rows.
** 1 Parameter: Scan all of the index starting with first entry
** 2 parameters: Scan the index starting after the "after_key".
**
** Provide successively smaller costs for each of these plans to encourage
** the query planner to select the one with the most parameters.
*/
static int cidxBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pInfo){
int iIdxName = -1;
int iAfterKey = -1;
int i;
for(i=0; i<pInfo->nConstraint; i++){
struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
if( p->usable==0 ) continue;
if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
if( p->iColumn==IIC_INDEX_NAME ){
iIdxName = i;
}
if( p->iColumn==IIC_AFTER_KEY ){
iAfterKey = i;
}
}
if( iIdxName<0 ){
pInfo->estimatedCost = 1000000000.0;
}else{
pInfo->aConstraintUsage[iIdxName].argvIndex = 1;
pInfo->aConstraintUsage[iIdxName].omit = 1;
if( iAfterKey<0 ){
pInfo->estimatedCost = 1000000.0;
}else{
pInfo->aConstraintUsage[iAfterKey].argvIndex = 2;
pInfo->aConstraintUsage[iAfterKey].omit = 1;
pInfo->estimatedCost = 1000.0;
}
}
return SQLITE_OK;
}
/*
** Open a new btreeinfo cursor.
*/
static int cidxOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
CidxCursor *pRet;
int rc = SQLITE_OK;
pRet = cidxMalloc(&rc, sizeof(CidxCursor));
*ppCursor = (sqlite3_vtab_cursor*)pRet;
return rc;
}
/*
** Close a btreeinfo cursor.
*/
static int cidxClose(sqlite3_vtab_cursor *pCursor){
CidxCursor *pCsr = (CidxCursor*)pCursor;
sqlite3_finalize(pCsr->pStmt);
sqlite3_free(pCsr->zIdxName);
sqlite3_free(pCsr->zAfterKey);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** Move a btreeinfo cursor to the next entry in the file.
*/
static int cidxNext(sqlite3_vtab_cursor *pCursor){
CidxCursor *pCsr = (CidxCursor*)pCursor;
int rc = sqlite3_step(pCsr->pStmt);
if( rc!=SQLITE_ROW ){
rc = sqlite3_finalize(pCsr->pStmt);
pCsr->pStmt = 0;
if( rc!=SQLITE_OK ){
sqlite3 *db = ((CidxTable*)pCsr->base.pVtab)->db;
cidxCursorError(pCsr, "Cursor error: %s", sqlite3_errmsg(db));
}
}else{
pCsr->iRowid++;
rc = SQLITE_OK;
}
return rc;
}
/* We have reached EOF if previous sqlite3_step() returned
** anything other than SQLITE_ROW;
*/
static int cidxEof(sqlite3_vtab_cursor *pCursor){
CidxCursor *pCsr = (CidxCursor*)pCursor;
return pCsr->pStmt==0;
}
static char *cidxMprintf(int *pRc, const char *zFmt, ...){
char *zRet = 0;
va_list ap;
va_start(ap, zFmt);
zRet = sqlite3_vmprintf(zFmt, ap);
if( *pRc==SQLITE_OK ){
if( zRet==0 ){
*pRc = SQLITE_NOMEM;
}
}else{
sqlite3_free(zRet);
zRet = 0;
}
va_end(ap);
return zRet;
}
static sqlite3_stmt *cidxPrepare(
int *pRc, CidxCursor *pCsr, const char *zFmt, ...
){
sqlite3_stmt *pRet = 0;
char *zSql;
va_list ap; /* ... printf arguments */
va_start(ap, zFmt);
zSql = sqlite3_vmprintf(zFmt, ap);
if( *pRc==SQLITE_OK ){
if( zSql==0 ){
*pRc = SQLITE_NOMEM;
}else{
sqlite3 *db = ((CidxTable*)pCsr->base.pVtab)->db;
*pRc = sqlite3_prepare_v2(db, zSql, -1, &pRet, 0);
if( *pRc!=SQLITE_OK ){
cidxCursorError(pCsr, "SQL error: %s", sqlite3_errmsg(db));
}
}
}
sqlite3_free(zSql);
va_end(ap);
return pRet;
}
static void cidxFinalize(int *pRc, sqlite3_stmt *pStmt){
int rc = sqlite3_finalize(pStmt);
if( *pRc==SQLITE_OK ) *pRc = rc;
}
char *cidxStrdup(int *pRc, const char *zStr){
char *zRet = 0;
if( *pRc==SQLITE_OK ){
int n = (int)strlen(zStr);
zRet = cidxMalloc(pRc, n+1);
if( zRet ) memcpy(zRet, zStr, n+1);
}
return zRet;
}
static void cidxFreeIndex(CidxIndex *pIdx){
if( pIdx ){
int i;
for(i=0; i<pIdx->nCol; i++){
sqlite3_free(pIdx->aCol[i].zExpr);
}
sqlite3_free(pIdx->zWhere);
sqlite3_free(pIdx);
}
}
static int cidx_isspace(char c){
return c==' ' || c=='\t' || c=='\r' || c=='\n';
}
static int cidx_isident(char c){
return c<0
|| (c>='0' && c<='9') || (c>='a' && c<='z')
|| (c>='A' && c<='Z') || c=='_';
