1
0
mirror of https://github.com/woodpecker-ci/woodpecker.git synced 2024-12-30 10:11:23 +02:00

add missing deps

This commit is contained in:
Brad Rydzewski 2017-05-08 03:13:16 +02:00
parent 4473f16122
commit 8bbb1be8ad
45 changed files with 13396 additions and 0 deletions

363
vendor/github.com/hashicorp/go-cleanhttp/LICENSE generated vendored Normal file
View File

@ -0,0 +1,363 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.

30
vendor/github.com/hashicorp/go-cleanhttp/README.md generated vendored Normal file
View File

@ -0,0 +1,30 @@
# cleanhttp
Functions for accessing "clean" Go http.Client values
-------------
The Go standard library contains a default `http.Client` called
`http.DefaultClient`. It is a common idiom in Go code to start with
`http.DefaultClient` and tweak it as necessary, and in fact, this is
encouraged; from the `http` package documentation:
> The Client's Transport typically has internal state (cached TCP connections),
so Clients should be reused instead of created as needed. Clients are safe for
concurrent use by multiple goroutines.
Unfortunately, this is a shared value, and it is not uncommon for libraries to
assume that they are free to modify it at will. With enough dependencies, it
can be very easy to encounter strange problems and race conditions due to
manipulation of this shared value across libraries and goroutines (clients are
safe for concurrent use, but writing values to the client struct itself is not
protected).
Making things worse is the fact that a bare `http.Client` will use a default
`http.Transport` called `http.DefaultTransport`, which is another global value
that behaves the same way. So it is not simply enough to replace
`http.DefaultClient` with `&http.Client{}`.
This repository provides some simple functions to get a "clean" `http.Client`
-- one that uses the same default values as the Go standard library, but
returns a client that does not share any state with other clients.

53
vendor/github.com/hashicorp/go-cleanhttp/cleanhttp.go generated vendored Normal file
View File

@ -0,0 +1,53 @@
package cleanhttp
import (
"net"
"net/http"
"time"
)
// DefaultTransport returns a new http.Transport with the same default values
// as http.DefaultTransport, but with idle connections and keepalives disabled.
func DefaultTransport() *http.Transport {
transport := DefaultPooledTransport()
transport.DisableKeepAlives = true
transport.MaxIdleConnsPerHost = -1
return transport
}
// DefaultPooledTransport returns a new http.Transport with similar default
// values to http.DefaultTransport. Do not use this for transient transports as
// it can leak file descriptors over time. Only use this for transports that
// will be re-used for the same host(s).
func DefaultPooledTransport() *http.Transport {
transport := &http.Transport{
Proxy: http.ProxyFromEnvironment,
Dial: (&net.Dialer{
Timeout: 30 * time.Second,
KeepAlive: 30 * time.Second,
}).Dial,
TLSHandshakeTimeout: 10 * time.Second,
DisableKeepAlives: false,
MaxIdleConnsPerHost: 1,
}
return transport
}
// DefaultClient returns a new http.Client with similar default values to
// http.Client, but with a non-shared Transport, idle connections disabled, and
// keepalives disabled.
func DefaultClient() *http.Client {
return &http.Client{
Transport: DefaultTransport(),
}
}
// DefaultPooledClient returns a new http.Client with the same default values
// as http.Client, but with a shared Transport. Do not use this function
// for transient clients as it can leak file descriptors over time. Only use
// this for clients that will be re-used for the same host(s).
func DefaultPooledClient() *http.Client {
return &http.Client{
Transport: DefaultPooledTransport(),
}
}

20
vendor/github.com/hashicorp/go-cleanhttp/doc.go generated vendored Normal file
View File

@ -0,0 +1,20 @@
// Package cleanhttp offers convenience utilities for acquiring "clean"
// http.Transport and http.Client structs.
//
// Values set on http.DefaultClient and http.DefaultTransport affect all
// callers. This can have detrimental effects, esepcially in TLS contexts,
// where client or root certificates set to talk to multiple endpoints can end
// up displacing each other, leading to hard-to-debug issues. This package
// provides non-shared http.Client and http.Transport structs to ensure that
// the configuration will not be overwritten by other parts of the application
// or dependencies.
//
// The DefaultClient and DefaultTransport functions disable idle connections
// and keepalives. Without ensuring that idle connections are closed before
// garbage collection, short-term clients/transports can leak file descriptors,
// eventually leading to "too many open files" errors. If you will be
// connecting to the same hosts repeatedly from the same client, you can use
// DefaultPooledClient to receive a client that has connection pooling
// semantics similar to http.DefaultClient.
//
package cleanhttp

