mirror of
https://github.com/laurent22/joplin.git
synced 2025-01-02 12:47:41 +02:00
229 lines
6.7 KiB
TypeScript
229 lines
6.7 KiB
TypeScript
import { RecognizeResult, RecognizeResultBoundingBox, RecognizeResultLine, RecognizeResultWord } from '../utils/types';
|
|
import { Worker, WorkerOptions, createWorker, RecognizeResult as TesseractRecognizeResult, OEM } from 'tesseract.js';
|
|
import OcrDriverBase from '../OcrDriverBase';
|
|
import { Minute } from '@joplin/utils/time';
|
|
import shim from '../../../shim';
|
|
import Logger from '@joplin/utils/Logger';
|
|
|
|
const logger = Logger.create('OcrDriverTesseract');
|
|
|
|
interface Tesseract {
|
|
createWorker: typeof createWorker;
|
|
}
|
|
|
|
interface WorkerWrapper {
|
|
id: number;
|
|
busy: boolean;
|
|
instance: Worker;
|
|
}
|
|
|
|
let workerId_ = 1;
|
|
|
|
const formatTesseractBoundingBox = (boundingBox: Tesseract.Bbox): RecognizeResultBoundingBox => {
|
|
return [boundingBox.x0, boundingBox.x1, boundingBox.y0, boundingBox.y1];
|
|
};
|
|
|
|
// Empirically, it seems anything below 70 is not usable. Between 70 and 75 it's
|
|
// hit and miss, but often it's good enough that we should keep the result.
|
|
// Above this is usually reliable.
|
|
const minConfidence = 70;
|
|
|
|
interface Options {
|
|
workerPath: string;
|
|
corePath: string;
|
|
languageDataPath: string|null;
|
|
}
|
|
|
|
export default class OcrDriverTesseract extends OcrDriverBase {
|
|
|
|
private tesseract_: Tesseract = null;
|
|
private workerPath_: string;
|
|
private corePath_: string;
|
|
private languageDataPath_: string|null = null;
|
|
private workers_: Record<string, WorkerWrapper[]> = {};
|
|
|
|
public constructor(tesseract: Tesseract, { workerPath, corePath, languageDataPath }: Options) {
|
|
super();
|
|
this.tesseract_ = tesseract;
|
|
this.workerPath_ = workerPath;
|
|
this.corePath_ = corePath;
|
|
this.languageDataPath_ = languageDataPath;
|
|
}
|
|
|
|
public static async clearLanguageDataCache() {
|
|
if (typeof indexedDB === 'undefined') {
|
|
throw new Error('Missing indexedDB access!');
|
|
}
|
|
|
|
logger.info('Clearing cached language data...');
|
|
|
|
const requestAsPromise = <T> (request: IDBRequest) => {
|
|
return new Promise<T>((resolve, reject) => {
|
|
request.addEventListener('success', () => { resolve(request.result); });
|
|
request.addEventListener('error', (event) => {
|
|
if ('error' in event) {
|
|
reject(new Error(`Request failed: ${event.error}`));
|
|
} else {
|
|
reject(new Error('Request failed with unknown error.'));
|
|
}
|
|
});
|
|
});
|
|
};
|
|
|
|
const db = await requestAsPromise<IDBDatabase>(indexedDB.open('keyval-store'));
|
|
const getStore = (mode: IDBTransactionMode) => {
|
|
return db.transaction(['keyval'], mode).objectStore('keyval');
|
|
};
|
|
|
|
const allKeys = await requestAsPromise<string[]>(getStore('readonly').getAllKeys());
|
|
const languageDataExtension = '.traineddata';
|
|
const keysToClear = allKeys.filter(key => key.endsWith(languageDataExtension));
|
|
for (const key of keysToClear) {
|
|
logger.info('Clearing language data with key', key);
|
|
await requestAsPromise(getStore('readwrite').delete(key));
|
|
}
|
|
}
|
|
|
|
private async acquireWorker(language: string) {
|
|
if (!this.workers_[language]) this.workers_[language] = [];
|
|
|
|
const existingWorker = this.workers_[language].find(w => !w.busy);
|
|
|
|
if (existingWorker) {
|
|
existingWorker.busy = true;
|
|
return existingWorker;
|
|
}
|
|
|
|
const createWorkerOptions: Partial<WorkerOptions> = {
|
|
workerBlobURL: false,
|
|
};
|
|
|
|
if (this.workerPath_) createWorkerOptions.workerPath = this.workerPath_;
|
|
if (this.corePath_) createWorkerOptions.corePath = this.corePath_;