}
#define CIDX_PARSE_EOF 0
#define CIDX_PARSE_COMMA 1 /* "," */
#define CIDX_PARSE_OPEN 2 /* "(" */
#define CIDX_PARSE_CLOSE 3 /* ")" */
/*
** Argument zIn points into the start, middle or end of a CREATE INDEX
** statement. If argument pbDoNotTrim is non-NULL, then this function
** scans the input until it finds EOF, a comma (",") or an open or
** close parenthesis character. It then sets (*pzOut) to point to said
** character and returns a CIDX_PARSE_XXX constant as appropriate. The
** parser is smart enough that special characters inside SQL strings
** or comments are not returned for.
**
** Or, if argument pbDoNotTrim is NULL, then this function sets *pzOut
** to point to the first character of the string that is not whitespace
** or part of an SQL comment and returns CIDX_PARSE_EOF.
**
** Additionally, if pbDoNotTrim is not NULL and the element immediately
** before (*pzOut) is an SQL comment of the form "-- comment", then
** (*pbDoNotTrim) is set before returning. In all other cases it is
** cleared.
*/
static int cidxFindNext(
const char *zIn,
const char **pzOut,
int *pbDoNotTrim /* OUT: True if prev is -- comment */
){
const char *z = zIn;
while( 1 ){
while( cidx_isspace(*z) ) z++;
if( z[0]=='-' && z[1]=='-' ){
z += 2;
while( z[0]!='\n' ){
if( z[0]=='\0' ) return CIDX_PARSE_EOF;
z++;
}
while( cidx_isspace(*z) ) z++;
if( pbDoNotTrim ) *pbDoNotTrim = 1;
}else
if( z[0]=='/' && z[1]=='*' ){
z += 2;
while( z[0]!='*' || z[1]!='/' ){
if( z[1]=='\0' ) return CIDX_PARSE_EOF;
z++;
}
z += 2;
}else{
*pzOut = z;
if( pbDoNotTrim==0 ) return CIDX_PARSE_EOF;
switch( *z ){
case '\0':
return CIDX_PARSE_EOF;
case '(':
return CIDX_PARSE_OPEN;
case ')':
return CIDX_PARSE_CLOSE;
case ',':
return CIDX_PARSE_COMMA;
case '"':
case '\'':
case '`': {
char q = *z;
z++;
while( *z ){
if( *z==q ){
z++;
if( *z!=q ) break;
}
z++;
}
break;
}
case '[':
while( *z++!=']' );
break;
default:
z++;
break;
}
*pbDoNotTrim = 0;
}
}
assert( 0 );
return -1;
}
static int cidxParseSQL(CidxCursor *pCsr, CidxIndex *pIdx, const char *zSql){
const char *z = zSql;
const char *z1;
int e;
int rc = SQLITE_OK;
int nParen = 1;
int bDoNotTrim = 0;
CidxColumn *pCol = pIdx->aCol;
e = cidxFindNext(z, &z, &bDoNotTrim);
if( e!=CIDX_PARSE_OPEN ) goto parse_error;
z1 = z+1;
z++;
while( nParen>0 ){
e = cidxFindNext(z, &z, &bDoNotTrim);
if( e==CIDX_PARSE_EOF ) goto parse_error;
if( (e==CIDX_PARSE_COMMA || e==CIDX_PARSE_CLOSE) && nParen==1 ){
const char *z2 = z;
if( pCol->zExpr ) goto parse_error;
if( bDoNotTrim==0 ){
while( cidx_isspace(z[-1]) ) z--;
if( !sqlite3_strnicmp(&z[-3], "asc", 3) && 0==cidx_isident(z[-4]) ){
z -= 3;
while( cidx_isspace(z[-1]) ) z--;
}else
if( !sqlite3_strnicmp(&z[-4], "desc", 4) && 0==cidx_isident(z[-5]) ){
z -= 4;
while( cidx_isspace(z[-1]) ) z--;
}
while( cidx_isspace(z1[0]) ) z1++;
}
pCol->zExpr = cidxMprintf(&rc, "%.*s", z-z1, z1);
pCol++;
z = z1 = z2+1;
}
if( e==CIDX_PARSE_OPEN ) nParen++;
if( e==CIDX_PARSE_CLOSE ) nParen--;
z++;
}
/* Search for a WHERE clause */
cidxFindNext(z, &z, 0);
if( 0==sqlite3_strnicmp(z, "where", 5) ){
pIdx->zWhere = cidxMprintf(&rc, "%s\n", &z[5]);
}else if( z[0]!='\0' ){
goto parse_error;
}
return rc;
parse_error:
cidxCursorError(pCsr, "Parse error in: %s", zSql);
return SQLITE_ERROR;
}
static int cidxLookupIndex(
CidxCursor *pCsr, /* Cursor object */
const char *zIdx, /* Name of index to look up */
CidxIndex **ppIdx, /* OUT: Description of columns */
char **pzTab /* OUT: Table name */
){
int rc = SQLITE_OK;
char *zTab = 0;
CidxIndex *pIdx = 0;
sqlite3_stmt *pFindTab = 0;
sqlite3_stmt *pInfo = 0;
/* Find the table for this index. */
pFindTab = cidxPrepare(&rc, pCsr,
"SELECT tbl_name, sql FROM sqlite_schema WHERE name=%Q AND type='index'",
zIdx
);
if( rc==SQLITE_OK && sqlite3_step(pFindTab)==SQLITE_ROW ){
const char *zSql = (const char*)sqlite3_column_text(pFindTab, 1);
zTab = cidxStrdup(&rc, (const char*)sqlite3_column_text(pFindTab, 0));
pInfo = cidxPrepare(&rc, pCsr, "PRAGMA index_xinfo(%Q)", zIdx);
if( rc==SQLITE_OK ){
int nAlloc = 0;
int iCol = 0;
while( sqlite3_step(pInfo)==SQLITE_ROW ){
const char *zName = (const char*)sqlite3_column_text(pInfo, 2);
const char *zColl = (const char*)sqlite3_column_text(pInfo, 4);
CidxColumn *p;
if( zName==0 ) zName = "rowid";
if( iCol==nAlloc ){
int nByte = sizeof(CidxIndex) + sizeof(CidxColumn)*(nAlloc+8);
pIdx = (CidxIndex*)sqlite3_realloc(pIdx, nByte);
nAlloc += 8;
}
p = &pIdx->aCol[iCol++];
p->bDesc = sqlite3_column_int(pInfo, 3);
p->bKey = sqlite3_column_int(pInfo, 5);
if( zSql==0 || p->bKey==0 ){
p->zExpr = cidxMprintf(&rc, "\"%w\" COLLATE %s",zName,zColl);
}else{
p->zExpr = 0;
}
pIdx->nCol = iCol;
pIdx->zWhere = 0;
}
cidxFinalize(&rc, pInfo);
}
if( rc==SQLITE_OK && zSql ){
rc = cidxParseSQL(pCsr, pIdx, zSql);
}
}
cidxFinalize(&rc, pFindTab);
if( rc==SQLITE_OK && zTab==0 ){
rc = SQLITE_ERROR;
}
if( rc!=SQLITE_OK ){
sqlite3_free(zTab);
cidxFreeIndex(pIdx);
}else{
*pzTab = zTab;
*ppIdx = pIdx;
}
return rc;
}
static int cidxDecodeAfter(
CidxCursor *pCsr,
int nCol,
const char *zAfterKey,
char ***pazAfter
){
char **azAfter;
int rc = SQLITE_OK;
int nAfterKey = (int)strlen(zAfterKey);
azAfter = cidxMalloc(&rc, sizeof(char*)*nCol + nAfterKey+1);