View File

@ -0,0 +1,159 @@
package compressutil
import (
"bytes"
"compress/gzip"
"compress/lzw"
"fmt"
"io"
)
const (
// A byte value used as a canary prefix for the compressed information
// which is used to distinguish if a JSON input is compressed or not.
// The value of this constant should not be a first character of any
// valid JSON string.
// Byte value used as canary when using Gzip format
CompressionCanaryGzip byte = 'G'
// Byte value used as canary when using Lzw format
CompressionCanaryLzw byte = 'L'
CompressionTypeLzw = "lzw"
CompressionTypeGzip = "gzip"
)
// CompressionConfig is used to select a compression type to be performed by
// Compress and Decompress utilities.
// Supported types are:
// * CompressionTypeLzw
// * CompressionTypeGzip
//
// When using CompressionTypeGzip, the compression levels can also be chosen:
// * gzip.DefaultCompression
// * gzip.BestSpeed
// * gzip.BestCompression
type CompressionConfig struct {
// Type of the compression algorithm to be used
Type string
// When using Gzip format, the compression level to employ
GzipCompressionLevel int
}
// Compress places the canary byte in a buffer and uses the same buffer to fill
// in the compressed information of the given input. The configuration supports
// two type of compression: LZW and Gzip. When using Gzip compression format,
// if GzipCompressionLevel is not specified, the 'gzip.DefaultCompression' will
// be assumed.
func Compress(data []byte, config *CompressionConfig) ([]byte, error) {
var buf bytes.Buffer
var writer io.WriteCloser
var err error
if config == nil {
return nil, fmt.Errorf("config is nil")
}
// Write the canary into the buffer and create writer to compress the
// input data based on the configured type
switch config.Type {
case CompressionTypeLzw:
buf.Write([]byte{CompressionCanaryLzw})
writer = lzw.NewWriter(&buf, lzw.LSB, 8)
case CompressionTypeGzip:
buf.Write([]byte{CompressionCanaryGzip})
switch {
case config.GzipCompressionLevel == gzip.BestCompression,
config.GzipCompressionLevel == gzip.BestSpeed,
config.GzipCompressionLevel == gzip.DefaultCompression:
// These are valid compression levels
default:
// If compression level is set to NoCompression or to
// any invalid value, fallback to Defaultcompression
config.GzipCompressionLevel = gzip.DefaultCompression
}
writer, err = gzip.NewWriterLevel(&buf, config.GzipCompressionLevel)
default:
return nil, fmt.Errorf("unsupported compression type")
}
if err != nil {
return nil, fmt.Errorf("failed to create a compression writer; err: %v", err)
}
if writer == nil {
return nil, fmt.Errorf("failed to create a compression writer")
}
// Compress the input and place it in the same buffer containing the
// canary byte.
if _, err = writer.Write(data); err != nil {
return nil, fmt.Errorf("failed to compress input data; err: %v", err)
}
// Close the io.WriteCloser
if err = writer.Close(); err != nil {
return nil, err
}
// Return the compressed bytes with canary byte at the start
return buf.Bytes(), nil
}
// Decompress checks if the first byte in the input matches the canary byte.
// If the first byte is a canary byte, then the input past the canary byte
// will be decompressed using the method specified in the given configuration.
// If the first byte isn't a canary byte, then the utility returns a boolean
// value indicating that the input was not compressed.
func Decompress(data []byte) ([]byte, bool, error) {
var err error
var reader io.ReadCloser
if data == nil || len(data) == 0 {
return nil, false, fmt.Errorf("'data' being decompressed is empty")
}
switch {
case data[0] == CompressionCanaryGzip:
// If the first byte matches the canary byte, remove the canary
// byte and try to decompress the data that is after the canary.
if len(data) < 2 {
return nil, false, fmt.Errorf("invalid 'data' after the canary")
}
data = data[1:]
reader, err = gzip.NewReader(bytes.NewReader(data))
case data[0] == CompressionCanaryLzw:
// If the first byte matches the canary byte, remove the canary
// byte and try to decompress the data that is after the canary.
if len(data) < 2 {
return nil, false, fmt.Errorf("invalid 'data' after the canary")
}
data = data[1:]
reader = lzw.NewReader(bytes.NewReader(data), lzw.LSB, 8)
default:
// If the first byte doesn't match the canary byte, it means
// that the content was not compressed at all. Indicate the
// caller that the input was not compressed.
return nil, true, nil
}
if err != nil {
return nil, false, fmt.Errorf("failed to create a compression reader; err: %v", err)
}
if reader == nil {
return nil, false, fmt.Errorf("failed to create a compression reader")
}
// Close the io.ReadCloser
defer reader.Close()
// Read all the compressed data into a buffer
var buf bytes.Buffer
if _, err = io.Copy(&buf, reader); err != nil {
return nil, false, err
}
return buf.Bytes(), false, nil
}

View File

@ -0,0 +1,99 @@
package jsonutil
import (
"bytes"
"compress/gzip"
"encoding/json"
"fmt"
"io"
"github.com/hashicorp/vault/helper/compressutil"
)
// Encodes/Marshals the given object into JSON
func EncodeJSON(in interface{}) ([]byte, error) {
if in == nil {
return nil, fmt.Errorf("input for encoding is nil")
}
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
if err := enc.Encode(in); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// EncodeJSONAndCompress encodes the given input into JSON and compresses the
// encoded value (using Gzip format BestCompression level, by default). A
// canary byte is placed at the beginning of the returned bytes for the logic
// in decompression method to identify compressed input.
func EncodeJSONAndCompress(in interface{}, config *compressutil.CompressionConfig) ([]byte, error) {
if in == nil {
return nil, fmt.Errorf("input for encoding is nil")
}
// First JSON encode the given input
encodedBytes, err := EncodeJSON(in)
if err != nil {
return nil, err
}
if config == nil {
config = &compressutil.CompressionConfig{
Type: compressutil.CompressionTypeGzip,
GzipCompressionLevel: gzip.BestCompression,
}
}
return compressutil.Compress(encodedBytes, config)
}
// DecodeJSON tries to decompress the given data. The call to decompress, fails
// if the content was not compressed in the first place, which is identified by
// a canary byte before the compressed data. If the data is not compressed, it
// is JSON decoded directly. Otherwise the decompressed data will be JSON
// decoded.
func DecodeJSON(data []byte, out interface{}) error {
if data == nil || len(data) == 0 {
return fmt.Errorf("'data' being decoded is nil")
}
if out == nil {
return fmt.Errorf("output parameter 'out' is nil")
}
// Decompress the data if it was compressed in the first place
decompressedBytes, uncompressed, err := compressutil.Decompress(data)
if err != nil {
return fmt.Errorf("failed to decompress JSON: err: %v", err)
}
if !uncompressed && (decompressedBytes == nil || len(decompressedBytes) == 0) {
return fmt.Errorf("decompressed data being decoded is invalid")
}
// If the input supplied failed to contain the compression canary, it
// will be notified by the compression utility. Decode the decompressed
// input.
if !uncompressed {
data = decompressedBytes
}
return DecodeJSONFromReader(bytes.NewReader(data), out)
}
// Decodes/Unmarshals the given io.Reader pointing to a JSON, into a desired object
func DecodeJSONFromReader(r io.Reader, out interface{}) error {
if r == nil {
return fmt.Errorf("'io.Reader' being decoded is nil")
}
if out == nil {
return fmt.Errorf("output parameter 'out' is nil")
}
dec := json.NewDecoder(r)
// While decoding JSON values, intepret the integer values as `json.Number`s instead of `float64`.
dec.UseNumber()
// Since 'out' is an interface representing a pointer, pass it to the decoder without an '&'
return dec.Decode(out)
}

21
vendor/github.com/mitchellh/mapstructure/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

46
vendor/github.com/mitchellh/mapstructure/README.md generated vendored Normal file
View File

@ -0,0 +1,46 @@
# mapstructure
mapstructure is a Go library for decoding generic map values to structures
and vice versa, while providing helpful error handling.
This library is most useful when decoding values from some data stream (JSON,
Gob, etc.) where you don't _quite_ know the structure of the underlying data
until you read a part of it. You can therefore read a `map[string]interface{}`
and use this library to decode it into the proper underlying native Go
structure.
## Installation
Standard `go get`:
```
$ go get github.com/mitchellh/mapstructure
```
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/mapstructure).
The `Decode` function has examples associated with it there.
## But Why?!
Go offers fantastic standard libraries for decoding formats such as JSON.
The standard method is to have a struct pre-created, and populate that struct
from the bytes of the encoded format. This is great, but the problem is if
you have configuration or an encoding that changes slightly depending on
specific fields. For example, consider this JSON:
```json
{
"type": "person",
"name": "Mitchell"
}
```
Perhaps we can't populate a specific structure without first reading
the "type" field from the JSON. We could always do two passes over the
decoding of the JSON (reading the "type" first, and the rest later).
However, it is much simpler to just decode this into a `map[string]interface{}`
structure, read the "type" key, then use something like this library
to decode it into the proper structure.