|
|
if (this.languageDataPath_) createWorkerOptions.langPath = this.languageDataPath_;
|
|
|
|
const worker = await this.tesseract_.createWorker(language, OEM.LSTM_ONLY, createWorkerOptions);
|
|
|
|
const output: WorkerWrapper = {
|
|
id: workerId_++,
|
|
instance: worker,
|
|
busy: true,
|
|
};
|
|
|
|
logger.info(`Created worker: ${output.id}`);
|
|
|
|
this.workers_[language].push(output);
|
|
|
|
return output;
|
|
}
|
|
|
|
public async dispose() {
|
|
for (const [language, workers] of Object.entries(this.workers_)) {
|
|
for (const w of workers) {
|
|
await w.instance.terminate();
|
|
}
|
|
this.workers_[language] = [];
|
|
}
|
|
}
|
|
|
|
private async terminateWorker(id: number) {
|
|
for (const [, workers] of Object.entries(this.workers_)) {
|
|
const idx = workers.findIndex(w => w.id === id);
|
|
if (idx < 0) continue;
|
|
|
|
await workers[idx].instance.terminate();
|
|
workers.splice(idx, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
private async releaseWorker(worker: WorkerWrapper) {
|
|
worker.busy = false;
|
|
}
|
|
|
|
public async recognize(language: string, filePath: string): Promise<RecognizeResult> {
|
|
// eslint-disable-next-line no-async-promise-executor -- can't think of any way to handle the timeout without using `new Promise`
|
|
return new Promise(async (resolve, reject) => {
|
|
const worker = await this.acquireWorker(language);
|
|
|
|
let hasTimedOut = false;
|
|
const terminateTimeout_ = shim.setTimeout(async () => {
|
|
await this.terminateWorker(worker.id);
|
|
hasTimedOut = true;
|
|
reject(new Error(`Recognize operation timed out on: ${filePath}`));
|
|
}, 10 * Minute);
|
|
|
|
let result: TesseractRecognizeResult = null;
|
|
|
|
try {
|
|
result = await worker.instance.recognize(filePath, {}, {
|
|
text: false,
|
|
blocks: true,
|
|
hocr: false,
|
|
tsv: false,
|
|
});
|
|
} catch (e) {
|
|
const error: Error = typeof e === 'string' ? new Error(e) : e;
|
|
error.message = `Recognition failed on: ${filePath}: ${error.message}`;
|
|
if (!hasTimedOut) reject(error);
|
|
return;
|
|
}
|
|
|
|
if (hasTimedOut) return;
|
|
|
|
shim.clearTimeout(terminateTimeout_);
|
|
|
|
await this.releaseWorker(worker);
|
|
|
|
interface GoodParagraph {
|
|
text: string;
|
|
}
|
|
|
|
const goodParagraphs: GoodParagraph[] = [];
|
|
let goodLines: RecognizeResultLine[] = [];
|
|
|
|
for (const paragraph of result.data.paragraphs) {
|
|
const lines: RecognizeResultLine[] = [];
|
|
|
|
for (const line of paragraph.lines) {
|
|
// If the line confidence is above the threshold we keep the
|
|
// whole text. The confidence of individual words will vary and
|
|
// may be below the treshold, but there's a chance they will
|
|
// still be correct if the line as a whole is well recognised.
|
|
if (line.confidence < minConfidence) continue;
|
|
|
|
const goodWords: RecognizeResultWord[] = line.words.map(w => {
|
|
const output: RecognizeResultWord = {
|
|
t: w.text,
|
|
bb: formatTesseractBoundingBox(w.bbox),
|
|
};
|
|
|
|
if (w.baseline && w.baseline.has_baseline) output.bl = formatTesseractBoundingBox(w.baseline);
|
|
|
|
return output;
|
|
});
|
|
|
|
lines.push({
|
|
words: goodWords,
|
|
});
|
|
}
|
|
|
|
goodParagraphs.push({
|
|
text: lines.map(l => l.words.map(w => w.t).join(' ')).join('\n'),
|
|
});
|
|
|
|
goodLines = goodLines.concat(lines);
|
|
}
|
|
|
|
resolve({
|
|
// Note that Tesseract provides a `.text` property too, but it's the
|
|
// concatenation of all lines, even those with a low confidence
|
|
// score, so we recreate it here based on the good lines.
|
|
text: goodParagraphs.map(p => p.text).join('\n'),
|
|
lines: goodLines,
|
|
});
|
|
});
|
|
}
|
|
|
|
}
|