if( rc==SQLITE_OK ){
int i;
char *zCopy = (char*)&azAfter[nCol];
char *p = zCopy;
memcpy(zCopy, zAfterKey, nAfterKey+1);
for(i=0; i<nCol; i++){
while( *p==' ' ) p++;
/* Check NULL values */
if( *p=='N' ){
if( memcmp(p, "NULL", 4) ) goto parse_error;
p += 4;
}
/* Check strings and blob literals */
else if( *p=='X' || *p=='\'' ){
azAfter[i] = p;
if( *p=='X' ) p++;
if( *p!='\'' ) goto parse_error;
p++;
while( 1 ){
if( *p=='\0' ) goto parse_error;
if( *p=='\'' ){
p++;
if( *p!='\'' ) break;
}
p++;
}
}
/* Check numbers */
else{
azAfter[i] = p;
while( (*p>='0' && *p<='9')
|| *p=='.' || *p=='+' || *p=='-' || *p=='e' || *p=='E'
){
p++;
}
}
while( *p==' ' ) p++;
if( *p!=(i==(nCol-1) ? '\0' : ',') ){
goto parse_error;
}
*p++ = '\0';
}
}
*pazAfter = azAfter;
return rc;
parse_error:
sqlite3_free(azAfter);
*pazAfter = 0;
cidxCursorError(pCsr, "%s", "error parsing after value");
return SQLITE_ERROR;
}
static char *cidxWhere(
int *pRc, CidxColumn *aCol, char **azAfter, int iGt, int bLastIsNull
){
char *zRet = 0;
const char *zSep = "";
int i;
for(i=0; i<iGt; i++){
zRet = cidxMprintf(pRc, "%z%s(%s) IS %s", zRet,
zSep, aCol[i].zExpr, (azAfter[i] ? azAfter[i] : "NULL")
);
zSep = " AND ";
}
if( bLastIsNull ){
zRet = cidxMprintf(pRc, "%z%s(%s) IS NULL", zRet, zSep, aCol[iGt].zExpr);
}
else if( azAfter[iGt] ){
zRet = cidxMprintf(pRc, "%z%s(%s) %s %s", zRet,
zSep, aCol[iGt].zExpr, (aCol[iGt].bDesc ? "<" : ">"),
azAfter[iGt]
);
}else{
zRet = cidxMprintf(pRc, "%z%s(%s) IS NOT NULL", zRet, zSep,aCol[iGt].zExpr);
}
return zRet;
}
#define CIDX_CLIST_ALL 0
#define CIDX_CLIST_ORDERBY 1
#define CIDX_CLIST_CURRENT_KEY 2
#define CIDX_CLIST_SUBWHERE 3
#define CIDX_CLIST_SUBEXPR 4
/*
** This function returns various strings based on the contents of the
** CidxIndex structure and the eType parameter.
*/
static char *cidxColumnList(
int *pRc, /* IN/OUT: Error code */
const char *zIdx,
CidxIndex *pIdx, /* Indexed columns */
int eType /* True to include ASC/DESC */
){
char *zRet = 0;
if( *pRc==SQLITE_OK ){
const char *aDir[2] = {"", " DESC"};
int i;
const char *zSep = "";
for(i=0; i<pIdx->nCol; i++){
CidxColumn *p = &pIdx->aCol[i];
assert( pIdx->aCol[i].bDesc==0 || pIdx->aCol[i].bDesc==1 );
switch( eType ){
case CIDX_CLIST_ORDERBY:
zRet = cidxMprintf(pRc, "%z%s%d%s", zRet, zSep, i+1, aDir[p->bDesc]);
zSep = ",";
break;
case CIDX_CLIST_CURRENT_KEY:
zRet = cidxMprintf(pRc, "%z%squote(i%d)", zRet, zSep, i);
zSep = "||','||";
break;
case CIDX_CLIST_SUBWHERE:
if( p->bKey==0 ){
zRet = cidxMprintf(pRc, "%z%s%s IS i.i%d", zRet,
zSep, p->zExpr, i
);
zSep = " AND ";
}
break;
case CIDX_CLIST_SUBEXPR:
if( p->bKey==1 ){
zRet = cidxMprintf(pRc, "%z%s%s IS i.i%d", zRet,
zSep, p->zExpr, i
);
zSep = " AND ";
}
break;
default:
assert( eType==CIDX_CLIST_ALL );
zRet = cidxMprintf(pRc, "%z%s(%s) AS i%d", zRet, zSep, p->zExpr, i);
zSep = ", ";
break;
}
}
}
return zRet;
}
/*
** Generate SQL (in memory obtained from sqlite3_malloc()) that will
** continue the index scan for zIdxName starting after zAfterKey.
*/
int cidxGenerateScanSql(
CidxCursor *pCsr, /* The cursor which needs the new statement */
const char *zIdxName, /* index to be scanned */
const char *zAfterKey, /* start after this key, if not NULL */
char **pzSqlOut /* OUT: Write the generated SQL here */
){
int rc;
char *zTab = 0;
char *zCurrentKey = 0;
char *zOrderBy = 0;
char *zSubWhere = 0;
char *zSubExpr = 0;
char *zSrcList = 0;
char **azAfter = 0;
CidxIndex *pIdx = 0;
*pzSqlOut = 0;
rc = cidxLookupIndex(pCsr, zIdxName, &pIdx, &zTab);
zOrderBy = cidxColumnList(&rc, zIdxName, pIdx, CIDX_CLIST_ORDERBY);
zCurrentKey = cidxColumnList(&rc, zIdxName, pIdx, CIDX_CLIST_CURRENT_KEY);
zSubWhere = cidxColumnList(&rc, zIdxName, pIdx, CIDX_CLIST_SUBWHERE);
zSubExpr = cidxColumnList(&rc, zIdxName, pIdx, CIDX_CLIST_SUBEXPR);
zSrcList = cidxColumnList(&rc, zIdxName, pIdx, CIDX_CLIST_ALL);
if( rc==SQLITE_OK && zAfterKey ){
rc = cidxDecodeAfter(pCsr, pIdx->nCol, zAfterKey, &azAfter);
}
if( rc==SQLITE_OK ){
if( zAfterKey==0 ){
*pzSqlOut = cidxMprintf(&rc,
"SELECT (SELECT %s FROM %Q AS t WHERE %s), %s "
"FROM (SELECT %s FROM %Q INDEXED BY %Q %s%sORDER BY %s) AS i",
zSubExpr, zTab, zSubWhere, zCurrentKey,
zSrcList, zTab, zIdxName,
(pIdx->zWhere ? "WHERE " : ""), (pIdx->zWhere ? pIdx->zWhere : ""),
zOrderBy
);
}else{
const char *zSep = "";
char *zSql;
int i;
zSql = cidxMprintf(&rc,
"SELECT (SELECT %s FROM %Q WHERE %s), %s FROM (",
zSubExpr, zTab, zSubWhere, zCurrentKey
);
for(i=pIdx->nCol-1; i>=0; i--){
int j;
if( pIdx->aCol[i].bDesc && azAfter[i]==0 ) continue;
for(j=0; j<2; j++){
char *zWhere = cidxWhere(&rc, pIdx->aCol, azAfter, i, j);
zSql = cidxMprintf(&rc, "%z"
"%sSELECT * FROM ("
"SELECT %s FROM %Q INDEXED BY %Q WHERE %s%s%z ORDER BY %s"
")",
zSql, zSep, zSrcList, zTab, zIdxName,
pIdx->zWhere ? pIdx->zWhere : "",
pIdx->zWhere ? " AND " : "",
zWhere, zOrderBy
);
zSep = " UNION ALL ";
if( pIdx->aCol[i].bDesc==0 ) break;
}
}
*pzSqlOut = cidxMprintf(&rc, "%z) AS i", zSql);
}
}
sqlite3_free(zTab);
sqlite3_free(zCurrentKey);
sqlite3_free(zOrderBy);
sqlite3_free(zSubWhere);
sqlite3_free(zSubExpr);
sqlite3_free(zSrcList);
cidxFreeIndex(pIdx);
sqlite3_free(azAfter);
return rc;