View File

@ -0,0 +1,154 @@
package mapstructure
import (
"errors"
"reflect"
"strconv"
"strings"
"time"
)
// typedDecodeHook takes a raw DecodeHookFunc (an interface{}) and turns
// it into the proper DecodeHookFunc type, such as DecodeHookFuncType.
func typedDecodeHook(h DecodeHookFunc) DecodeHookFunc {
// Create variables here so we can reference them with the reflect pkg
var f1 DecodeHookFuncType
var f2 DecodeHookFuncKind
// Fill in the variables into this interface and the rest is done
// automatically using the reflect package.
potential := []interface{}{f1, f2}
v := reflect.ValueOf(h)
vt := v.Type()
for _, raw := range potential {
pt := reflect.ValueOf(raw).Type()
if vt.ConvertibleTo(pt) {
return v.Convert(pt).Interface()
}
}
return nil
}
// DecodeHookExec executes the given decode hook. This should be used
// since it'll naturally degrade to the older backwards compatible DecodeHookFunc
// that took reflect.Kind instead of reflect.Type.
func DecodeHookExec(
raw DecodeHookFunc,
from reflect.Type, to reflect.Type,
data interface{}) (interface{}, error) {
// Build our arguments that reflect expects
argVals := make([]reflect.Value, 3)
argVals[0] = reflect.ValueOf(from)
argVals[1] = reflect.ValueOf(to)
argVals[2] = reflect.ValueOf(data)
switch f := typedDecodeHook(raw).(type) {
case DecodeHookFuncType:
return f(from, to, data)
case DecodeHookFuncKind:
return f(from.Kind(), to.Kind(), data)
default:
return nil, errors.New("invalid decode hook signature")
}
}
// ComposeDecodeHookFunc creates a single DecodeHookFunc that
// automatically composes multiple DecodeHookFuncs.
//
// The composed funcs are called in order, with the result of the
// previous transformation.
func ComposeDecodeHookFunc(fs ...DecodeHookFunc) DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
var err error
for _, f1 := range fs {
data, err = DecodeHookExec(f1, f, t, data)
if err != nil {
return nil, err
}
// Modify the from kind to be correct with the new data
f = nil
if val := reflect.ValueOf(data); val.IsValid() {
f = val.Type()
}
}
return data, nil
}
}
// StringToSliceHookFunc returns a DecodeHookFunc that converts
// string to []string by splitting on the given sep.
func StringToSliceHookFunc(sep string) DecodeHookFunc {
return func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
if f != reflect.String || t != reflect.Slice {
return data, nil
}
raw := data.(string)
if raw == "" {
return []string{}, nil
}
return strings.Split(raw, sep), nil
}
}
// StringToTimeDurationHookFunc returns a DecodeHookFunc that converts
// strings to time.Duration.
func StringToTimeDurationHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(time.Duration(5)) {
return data, nil
}
// Convert it by parsing
return time.ParseDuration(data.(string))
}
}
func WeaklyTypedHook(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
dataVal := reflect.ValueOf(data)
switch t {
case reflect.String:
switch f {
case reflect.Bool:
if dataVal.Bool() {
return "1", nil
} else {
return "0", nil
}
case reflect.Float32:
return strconv.FormatFloat(dataVal.Float(), 'f', -1, 64), nil
case reflect.Int:
return strconv.FormatInt(dataVal.Int(), 10), nil
case reflect.Slice:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
if elemKind == reflect.Uint8 {
return string(dataVal.Interface().([]uint8)), nil
}
case reflect.Uint:
return strconv.FormatUint(dataVal.Uint(), 10), nil
}
}
return data, nil
}

50
vendor/github.com/mitchellh/mapstructure/error.go generated vendored Normal file
View File

@ -0,0 +1,50 @@
package mapstructure
import (
"errors"
"fmt"
"sort"
"strings"
)
// Error implements the error interface and can represents multiple
// errors that occur in the course of a single decode.
type Error struct {
Errors []string
}
func (e *Error) Error() string {
points := make([]string, len(e.Errors))
for i, err := range e.Errors {
points[i] = fmt.Sprintf("* %s", err)
}
sort.Strings(points)
return fmt.Sprintf(
"%d error(s) decoding:\n\n%s",
len(e.Errors), strings.Join(points, "\n"))
}
// WrappedErrors implements the errwrap.Wrapper interface to make this
// return value more useful with the errwrap and go-multierror libraries.
func (e *Error) WrappedErrors() []error {
if e == nil {
return nil
}
result := make([]error, len(e.Errors))
for i, e := range e.Errors {
result[i] = errors.New(e)
}
return result
}
func appendErrors(errors []string, err error) []string {
switch e := err.(type) {
case *Error:
return append(errors, e.Errors...)
default:
return append(errors, e.Error())
}
}