}
/*
** Position a cursor back to the beginning.
*/
static int cidxFilter(
sqlite3_vtab_cursor *pCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
int rc = SQLITE_OK;
CidxCursor *pCsr = (CidxCursor*)pCursor;
const char *zIdxName = 0;
const char *zAfterKey = 0;
sqlite3_free(pCsr->zIdxName);
pCsr->zIdxName = 0;
sqlite3_free(pCsr->zAfterKey);
pCsr->zAfterKey = 0;
sqlite3_finalize(pCsr->pStmt);
pCsr->pStmt = 0;
if( argc>0 ){
zIdxName = (const char*)sqlite3_value_text(argv[0]);
if( argc>1 ){
zAfterKey = (const char*)sqlite3_value_text(argv[1]);
}
}
if( zIdxName ){
char *zSql = 0;
pCsr->zIdxName = sqlite3_mprintf("%s", zIdxName);
pCsr->zAfterKey = zAfterKey ? sqlite3_mprintf("%s", zAfterKey) : 0;
rc = cidxGenerateScanSql(pCsr, zIdxName, zAfterKey, &zSql);
if( zSql ){
pCsr->pStmt = cidxPrepare(&rc, pCsr, "%z", zSql);
}
}
if( pCsr->pStmt ){
assert( rc==SQLITE_OK );
rc = cidxNext(pCursor);
}
pCsr->iRowid = 1;
return rc;
}
/*
** Return a column value.
*/
static int cidxColumn(
sqlite3_vtab_cursor *pCursor,
sqlite3_context *ctx,
int iCol
){
CidxCursor *pCsr = (CidxCursor*)pCursor;
assert( iCol>=IIC_ERRMSG && iCol<=IIC_SCANNER_SQL );
switch( iCol ){
case IIC_ERRMSG: {
const char *zVal = 0;
if( sqlite3_column_type(pCsr->pStmt, 0)==SQLITE_INTEGER ){
if( sqlite3_column_int(pCsr->pStmt, 0)==0 ){
zVal = "row data mismatch";
}
}else{
zVal = "row missing";
}
sqlite3_result_text(ctx, zVal, -1, SQLITE_STATIC);
break;
}
case IIC_CURRENT_KEY: {
sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pStmt, 1));
break;
}
case IIC_INDEX_NAME: {
sqlite3_result_text(ctx, pCsr->zIdxName, -1, SQLITE_TRANSIENT);
break;
}
case IIC_AFTER_KEY: {
sqlite3_result_text(ctx, pCsr->zAfterKey, -1, SQLITE_TRANSIENT);
break;
}
case IIC_SCANNER_SQL: {
char *zSql = 0;
cidxGenerateScanSql(pCsr, pCsr->zIdxName, pCsr->zAfterKey, &zSql);
sqlite3_result_text(ctx, zSql, -1, sqlite3_free);
break;
}
}
return SQLITE_OK;
}
/* Return the ROWID for the sqlite_btreeinfo table */
static int cidxRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
CidxCursor *pCsr = (CidxCursor*)pCursor;
*pRowid = pCsr->iRowid;
return SQLITE_OK;
}
/*
** Register the virtual table modules with the database handle passed
** as the only argument.
*/
static int ciInit(sqlite3 *db){
static sqlite3_module cidx_module = {
0, /* iVersion */
0, /* xCreate */
cidxConnect, /* xConnect */
cidxBestIndex, /* xBestIndex */
cidxDisconnect, /* xDisconnect */
0, /* xDestroy */
cidxOpen, /* xOpen - open a cursor */
cidxClose, /* xClose - close a cursor */
cidxFilter, /* xFilter - configure scan constraints */
cidxNext, /* xNext - advance a cursor */
cidxEof, /* xEof - check for end of scan */
cidxColumn, /* xColumn - read data */
cidxRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
};
return sqlite3_create_module(db, "incremental_index_check", &cidx_module, 0);
}
/*
** Extension load function.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_checkindex_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
return ciInit(db);
}

View File

@@ -0,0 +1,86 @@
/*
** Read an SQLite database file and analyze its space utilization. Generate
** text on standard output.
*/
#define TCLSH_INIT_PROC sqlite3_checker_init_proc
#define SQLITE_ENABLE_DBPAGE_VTAB 1
#define SQLITE_ENABLE_JSON1 1
#undef SQLITE_THREADSAFE
#define SQLITE_THREADSAFE 0
#undef SQLITE_ENABLE_COLUMN_METADATA
#define SQLITE_OMIT_DECLTYPE 1
#define SQLITE_OMIT_DEPRECATED 1
#define SQLITE_OMIT_PROGRESS_CALLBACK 1
#define SQLITE_OMIT_SHARED_CACHE 1
#define SQLITE_DEFAULT_MEMSTATUS 0
#define SQLITE_MAX_EXPR_DEPTH 0
INCLUDE sqlite3.c
INCLUDE $ROOT/src/tclsqlite.c
INCLUDE $ROOT/ext/misc/btreeinfo.c
INCLUDE $ROOT/ext/repair/checkindex.c
INCLUDE $ROOT/ext/repair/checkfreelist.c
/*
** Decode a pointer to an sqlite3 object.
*/
int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb){
struct SqliteDb *p;
Tcl_CmdInfo cmdInfo;
if( Tcl_GetCommandInfo(interp, zA, &cmdInfo) ){
p = (struct SqliteDb*)cmdInfo.objClientData;
*ppDb = p->db;
return TCL_OK;
}else{
*ppDb = 0;
return TCL_ERROR;
}
return TCL_OK;
}
/*
** sqlite3_imposter db main rootpage {CREATE TABLE...} ;# setup an imposter
** sqlite3_imposter db main ;# rm all imposters
*/
static int sqlite3_imposter(
void *clientData,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
sqlite3 *db;
const char *zSchema;
int iRoot;
const char *zSql;
if( objc!=3 && objc!=5 ){
Tcl_WrongNumArgs(interp, 1, objv, "DB SCHEMA [ROOTPAGE SQL]");
return TCL_ERROR;
}
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
zSchema = Tcl_GetString(objv[2]);
if( objc==3 ){
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, zSchema, 0, 1);
}else{
if( Tcl_GetIntFromObj(interp, objv[3], &iRoot) ) return TCL_ERROR;
zSql = Tcl_GetString(objv[4]);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, zSchema, 1, iRoot);
sqlite3_exec(db, zSql, 0, 0, 0);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, zSchema, 0, 0);
}
return TCL_OK;
}
#include <stdio.h>
const char *sqlite3_checker_init_proc(Tcl_Interp *interp){
Tcl_CreateObjCommand(interp, "sqlite3_imposter",
(Tcl_ObjCmdProc*)sqlite3_imposter, 0, 0);
sqlite3_auto_extension((void(*)(void))sqlite3_btreeinfo_init);
sqlite3_auto_extension((void(*)(void))sqlite3_checkindex_init);
sqlite3_auto_extension((void(*)(void))sqlite3_checkfreelist_init);
return
BEGIN_STRING
INCLUDE $ROOT/ext/repair/sqlite3_checker.tcl
END_STRING
;
}

View File

@@ -0,0 +1,264 @@
# This TCL script is the main driver script for the sqlite3_checker utility
# program.
#
# Special case:
#
# sqlite3_checker --test FILENAME ARGS
#
# uses FILENAME in place of this script.
#
if {[lindex $argv 0]=="--test" && [llength $argv]>1} {
set ::argv0 [lindex $argv 1]
set argv [lrange $argv 2 end]
source $argv0
exit 0
}
# Emulate a TCL shell
#
proc tclsh {} {
set line {}
while {![eof stdin]} {
if {$line!=""} {
puts -nonewline "> "
} else {
puts -nonewline "% "
}
flush stdout
append line [gets stdin]
if {[info complete $line]} {
if {[catch {uplevel #0 $line} result]} {
puts stderr "Error: $result"
} elseif {$result!=""} {
puts $result
}
set line {}
} else {
append line \n
}
}
}
# Do an incremental integrity check of a single index
#
proc check_index {idxname batchsize bTrace} {
set i 0
set more 1
set nerr 0
set pct 00.0
set max [db one {SELECT nEntry FROM sqlite_btreeinfo('main')
WHERE name=$idxname}]
puts -nonewline "$idxname: $i of $max rows ($pct%)\r"
flush stdout
if {$bTrace} {
set sql {SELECT errmsg, current_key AS key,
CASE WHEN rowid=1 THEN scanner_sql END AS traceOut
FROM incremental_index_check($idxname)
WHERE after_key=$key
LIMIT $batchsize}
} else {
set sql {SELECT errmsg, current_key AS key, NULL AS traceOut
FROM incremental_index_check($idxname)
WHERE after_key=$key
LIMIT $batchsize}
}
while {$more} {
set more 0
db eval $sql {
set more 1
if {$errmsg!=""} {
incr nerr
puts "$idxname: key($key): $errmsg"
} elseif {$traceOut!=""} {
puts "$idxname: $traceOut"
}
incr i
}
set x [format {%.1f} [expr {($i*100.0)/$max}]]
if {$x!=$pct} {
puts -nonewline "$idxname: $i of $max rows ($pct%)\r"
flush stdout
set pct $x
}
}
puts "$idxname: $nerr errors out of $i entries"
}
# Print a usage message on standard error, then quit.
#
proc usage {} {
set argv0 [file rootname [file tail [info nameofexecutable]]]
puts stderr "Usage: $argv0 OPTIONS database-filename"
puts stderr {
Do sanity checking on a live SQLite3 database file specified by the
"database-filename" argument.
Options:
--batchsize N Number of rows to check per transaction
--freelist Perform a freelist check
--index NAME Run a check of the index NAME
--summary Print summary information about the database
--table NAME Run a check of all indexes for table NAME
--tclsh Run the built-in TCL interpreter (for debugging)
--trace (Debugging only:) Output trace information on the scan
--version Show the version number of SQLite
}
exit 1
}
set file_to_analyze {}
append argv {}
set bFreelistCheck 0
set bSummary 0
set zIndex {}
set zTable {}
set batchsize 1000
set bAll 1
set bTrace 0
set argc [llength $argv]
for {set i 0} {$i<$argc} {incr i} {
set arg [lindex $argv $i]
if {[regexp {^-+tclsh$} $arg]} {
tclsh
exit 0
}
if {[regexp {^-+version$} $arg]} {
sqlite3 mem :memory:
puts [mem one {SELECT sqlite_version()||' '||sqlite_source_id()}]
mem close
exit 0
}
if {[regexp {^-+freelist$} $arg]} {
set bFreelistCheck 1
set bAll 0
continue
}
if {[regexp {^-+summary$} $arg]} {
set bSummary 1
set bAll 0
continue
}
if {[regexp {^-+trace$} $arg]} {
set bTrace 1
continue
}
if {[regexp {^-+batchsize$} $arg]} {
incr i
if {$i>=$argc} {
puts stderr "missing argument on $arg"
exit 1
}
set batchsize [lindex $argv $i]
continue
}
if {[regexp {^-+index$} $arg]} {
incr i
if {$i>=$argc} {
puts stderr "missing argument on $arg"
exit 1
}
set zIndex [lindex $argv $i]
set bAll 0
continue
}
if {[regexp {^-+table$} $arg]} {
incr i
if {$i>=$argc} {
puts stderr "missing argument on $arg"
exit 1
}
set zTable [lindex $argv $i]
set bAll 0
continue
}
if {[regexp {^-} $arg]} {
puts stderr "Unknown option: $arg"