View File

@ -0,0 +1,790 @@
// The mapstructure package exposes functionality to convert an
// abitrary map[string]interface{} into a native Go structure.
//
// The Go structure can be arbitrarily complex, containing slices,
// other structs, etc. and the decoder will properly decode nested
// maps and so on into the proper structures in the native Go struct.
// See the examples to see what the decoder is capable of.
package mapstructure
import (
"encoding/json"
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
)
// DecodeHookFunc is the callback function that can be used for
// data transformations. See "DecodeHook" in the DecoderConfig
// struct.
//
// The type should be DecodeHookFuncType or DecodeHookFuncKind.
// Either is accepted. Types are a superset of Kinds (Types can return
// Kinds) and are generally a richer thing to use, but Kinds are simpler
// if you only need those.
//
// The reason DecodeHookFunc is multi-typed is for backwards compatibility:
// we started with Kinds and then realized Types were the better solution,
// but have a promise to not break backwards compat so we now support
// both.
type DecodeHookFunc interface{}
type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error)
type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error)
// DecoderConfig is the configuration that is used to create a new decoder
// and allows customization of various aspects of decoding.
type DecoderConfig struct {
// DecodeHook, if set, will be called before any decoding and any
// type conversion (if WeaklyTypedInput is on). This lets you modify
// the values before they're set down onto the resulting struct.
//
// If an error is returned, the entire decode will fail with that
// error.
DecodeHook DecodeHookFunc
// If ErrorUnused is true, then it is an error for there to exist
// keys in the original map that were unused in the decoding process
// (extra keys).
ErrorUnused bool
// ZeroFields, if set to true, will zero fields before writing them.
// For example, a map will be emptied before decoded values are put in
// it. If this is false, a map will be merged.
ZeroFields bool
// If WeaklyTypedInput is true, the decoder will make the following
// "weak" conversions:
//
// - bools to string (true = "1", false = "0")
// - numbers to string (base 10)
// - bools to int/uint (true = 1, false = 0)
// - strings to int/uint (base implied by prefix)
// - int to bool (true if value != 0)
// - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F,
// FALSE, false, False. Anything else is an error)
// - empty array = empty map and vice versa
// - negative numbers to overflowed uint values (base 10)
// - slice of maps to a merged map
//
WeaklyTypedInput bool
// Metadata is the struct that will contain extra metadata about
// the decoding. If this is nil, then no metadata will be tracked.
Metadata *Metadata
// Result is a pointer to the struct that will contain the decoded
// value.
Result interface{}
// The tag name that mapstructure reads for field names. This
// defaults to "mapstructure"
TagName string
}
// A Decoder takes a raw interface value and turns it into structured
// data, keeping track of rich error information along the way in case
// anything goes wrong. Unlike the basic top-level Decode method, you can
// more finely control how the Decoder behaves using the DecoderConfig
// structure. The top-level Decode method is just a convenience that sets
// up the most basic Decoder.
type Decoder struct {
config *DecoderConfig
}
// Metadata contains information about decoding a structure that
// is tedious or difficult to get otherwise.
type Metadata struct {
// Keys are the keys of the structure which were successfully decoded
Keys []string
// Unused is a slice of keys that were found in the raw value but
// weren't decoded since there was no matching field in the result interface
Unused []string
}
// Decode takes a map and uses reflection to convert it into the
// given Go native structure. val must be a pointer to a struct.
func Decode(m interface{}, rawVal interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: rawVal,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(m)
}
// WeakDecode is the same as Decode but is shorthand to enable
// WeaklyTypedInput. See DecoderConfig for more info.
func WeakDecode(input, output interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: output,
WeaklyTypedInput: true,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(input)
}
// NewDecoder returns a new decoder for the given configuration. Once
// a decoder has been returned, the same configuration must not be used
// again.
func NewDecoder(config *DecoderConfig) (*Decoder, error) {
val := reflect.ValueOf(config.Result)
if val.Kind() != reflect.Ptr {
return nil, errors.New("result must be a pointer")
}
val = val.Elem()
if !val.CanAddr() {
return nil, errors.New("result must be addressable (a pointer)")
}
if config.Metadata != nil {
if config.Metadata.Keys == nil {
config.Metadata.Keys = make([]string, 0)
}
if config.Metadata.Unused == nil {
config.Metadata.Unused = make([]string, 0)
}
}
if config.TagName == "" {
config.TagName = "mapstructure"
}
result := &Decoder{
config: config,
}
return result, nil
}
// Decode decodes the given raw interface to the target pointer specified
// by the configuration.
func (d *Decoder) Decode(raw interface{}) error {
return d.decode("", raw, reflect.ValueOf(d.config.Result).Elem())
}
// Decodes an unknown data type into a specific reflection value.
func (d *Decoder) decode(name string, data interface{}, val reflect.Value) error {
if data == nil {
// If the data is nil, then we don't set anything.
return nil
}
dataVal := reflect.ValueOf(data)
if !dataVal.IsValid() {
// If the data value is invalid, then we just set the value
// to be the zero value.
val.Set(reflect.Zero(val.Type()))
return nil
}
if d.config.DecodeHook != nil {
// We have a DecodeHook, so let's pre-process the data.
var err error
data, err = DecodeHookExec(
d.config.DecodeHook,
dataVal.Type(), val.Type(), data)
if err != nil {
return err
}
}
var err error
dataKind := getKind(val)
switch dataKind {
case reflect.Bool:
err = d.decodeBool(name, data, val)
case reflect.Interface:
err = d.decodeBasic(name, data, val)
case reflect.String:
err = d.decodeString(name, data, val)
case reflect.Int:
err = d.decodeInt(name, data, val)
case reflect.Uint:
err = d.decodeUint(name, data, val)
case reflect.Float32:
err = d.decodeFloat(name, data, val)
case reflect.Struct:
err = d.decodeStruct(name, data, val)
case reflect.Map:
err = d.decodeMap(name, data, val)
case reflect.Ptr:
err = d.decodePtr(name, data, val)
case reflect.Slice:
err = d.decodeSlice(name, data, val)
default:
// If we reached this point then we weren't able to decode it
return fmt.Errorf("%s: unsupported type: %s", name, dataKind)
}
// If we reached here, then we successfully decoded SOMETHING, so
// mark the key as used if we're tracking metadata.
if d.config.Metadata != nil && name != "" {
d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
}
return err
}
// This decodes a basic type (bool, int, string, etc.) and sets the
// value to "data" of that type.
func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
if !dataVal.IsValid() {
dataVal = reflect.Zero(val.Type())
}
dataValType := dataVal.Type()
if !dataValType.AssignableTo(val.Type()) {
return fmt.Errorf(
"'%s' expected type '%s', got '%s'",
name, val.Type(), dataValType)
}
val.Set(dataVal)
return nil
}
func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
converted := true
switch {
case dataKind == reflect.String:
val.SetString(dataVal.String())
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetString("1")
} else {
val.SetString("0")
}
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatInt(dataVal.Int(), 10))
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatUint(dataVal.Uint(), 10))
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64))
case dataKind == reflect.Slice && d.config.WeaklyTypedInput:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
switch {
case elemKind == reflect.Uint8:
val.SetString(string(dataVal.Interface().([]uint8)))
default:
converted = false
}
default:
converted = false
}
if !converted {
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
dataType := dataVal.Type()
switch {
case dataKind == reflect.Int:
val.SetInt(dataVal.Int())
case dataKind == reflect.Uint:
val.SetInt(int64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetInt(int64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetInt(1)
} else {
val.SetInt(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseInt(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetInt(i)
} else {
return fmt.Errorf("cannot parse '%s' as int: %s", name, err)
}
case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
jn := data.(json.Number)
i, err := jn.Int64()
if err != nil {
return fmt.Errorf(
"error decoding json.Number into %s: %s", name, err)
}
val.SetInt(i)
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
i := dataVal.Int()
if i < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %d overflows uint",
name, i)
}