usage
}
if {$file_to_analyze!=""} {
usage
} else {
set file_to_analyze $arg
}
}
if {$file_to_analyze==""} usage
# If a TCL script is specified on the command-line, then run that
# script.
#
if {[file extension $file_to_analyze]==".tcl"} {
source $file_to_analyze
exit 0
}
set root_filename $file_to_analyze
regexp {^file:(//)?([^?]*)} $file_to_analyze all x1 root_filename
if {![file exists $root_filename]} {
puts stderr "No such file: $root_filename"
exit 1
}
if {![file readable $root_filename]} {
puts stderr "File is not readable: $root_filename"
exit 1
}
if {[catch {sqlite3 db $file_to_analyze} res]} {
puts stderr "Cannot open datababase $root_filename: $res"
exit 1
}
if {$bFreelistCheck || $bAll} {
puts -nonewline "freelist-check: "
flush stdout
db eval BEGIN
puts [db one {SELECT checkfreelist('main')}]
db eval END
}
if {$bSummary} {
set scale 0
set pgsz [db one {PRAGMA page_size}]
db eval {SELECT nPage*$pgsz AS sz, name, tbl_name
FROM sqlite_btreeinfo
WHERE type='index'
ORDER BY 1 DESC, name} {
if {$scale==0} {
if {$sz>10000000} {
set scale 1000000.0
set unit MB
} else {
set scale 1000.0
set unit KB
}
}
puts [format {%7.1f %s index %s of table %s} \
[expr {$sz/$scale}] $unit $name $tbl_name]
}
}
if {$zIndex!=""} {
check_index $zIndex $batchsize $bTrace
}
if {$zTable!=""} {
foreach idx [db eval {SELECT name FROM sqlite_master
WHERE type='index' AND rootpage>0
AND tbl_name=$zTable}] {
check_index $idx $batchsize $bTrace
}
}
if {$bAll} {
set allidx [db eval {SELECT name FROM sqlite_btreeinfo('main')
WHERE type='index' AND rootpage>0
ORDER BY nEntry}]
foreach idx $allidx {
check_index $idx $batchsize $bTrace
}
}

View File

@@ -0,0 +1,13 @@
To run these tests, first build sqlite3_checker:
> make sqlite3_checker
Then run the "test.tcl" script using:
> ./sqlite3_checker --test $path/test.tcl
Optionally add the full pathnames of individual *.test modules

View File

@@ -0,0 +1,92 @@
# 2017-10-11
set testprefix checkfreelist
do_execsql_test 1.0 {
PRAGMA page_size=1024;
CREATE TABLE t1(a, b);
}
do_execsql_test 1.2 { SELECT checkfreelist('main') } {ok}
do_execsql_test 1.3 {
WITH s(i) AS (
SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<10000
)
INSERT INTO t1 SELECT randomblob(400), randomblob(400) FROM s;
DELETE FROM t1 WHERE rowid%3;
PRAGMA freelist_count;
} {6726}
do_execsql_test 1.4 { SELECT checkfreelist('main') } {ok}
do_execsql_test 1.5 {
WITH freelist_trunk(i, d, n) AS (
SELECT 1, NULL, sqlite_readint32(data, 32) FROM sqlite_dbpage WHERE pgno=1
UNION ALL
SELECT n, data, sqlite_readint32(data)
FROM freelist_trunk, sqlite_dbpage WHERE pgno=n
)
SELECT i FROM freelist_trunk WHERE i!=1;
} {
10009 9715 9343 8969 8595 8222 7847 7474 7102 6727 6354 5982 5608 5234
4860 4487 4112 3740 3367 2992 2619 2247 1872 1499 1125 752 377 5
}
do_execsql_test 1.6 { SELECT checkfreelist('main') } {ok}
proc set_int {blob idx newval} {
binary scan $blob I* ints
lset ints $idx $newval
binary format I* $ints
}
db func set_int set_int
proc get_int {blob idx} {
binary scan $blob I* ints
lindex $ints $idx
}
db func get_int get_int
do_execsql_test 1.7 {
BEGIN;
UPDATE sqlite_dbpage
SET data = set_int(data, 1, get_int(data, 1)-1)
WHERE pgno=4860;
SELECT checkfreelist('main');
ROLLBACK;
} {{free-list count mismatch: actual=6725 header=6726}}
do_execsql_test 1.8 {
BEGIN;
UPDATE sqlite_dbpage
SET data = set_int(data, 5, (SELECT * FROM pragma_page_count)+1)
WHERE pgno=4860;
SELECT checkfreelist('main');
ROLLBACK;
} {{leaf page 10092 is out of range (child 3 of trunk page 4860)}}
do_execsql_test 1.9 {
BEGIN;
UPDATE sqlite_dbpage
SET data = set_int(data, 5, 0)
WHERE pgno=4860;
SELECT checkfreelist('main');
ROLLBACK;
} {{leaf page 0 is out of range (child 3 of trunk page 4860)}}
do_execsql_test 1.10 {
BEGIN;
UPDATE sqlite_dbpage
SET data = set_int(data, get_int(data, 1)+1, 0)
WHERE pgno=5;
SELECT checkfreelist('main');
ROLLBACK;
} {{leaf page 0 is out of range (child 247 of trunk page 5)}}
do_execsql_test 1.11 {
BEGIN;
UPDATE sqlite_dbpage
SET data = set_int(data, 1, 249)
WHERE pgno=5;
SELECT checkfreelist('main');
ROLLBACK;
} {{leaf count out of range (249) on trunk page 5}}

View File

@@ -0,0 +1,349 @@
# 2017-10-11
#
set testprefix checkindex
do_execsql_test 1.0 {
CREATE TABLE t1(a, b);
CREATE INDEX i1 ON t1(a);
INSERT INTO t1 VALUES('one', 2);
INSERT INTO t1 VALUES('two', 4);
INSERT INTO t1 VALUES('three', 6);
INSERT INTO t1 VALUES('four', 8);
INSERT INTO t1 VALUES('five', 10);
CREATE INDEX i2 ON t1(a DESC);
} {}
proc incr_index_check {idx nStep} {
set Q {
SELECT errmsg, current_key FROM incremental_index_check($idx, $after)
LIMIT $nStep
}
set res [list]