val.SetUint(uint64(i))
case dataKind == reflect.Uint:
val.SetUint(dataVal.Uint())
case dataKind == reflect.Float32:
f := dataVal.Float()
if f < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %f overflows uint",
name, f)
}
val.SetUint(uint64(f))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetUint(1)
} else {
val.SetUint(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseUint(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetUint(i)
} else {
return fmt.Errorf("cannot parse '%s' as uint: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Bool:
val.SetBool(dataVal.Bool())
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Int() != 0)
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Uint() != 0)
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Float() != 0)
case dataKind == reflect.String && d.config.WeaklyTypedInput:
b, err := strconv.ParseBool(dataVal.String())
if err == nil {
val.SetBool(b)
} else if dataVal.String() == "" {
val.SetBool(false)
} else {
return fmt.Errorf("cannot parse '%s' as bool: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
dataType := dataVal.Type()
switch {
case dataKind == reflect.Int:
val.SetFloat(float64(dataVal.Int()))
case dataKind == reflect.Uint:
val.SetFloat(float64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetFloat(float64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetFloat(1)
} else {
val.SetFloat(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
f, err := strconv.ParseFloat(dataVal.String(), val.Type().Bits())
if err == nil {
val.SetFloat(f)
} else {
return fmt.Errorf("cannot parse '%s' as float: %s", name, err)
}
case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
jn := data.(json.Number)
i, err := jn.Float64()
if err != nil {
return fmt.Errorf(
"error decoding json.Number into %s: %s", name, err)
}
val.SetFloat(i)
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error {
valType := val.Type()
valKeyType := valType.Key()
valElemType := valType.Elem()
// By default we overwrite keys in the current map
valMap := val
// If the map is nil or we're purposely zeroing fields, make a new map
if valMap.IsNil() || d.config.ZeroFields {
// Make a new map to hold our result
mapType := reflect.MapOf(valKeyType, valElemType)
valMap = reflect.MakeMap(mapType)
}
// Check input type
dataVal := reflect.Indirect(reflect.ValueOf(data))
if dataVal.Kind() != reflect.Map {
// In weak mode, we accept a slice of maps as an input...
if d.config.WeaklyTypedInput {
switch dataVal.Kind() {
case reflect.Array, reflect.Slice:
// Special case for BC reasons (covered by tests)
if dataVal.Len() == 0 {
val.Set(valMap)
return nil
}
for i := 0; i < dataVal.Len(); i++ {
err := d.decode(
fmt.Sprintf("%s[%d]", name, i),
dataVal.Index(i).Interface(), val)
if err != nil {
return err
}
}
return nil
}
}
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
}
// Accumulate errors
errors := make([]string, 0)
for _, k := range dataVal.MapKeys() {
fieldName := fmt.Sprintf("%s[%s]", name, k)
// First decode the key into the proper type
currentKey := reflect.Indirect(reflect.New(valKeyType))
if err := d.decode(fieldName, k.Interface(), currentKey); err != nil {
errors = appendErrors(errors, err)
continue
}
// Next decode the data into the proper type
v := dataVal.MapIndex(k).Interface()
currentVal := reflect.Indirect(reflect.New(valElemType))
if err := d.decode(fieldName, v, currentVal); err != nil {
errors = appendErrors(errors, err)
continue
}
valMap.SetMapIndex(currentKey, currentVal)
}
// Set the built up map to the value
val.Set(valMap)
// If we had errors, return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) error {
// Create an element of the concrete (non pointer) type and decode
// into that. Then set the value of the pointer to this type.
valType := val.Type()
valElemType := valType.Elem()
realVal := reflect.New(valElemType)
if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil {
return err
}
val.Set(realVal)
return nil
}
func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
dataValKind := dataVal.Kind()
valType := val.Type()
valElemType := valType.Elem()
sliceType := reflect.SliceOf(valElemType)
// Check input type
if dataValKind != reflect.Array && dataValKind != reflect.Slice {
// Accept empty map instead of array/slice in weakly typed mode
if d.config.WeaklyTypedInput && dataVal.Kind() == reflect.Map && dataVal.Len() == 0 {
val.Set(reflect.MakeSlice(sliceType, 0, 0))
return nil
} else {
return fmt.Errorf(
"'%s': source data must be an array or slice, got %s", name, dataValKind)
}
}
// Make a new slice to hold our result, same size as the original data.
valSlice := reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len())
// Accumulate any errors
errors := make([]string, 0)
for i := 0; i < dataVal.Len(); i++ {
currentData := dataVal.Index(i).Interface()
currentField := valSlice.Index(i)
fieldName := fmt.Sprintf("%s[%d]", name, i)
if err := d.decode(fieldName, currentData, currentField); err != nil {
errors = appendErrors(errors, err)
}
}
// Finally, set the value to the slice we built up
val.Set(valSlice)
// If there were errors, we return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
// If the type of the value to write to and the data match directly,
// then we just set it directly instead of recursing into the structure.
if dataVal.Type() == val.Type() {
val.Set(dataVal)
return nil
}
dataValKind := dataVal.Kind()
if dataValKind != reflect.Map {
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataValKind)
}
dataValType := dataVal.Type()
if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface {
return fmt.Errorf(
"'%s' needs a map with string keys, has '%s' keys",
name, dataValType.Key().Kind())
}
dataValKeys := make(map[reflect.Value]struct{})
dataValKeysUnused := make(map[interface{}]struct{})
for _, dataValKey := range dataVal.MapKeys() {
dataValKeys[dataValKey] = struct{}{}
dataValKeysUnused[dataValKey.Interface()] = struct{}{}
}
errors := make([]string, 0)
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = val
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
fields := make(map[*reflect.StructField]reflect.Value)
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
fieldKind := fieldType.Type.Kind()
if fieldType.Anonymous {
if fieldKind != reflect.Struct {
errors = appendErrors(errors,
fmt.Errorf("%s: unsupported type: %s", fieldType.Name, fieldKind))
continue
}
}
// If "squash" is specified in the tag, we squash the field down.
squash := false
tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",")
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
}
}
if squash {
if fieldKind != reflect.Struct {
errors = appendErrors(errors,
fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldKind))
} else {
structs = append(structs, val.FieldByName(fieldType.Name))
}
continue
}
// Normal struct field, store it away
fields[&fieldType] = structVal.Field(i)
}
}
for fieldType, field := range fields {
fieldName := fieldType.Name
tagValue := fieldType.Tag.Get(d.config.TagName)
tagValue = strings.SplitN(tagValue, ",", 2)[0]
if tagValue != "" {
fieldName = tagValue
}
rawMapKey := reflect.ValueOf(fieldName)
rawMapVal := dataVal.MapIndex(rawMapKey)
if !rawMapVal.IsValid() {
// Do a slower search by iterating over each key and
// doing case-insensitive search.
for dataValKey, _ := range dataValKeys {
mK, ok := dataValKey.Interface().(string)
if !ok {
// Not a string key
continue
}
if strings.EqualFold(mK, fieldName) {
rawMapKey = dataValKey
rawMapVal = dataVal.MapIndex(dataValKey)
break
}
}
if !rawMapVal.IsValid() {
// There was no matching key in the map for the value in
// the struct. Just ignore.
continue
}
}
// Delete the key we're using from the unused map so we stop tracking
delete(dataValKeysUnused, rawMapKey.Interface())
if !field.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !field.CanSet() {
continue
}
// If the name is empty string, then we're at the root, and we
// don't dot-join the fields.
if name != "" {
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
}
if err := d.decode(fieldName, rawMapVal.Interface(), field); err != nil {
errors = appendErrors(errors, err)
}
}
if d.config.ErrorUnused && len(dataValKeysUnused) > 0 {
keys := make([]string, 0, len(dataValKeysUnused))
for rawKey, _ := range dataValKeysUnused {
keys = append(keys, rawKey.(string))
}
sort.Strings(keys)
err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", "))
errors = appendErrors(errors, err)
}
if len(errors) > 0 {
return &Error{errors}
}
// Add the unused keys to the list of unused keys if we're tracking metadata
if d.config.Metadata != nil {
for rawKey, _ := range dataValKeysUnused {
key := rawKey.(string)
if name != "" {
key = fmt.Sprintf("%s.%s", name, key)
}
d.config.Metadata.Unused = append(d.config.Metadata.Unused, key)
}
}
return nil
}
func getKind(val reflect.Value) reflect.Kind {
kind := val.Kind()
switch {
case kind >= reflect.Int && kind <= reflect.Int64:
return reflect.Int
case kind >= reflect.Uint && kind <= reflect.Uint64:
return reflect.Uint
case kind >= reflect.Float32 && kind <= reflect.Float64:
return reflect.Float32
default:
return kind
}
}

51
vendor/golang.org/x/net/http2/Dockerfile generated vendored Normal file
View File

@ -0,0 +1,51 @@
#
# This Dockerfile builds a recent curl with HTTP/2 client support, using
# a recent nghttp2 build.
#
# See the Makefile for how to tag it. If Docker and that image is found, the
# Go tests use this curl binary for integration tests.
#
FROM ubuntu:trusty
RUN apt-get update && \
apt-get upgrade -y && \
apt-get install -y git-core build-essential wget
RUN apt-get install -y --no-install-recommends \
autotools-dev libtool pkg-config zlib1g-dev \
libcunit1-dev libssl-dev libxml2-dev libevent-dev \
automake autoconf
# The list of packages nghttp2 recommends for h2load:
RUN apt-get install -y --no-install-recommends make binutils \
autoconf automake autotools-dev \
libtool pkg-config zlib1g-dev libcunit1-dev libssl-dev libxml2-dev \
libev-dev libevent-dev libjansson-dev libjemalloc-dev \
cython python3.4-dev python-setuptools
# Note: setting NGHTTP2_VER before the git clone, so an old git clone isn't cached:
ENV NGHTTP2_VER 895da9a
RUN cd /root && git clone https://github.com/tatsuhiro-t/nghttp2.git
WORKDIR /root/nghttp2
RUN git reset --hard $NGHTTP2_VER
RUN autoreconf -i
RUN automake
RUN autoconf
RUN ./configure
RUN make
RUN make install
WORKDIR /root
RUN wget http://curl.haxx.se/download/curl-7.45.0.tar.gz
RUN tar -zxvf curl-7.45.0.tar.gz
WORKDIR /root/curl-7.45.0
RUN ./configure --with-ssl --with-nghttp2=/usr/local
RUN make
RUN make install
RUN ldconfig
CMD ["-h"]
ENTRYPOINT ["/usr/local/bin/curl"]

3
vendor/golang.org/x/net/http2/Makefile generated vendored Normal file
View File

@ -0,0 +1,3 @@
curlimage:
docker build -t gohttp2/curl .

20
vendor/golang.org/x/net/http2/README generated vendored Normal file
View File

@ -0,0 +1,20 @@
This is a work-in-progress HTTP/2 implementation for Go.
It will eventually live in the Go standard library and won't require
any changes to your code to use. It will just be automatic.
Status:
* The server support is pretty good. A few things are missing
but are being worked on.
* The client work has just started but shares a lot of code
is coming along much quicker.
Docs are at https://godoc.org/golang.org/x/net/http2
Demo test server at https://http2.golang.org/
Help & bug reports welcome!
Contributing: https://golang.org/doc/contribute.html
Bugs: https://golang.org/issue/new?title=x/net/http2:+

256
vendor/golang.org/x/net/http2/client_conn_pool.go generated vendored Normal file
View File