while {1} {
unset -nocomplain current_key
set res1 [db eval $Q]
if {[llength $res1]==0} break
set res [concat $res $res1]
set after [lindex $res end]
}
return $res
}
proc do_index_check_test {tn idx res} {
uplevel [list do_execsql_test $tn.1 "
SELECT errmsg, current_key FROM incremental_index_check('$idx');
" $res]
uplevel [list do_test $tn.2 "incr_index_check $idx 1" [list {*}$res]]
uplevel [list do_test $tn.3 "incr_index_check $idx 2" [list {*}$res]]
uplevel [list do_test $tn.4 "incr_index_check $idx 5" [list {*}$res]]
}
do_execsql_test 1.2.1 {
SELECT rowid, errmsg IS NULL, current_key FROM incremental_index_check('i1');
} {
1 1 'five',5
2 1 'four',4
3 1 'one',1
4 1 'three',3
5 1 'two',2
}
do_execsql_test 1.2.2 {
SELECT errmsg IS NULL, current_key, index_name, after_key, scanner_sql
FROM incremental_index_check('i1') LIMIT 1;
} {
1
'five',5
i1
{}
{SELECT (SELECT a IS i.i0 FROM 't1' AS t WHERE "rowid" COLLATE BINARY IS i.i1), quote(i0)||','||quote(i1) FROM (SELECT (a) AS i0, ("rowid" COLLATE BINARY) AS i1 FROM 't1' INDEXED BY 'i1' ORDER BY 1,2) AS i}
}
do_index_check_test 1.3 i1 {
{} 'five',5
{} 'four',4
{} 'one',1
{} 'three',3
{} 'two',2
}
do_index_check_test 1.4 i2 {
{} 'two',2
{} 'three',3
{} 'one',1
{} 'four',4
{} 'five',5
}
do_test 1.5 {
set tblroot [db one { SELECT rootpage FROM sqlite_master WHERE name='t1' }]
sqlite3_imposter db main $tblroot {CREATE TABLE xt1(a,b)}
db eval {
UPDATE xt1 SET a='six' WHERE rowid=3;
DELETE FROM xt1 WHERE rowid = 5;
}
sqlite3_imposter db main
} {}
do_index_check_test 1.6 i1 {
{row missing} 'five',5
{} 'four',4
{} 'one',1
{row data mismatch} 'three',3
{} 'two',2
}
do_index_check_test 1.7 i2 {
{} 'two',2
{row data mismatch} 'three',3
{} 'one',1
{} 'four',4
{row missing} 'five',5
}
#--------------------------------------------------------------------------
do_execsql_test 2.0 {
CREATE TABLE t2(a INTEGER PRIMARY KEY, b, c, d);
INSERT INTO t2 VALUES(1, NULL, 1, 1);
INSERT INTO t2 VALUES(2, 1, NULL, 1);
INSERT INTO t2 VALUES(3, 1, 1, NULL);
INSERT INTO t2 VALUES(4, 2, 2, 1);
INSERT INTO t2 VALUES(5, 2, 2, 2);
INSERT INTO t2 VALUES(6, 2, 2, 3);
INSERT INTO t2 VALUES(7, 2, 2, 1);
INSERT INTO t2 VALUES(8, 2, 2, 2);
INSERT INTO t2 VALUES(9, 2, 2, 3);
CREATE INDEX i3 ON t2(b, c, d);
CREATE INDEX i4 ON t2(b DESC, c DESC, d DESC);
CREATE INDEX i5 ON t2(d, c DESC, b);
} {}
do_index_check_test 2.1 i3 {
{} NULL,1,1,1
{} 1,NULL,1,2
{} 1,1,NULL,3
{} 2,2,1,4
{} 2,2,1,7
{} 2,2,2,5
{} 2,2,2,8
{} 2,2,3,6
{} 2,2,3,9
}
do_index_check_test 2.2 i4 {
{} 2,2,3,6
{} 2,2,3,9
{} 2,2,2,5
{} 2,2,2,8
{} 2,2,1,4
{} 2,2,1,7
{} 1,1,NULL,3
{} 1,NULL,1,2
{} NULL,1,1,1
}
do_index_check_test 2.3 i5 {
{} NULL,1,1,3
{} 1,2,2,4
{} 1,2,2,7
{} 1,1,NULL,1
{} 1,NULL,1,2
{} 2,2,2,5
{} 2,2,2,8
{} 3,2,2,6
{} 3,2,2,9
}
#--------------------------------------------------------------------------
do_execsql_test 3.0 {
CREATE TABLE t3(w, x, y, z PRIMARY KEY) WITHOUT ROWID;
CREATE INDEX t3wxy ON t3(w, x, y);
CREATE INDEX t3wxy2 ON t3(w DESC, x DESC, y DESC);
INSERT INTO t3 VALUES(NULL, NULL, NULL, 1);
INSERT INTO t3 VALUES(NULL, NULL, NULL, 2);
INSERT INTO t3 VALUES(NULL, NULL, NULL, 3);
INSERT INTO t3 VALUES('a', NULL, NULL, 4);
INSERT INTO t3 VALUES('a', NULL, NULL, 5);
INSERT INTO t3 VALUES('a', NULL, NULL, 6);
INSERT INTO t3 VALUES('a', 'b', NULL, 7);
INSERT INTO t3 VALUES('a', 'b', NULL, 8);
INSERT INTO t3 VALUES('a', 'b', NULL, 9);
} {}
do_index_check_test 3.1 t3wxy {
{} NULL,NULL,NULL,1 {} NULL,NULL,NULL,2 {} NULL,NULL,NULL,3
{} 'a',NULL,NULL,4 {} 'a',NULL,NULL,5 {} 'a',NULL,NULL,6
{} 'a','b',NULL,7 {} 'a','b',NULL,8 {} 'a','b',NULL,9
}
do_index_check_test 3.2 t3wxy2 {
{} 'a','b',NULL,7 {} 'a','b',NULL,8 {} 'a','b',NULL,9
{} 'a',NULL,NULL,4 {} 'a',NULL,NULL,5 {} 'a',NULL,NULL,6
{} NULL,NULL,NULL,1 {} NULL,NULL,NULL,2 {} NULL,NULL,NULL,3
}
#--------------------------------------------------------------------------
# Test with an index that uses non-default collation sequences.
#
do_execsql_test 4.0 {
CREATE TABLE t4(a INTEGER PRIMARY KEY, c1 TEXT, c2 TEXT);
INSERT INTO t4 VALUES(1, 'aaa', 'bbb');
INSERT INTO t4 VALUES(2, 'AAA', 'CCC');
INSERT INTO t4 VALUES(3, 'aab', 'ddd');
INSERT INTO t4 VALUES(4, 'AAB', 'EEE');
CREATE INDEX t4cc ON t4(c1 COLLATE nocase, c2 COLLATE nocase);
}
do_index_check_test 4.1 t4cc {
{} 'aaa','bbb',1
{} 'AAA','CCC',2
{} 'aab','ddd',3
{} 'AAB','EEE',4
}
do_test 4.2 {
set tblroot [db one { SELECT rootpage FROM sqlite_master WHERE name='t4' }]
sqlite3_imposter db main $tblroot \
{CREATE TABLE xt4(a INTEGER PRIMARY KEY, c1 TEXT, c2 TEXT)}
db eval {
UPDATE xt4 SET c1='hello' WHERE rowid=2;
DELETE FROM xt4 WHERE rowid = 3;
}
sqlite3_imposter db main
} {}
do_index_check_test 4.3 t4cc {
{} 'aaa','bbb',1
{row data mismatch} 'AAA','CCC',2
{row missing} 'aab','ddd',3
{} 'AAB','EEE',4
}
#--------------------------------------------------------------------------
# Test an index on an expression.
#
do_execsql_test 5.0 {
CREATE TABLE t5(x INTEGER PRIMARY KEY, y TEXT, UNIQUE(y));
INSERT INTO t5 VALUES(1, '{"x":1, "y":1}');
INSERT INTO t5 VALUES(2, '{"x":2, "y":2}');
INSERT INTO t5 VALUES(3, '{"x":3, "y":3}');
INSERT INTO t5 VALUES(4, '{"w":4, "z":4}');
INSERT INTO t5 VALUES(5, '{"x":5, "y":5}');
CREATE INDEX t5x ON t5( json_extract(y, '$.x') );
CREATE INDEX t5y ON t5( json_extract(y, '$.y') DESC );
}
do_index_check_test 5.1.1 t5x {
{} NULL,4 {} 1,1 {} 2,2 {} 3,3 {} 5,5
}
do_index_check_test 5.1.2 t5y {
{} 5,5 {} 3,3 {} 2,2 {} 1,1 {} NULL,4
}
do_index_check_test 5.1.3 sqlite_autoindex_t5_1 {
{} {'{"w":4, "z":4}',4}
{} {'{"x":1, "y":1}',1}
{} {'{"x":2, "y":2}',2}
{} {'{"x":3, "y":3}',3}
{} {'{"x":5, "y":5}',5}
}
do_test 5.2 {
set tblroot [db one { SELECT rootpage FROM sqlite_master WHERE name='t5' }]
sqlite3_imposter db main $tblroot \
{CREATE TABLE xt5(a INTEGER PRIMARY KEY, c1 TEXT);}
db eval {
UPDATE xt5 SET c1='{"x":22, "y":11}' WHERE rowid=1;
DELETE FROM xt5 WHERE rowid = 4;
}
sqlite3_imposter db main
} {}
do_index_check_test 5.3.1 t5x {
{row missing} NULL,4
{row data mismatch} 1,1
{} 2,2
{} 3,3
{} 5,5
}
do_index_check_test 5.3.2 sqlite_autoindex_t5_1 {
{row missing} {'{"w":4, "z":4}',4}
{row data mismatch} {'{"x":1, "y":1}',1}
{} {'{"x":2, "y":2}',2}
{} {'{"x":3, "y":3}',3}
{} {'{"x":5, "y":5}',5}
}
#-------------------------------------------------------------------------
#
do_execsql_test 6.0 {
CREATE TABLE t6(x INTEGER PRIMARY KEY, y, z);
CREATE INDEX t6x1 ON t6(y, /* one,two,three */ z);
CREATE INDEX t6x2 ON t6(z, -- hello,world,
y);
CREATE INDEX t6x3 ON t6(z -- hello,world
, y);
INSERT INTO t6 VALUES(1, 2, 3);
INSERT INTO t6 VALUES(4, 5, 6);
}
do_index_check_test 6.1 t6x1 {
{} 2,3,1
{} 5,6,4
}
do_index_check_test 6.2 t6x2 {
{} 3,2,1
{} 6,5,4
}
do_index_check_test 6.2 t6x3 {
{} 3,2,1
{} 6,5,4
}
#-------------------------------------------------------------------------
#
do_execsql_test 7.0 {
CREATE TABLE t7(x INTEGER PRIMARY KEY, y, z);
INSERT INTO t7 VALUES(1, 1, 1);
INSERT INTO t7 VALUES(2, 2, 0);
INSERT INTO t7 VALUES(3, 3, 1);
INSERT INTO t7 VALUES(4, 4, 0);
CREATE INDEX t7i1 ON t7(y) WHERE z=1;
CREATE INDEX t7i2 ON t7(y) /* hello,world */ WHERE z=1;
CREATE INDEX t7i3 ON t7(y) WHERE -- yep
z=1;
CREATE INDEX t7i4 ON t7(y) WHERE z=1 -- yep;
}
do_index_check_test 7.1 t7i1 {
{} 1,1 {} 3,3
}
do_index_check_test 7.2 t7i2 {
{} 1,1 {} 3,3
}
do_index_check_test 7.3 t7i3 {
{} 1,1 {} 3,3
}
do_index_check_test 7.4 t7i4 {
{} 1,1 {} 3,3
}

View File

@@ -0,0 +1,67 @@
# Run this script using
#
# sqlite3_checker --test $thisscript $testscripts
#
# The $testscripts argument is optional. If omitted, all *.test files
# in the same directory as $thisscript are run.
#
set NTEST 0
set NERR 0
# Invoke the do_test procedure to run a single test
#
# The $expected parameter is the expected result. The result is the return
# value from the last TCL command in $cmd.
#
# Normally, $expected must match exactly. But if $expected is of the form
# "/regexp/" then regular expression matching is used. If $expected is
# "~/regexp/" then the regular expression must NOT match. If $expected is
# of the form "#/value-list/" then each term in value-list must be numeric
# and must approximately match the corresponding numeric term in $result.
# Values must match within 10%. Or if the $expected term is A..B then the
# $result term must be in between A and B.
#
proc do_test {name cmd expected} {
if {[info exists ::testprefix]} {
set name "$::testprefix$name"
}
incr ::NTEST
puts -nonewline $name...
flush stdout
if {[catch {uplevel #0 "$cmd;\n"} result]} {
puts -nonewline $name...
puts "\nError: $result"
incr ::NERR
} else {
set ok [expr {[string compare $result $expected]==0}]
if {!$ok} {
puts "\n! $name expected: \[$expected\]\n! $name got: \[$result\]"
incr ::NERR
} else {
puts " Ok"
}
}
flush stdout
}
#
# do_execsql_test TESTNAME SQL RES
#
proc do_execsql_test {testname sql {result {}}} {
uplevel [list do_test $testname [list db eval $sql] [list {*}$result]]
}
if {[llength $argv]==0} {
set dir [file dirname $argv0]
set argv [glob -nocomplain $dir/*.test]
}
foreach testfile $argv {
file delete -force test.db
sqlite3 db test.db
source $testfile
catch {db close}
}
puts "$NERR errors out of $NTEST tests"