@ -0,0 +1,256 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Transport code's client connection pooling.
package http2
import (
"crypto/tls"
"net/http"
"sync"
)
// ClientConnPool manages a pool of HTTP/2 client connections.
type ClientConnPool interface {
GetClientConn(req *http.Request, addr string) (*ClientConn, error)
MarkDead(*ClientConn)
}
// clientConnPoolIdleCloser is the interface implemented by ClientConnPool
// implementations which can close their idle connections.
type clientConnPoolIdleCloser interface {
ClientConnPool
closeIdleConnections()
}
var (
_ clientConnPoolIdleCloser = (*clientConnPool)(nil)
_ clientConnPoolIdleCloser = noDialClientConnPool{}
)
// TODO: use singleflight for dialing and addConnCalls?
type clientConnPool struct {
t *Transport
mu sync.Mutex // TODO: maybe switch to RWMutex
// TODO: add support for sharing conns based on cert names
// (e.g. share conn for googleapis.com and appspot.com)
conns map[string][]*ClientConn // key is host:port
dialing map[string]*dialCall // currently in-flight dials
keys map[*ClientConn][]string
addConnCalls map[string]*addConnCall // in-flight addConnIfNeede calls
}
func (p *clientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, dialOnMiss)
}
const (
dialOnMiss = true
noDialOnMiss = false
)
func (p *clientConnPool) getClientConn(req *http.Request, addr string, dialOnMiss bool) (*ClientConn, error) {
if isConnectionCloseRequest(req) && dialOnMiss {
// It gets its own connection.
const singleUse = true
cc, err := p.t.dialClientConn(addr, singleUse)
if err != nil {
return nil, err
}
return cc, nil
}
p.mu.Lock()
for _, cc := range p.conns[addr] {
if cc.CanTakeNewRequest() {
p.mu.Unlock()
return cc, nil
}
}
if !dialOnMiss {
p.mu.Unlock()
return nil, ErrNoCachedConn
}
call := p.getStartDialLocked(addr)
p.mu.Unlock()
<-call.done
return call.res, call.err
}
// dialCall is an in-flight Transport dial call to a host.
type dialCall struct {
p *clientConnPool
done chan struct{} // closed when done
res *ClientConn // valid after done is closed
err error // valid after done is closed
}
// requires p.mu is held.
func (p *clientConnPool) getStartDialLocked(addr string) *dialCall {
if call, ok := p.dialing[addr]; ok {
// A dial is already in-flight. Don't start another.
return call
}
call := &dialCall{p: p, done: make(chan struct{})}
if p.dialing == nil {
p.dialing = make(map[string]*dialCall)
}
p.dialing[addr] = call
go call.dial(addr)
return call
}
// run in its own goroutine.
func (c *dialCall) dial(addr string) {
const singleUse = false // shared conn
c.res, c.err = c.p.t.dialClientConn(addr, singleUse)
close(c.done)
c.p.mu.Lock()
delete(c.p.dialing, addr)
if c.err == nil {
c.p.addConnLocked(addr, c.res)
}
c.p.mu.Unlock()
}
// addConnIfNeeded makes a NewClientConn out of c if a connection for key doesn't
// already exist. It coalesces concurrent calls with the same key.
// This is used by the http1 Transport code when it creates a new connection. Because
// the http1 Transport doesn't de-dup TCP dials to outbound hosts (because it doesn't know
// the protocol), it can get into a situation where it has multiple TLS connections.
// This code decides which ones live or die.
// The return value used is whether c was used.
// c is never closed.
func (p *clientConnPool) addConnIfNeeded(key string, t *Transport, c *tls.Conn) (used bool, err error) {
p.mu.Lock()
for _, cc := range p.conns[key] {
if cc.CanTakeNewRequest() {
p.mu.Unlock()
return false, nil
}
}
call, dup := p.addConnCalls[key]
if !dup {
if p.addConnCalls == nil {
p.addConnCalls = make(map[string]*addConnCall)
}
call = &addConnCall{
p: p,
done: make(chan struct{}),
}
p.addConnCalls[key] = call
go call.run(t, key, c)
}
p.mu.Unlock()
<-call.done
if call.err != nil {
return false, call.err
}
return !dup, nil
}
type addConnCall struct {
p *clientConnPool
done chan struct{} // closed when done
err error
}
func (c *addConnCall) run(t *Transport, key string, tc *tls.Conn) {
cc, err := t.NewClientConn(tc)
p := c.p
p.mu.Lock()
if err != nil {
c.err = err
} else {
p.addConnLocked(key, cc)
}
delete(p.addConnCalls, key)
p.mu.Unlock()
close(c.done)
}
func (p *clientConnPool) addConn(key string, cc *ClientConn) {
p.mu.Lock()
p.addConnLocked(key, cc)
p.mu.Unlock()
}
// p.mu must be held
func (p *clientConnPool) addConnLocked(key string, cc *ClientConn) {
for _, v := range p.conns[key] {
if v == cc {
return
}
}
if p.conns == nil {
p.conns = make(map[string][]*ClientConn)
}
if p.keys == nil {
p.keys = make(map[*ClientConn][]string)
}
p.conns[key] = append(p.conns[key], cc)
p.keys[cc] = append(p.keys[cc], key)
}
func (p *clientConnPool) MarkDead(cc *ClientConn) {
p.mu.Lock()
defer p.mu.Unlock()
for _, key := range p.keys[cc] {
vv, ok := p.conns[key]
if !ok {
continue
}
newList := filterOutClientConn(vv, cc)
if len(newList) > 0 {
p.conns[key] = newList
} else {
delete(p.conns, key)
}
}
delete(p.keys, cc)
}
func (p *clientConnPool) closeIdleConnections() {
p.mu.Lock()
defer p.mu.Unlock()
// TODO: don't close a cc if it was just added to the pool
// milliseconds ago and has never been used. There's currently
// a small race window with the HTTP/1 Transport's integration
// where it can add an idle conn just before using it, and
// somebody else can concurrently call CloseIdleConns and
// break some caller's RoundTrip.
for _, vv := range p.conns {
for _, cc := range vv {
cc.closeIfIdle()
}
}
}
func filterOutClientConn(in []*ClientConn, exclude *ClientConn) []*ClientConn {
out := in[:0]
for _, v := range in {
if v != exclude {
out = append(out, v)
}
}
// If we filtered it out, zero out the last item to prevent
// the GC from seeing it.
if len(in) != len(out) {
in[len(in)-1] = nil
}
return out
}
// noDialClientConnPool is an implementation of http2.ClientConnPool
// which never dials. We let the HTTP/1.1 client dial and use its TLS
// connection instead.
type noDialClientConnPool struct{ *clientConnPool }
func (p noDialClientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, noDialOnMiss)
}

80
vendor/golang.org/x/net/http2/configure_transport.go generated vendored Normal file
View File

@ -0,0 +1,80 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.6
package http2
import (
"crypto/tls"
"fmt"
"net/http"
)
func configureTransport(t1 *http.Transport) (*Transport, error) {
connPool := new(clientConnPool)
t2 := &Transport{
ConnPool: noDialClientConnPool{connPool},
t1: t1,
}
connPool.t = t2
if err := registerHTTPSProtocol(t1, noDialH2RoundTripper{t2}); err != nil {
return nil, err
}
if t1.TLSClientConfig == nil {
t1.TLSClientConfig = new(tls.Config)
}
if !strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
}
if !strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
}
upgradeFn := func(authority string, c *tls.Conn) http.RoundTripper {
addr := authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return erringRoundTripper{err}
} else if !used {
// Turns out we don't need this c.
// For example, two goroutines made requests to the same host
// at the same time, both kicking off TCP dials. (since protocol
// was unknown)
go c.Close()
}
return t2
}
if m := t1.TLSNextProto; len(m) == 0 {
t1.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{
"h2": upgradeFn,
}
} else {
m["h2"] = upgradeFn
}
return t2, nil
}
// registerHTTPSProtocol calls Transport.RegisterProtocol but
// convering panics into errors.
func registerHTTPSProtocol(t *http.Transport, rt http.RoundTripper) (err error) {
defer func() {
if e := recover(); e != nil {
err = fmt.Errorf("%v", e)
}
}()
t.RegisterProtocol("https", rt)
return nil
}
// noDialH2RoundTripper is a RoundTripper which only tries to complete the request
// if there's already has a cached connection to the host.
type noDialH2RoundTripper struct{ t *Transport }
func (rt noDialH2RoundTripper) RoundTrip(req *http.Request) (*http.Response, error) {
res, err := rt.t.RoundTrip(req)
if err == ErrNoCachedConn {
return nil, http.ErrSkipAltProtocol
}
return res, err
}

146
vendor/golang.org/x/net/http2/databuffer.go generated vendored Normal file
View File

@ -0,0 +1,146 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"fmt"
"sync"
)
// Buffer chunks are allocated from a pool to reduce pressure on GC.
// The maximum wasted space per dataBuffer is 2x the largest size class,
// which happens when the dataBuffer has multiple chunks and there is
// one unread byte in both the first and last chunks. We use a few size
// classes to minimize overheads for servers that typically receive very
// small request bodies.
//
// TODO: Benchmark to determine if the pools are necessary. The GC may have
// improved enough that we can instead allocate chunks like this:
// make([]byte, max(16<<10, expectedBytesRemaining))
var (
dataChunkSizeClasses = []int{
1 << 10,
2 << 10,
4 << 10,
8 << 10,
16 << 10,
}
dataChunkPools = [...]sync.Pool{
{New: func() interface{} { return make([]byte, 1<<10) }},
{New: func() interface{} { return make([]byte, 2<<10) }},
{New: func() interface{} { return make([]byte, 4<<10) }},
{New: func() interface{} { return make([]byte, 8<<10) }},
{New: func() interface{} { return make([]byte, 16<<10) }},
}
)
func getDataBufferChunk(size int64) []byte {
i := 0
for ; i < len(dataChunkSizeClasses)-1; i++ {
if size <= int64(dataChunkSizeClasses[i]) {
break
}
}
return dataChunkPools[i].Get().([]byte)
}
func putDataBufferChunk(p []byte) {
for i, n := range dataChunkSizeClasses {
if len(p) == n {
dataChunkPools[i].Put(p)
return
}
}
panic(fmt.Sprintf("unexpected buffer len=%v", len(p)))
}
// dataBuffer is an io.ReadWriter backed by a list of data chunks.
// Each dataBuffer is used to read DATA frames on a single stream.
// The buffer is divided into chunks so the server can limit the
// total memory used by a single connection without limiting the
// request body size on any single stream.
type dataBuffer struct {
chunks [][]byte
r int // next byte to read is chunks[0][r]
w int // next byte to write is chunks[len(chunks)-1][w]
size int // total buffered bytes
expected int64 // we expect at least this many bytes in future Write calls (ignored if <= 0)
}
var errReadEmpty = errors.New("read from empty dataBuffer")
// Read copies bytes from the buffer into p.
// It is an error to read when no data is available.
func (b *dataBuffer) Read(p []byte) (int, error) {
if b.size == 0 {
return 0, errReadEmpty
}
var ntotal int
for len(p) > 0 && b.size > 0 {
readFrom := b.bytesFromFirstChunk()
n := copy(p, readFrom)
p = p[n:]
ntotal += n
b.r += n
b.size -= n
// If the first chunk has been consumed, advance to the next chunk.
if b.r == len(b.chunks[0]) {
putDataBufferChunk(b.chunks[0])
end := len(b.chunks) - 1
copy(b.chunks[:end], b.chunks[1:])
b.chunks[end] = nil
b.chunks = b.chunks[:end]
b.r = 0
}
}
return ntotal, nil
}
func (b *dataBuffer) bytesFromFirstChunk() []byte {
if len(b.chunks) == 1 {
return b.chunks[0][b.r:b.w]
}
return b.chunks[0][b.r:]
}
// Len returns the number of bytes of the unread portion of the buffer.
func (b *dataBuffer) Len() int {
return b.size
}
// Write appends p to the buffer.
func (b *dataBuffer) Write(p []byte) (int, error) {
ntotal := len(p)
for len(p) > 0 {
// If the last chunk is empty, allocate a new chunk. Try to allocate
// enough to fully copy p plus any additional bytes we expect to
// receive. However, this may allocate less than len(p).
want := int64(len(p))
if b.expected > want {
want = b.expected
}
chunk := b.lastChunkOrAlloc(want)
n := copy(chunk[b.w:], p)
p = p[n:]
b.w += n
b.size += n
b.expected -= int64(n)
}
return ntotal, nil
}
func (b *dataBuffer) lastChunkOrAlloc(want int64) []byte {
if len(b.chunks) != 0 {
last := b.chunks[len(b.chunks)-1]
if b.w < len(last) {
return last
}
}
chunk := getDataBufferChunk(want)
b.chunks = append(b.chunks, chunk)
b.w = 0
return chunk
}

130
vendor/golang.org/x/net/http2/errors.go generated vendored Normal file
View File

@ -0,0 +1,130 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"fmt"
)
// An ErrCode is an unsigned 32-bit error code as defined in the HTTP/2 spec.
type ErrCode uint32
const (
ErrCodeNo ErrCode = 0x0
ErrCodeProtocol ErrCode = 0x1
ErrCodeInternal ErrCode = 0x2
ErrCodeFlowControl ErrCode = 0x3
ErrCodeSettingsTimeout ErrCode = 0x4
ErrCodeStreamClosed ErrCode = 0x5
ErrCodeFrameSize ErrCode = 0x6
ErrCodeRefusedStream ErrCode = 0x7
ErrCodeCancel ErrCode = 0x8
ErrCodeCompression ErrCode = 0x9
ErrCodeConnect ErrCode = 0xa
ErrCodeEnhanceYourCalm ErrCode = 0xb
ErrCodeInadequateSecurity ErrCode = 0xc
ErrCodeHTTP11Required ErrCode = 0xd
)
var errCodeName = map[ErrCode]string{
ErrCodeNo: "NO_ERROR",
ErrCodeProtocol: "PROTOCOL_ERROR",
ErrCodeInternal: "INTERNAL_ERROR",
ErrCodeFlowControl: "FLOW_CONTROL_ERROR",
ErrCodeSettingsTimeout: "SETTINGS_TIMEOUT",
ErrCodeStreamClosed: "STREAM_CLOSED",
ErrCodeFrameSize: "FRAME_SIZE_ERROR",
ErrCodeRefusedStream: "REFUSED_STREAM",
ErrCodeCancel: "CANCEL",
ErrCodeCompression: "COMPRESSION_ERROR",
ErrCodeConnect: "CONNECT_ERROR",
ErrCodeEnhanceYourCalm: "ENHANCE_YOUR_CALM",
ErrCodeInadequateSecurity: "INADEQUATE_SECURITY",
ErrCodeHTTP11Required: "HTTP_1_1_REQUIRED",
}
func (e ErrCode) String() string {
if s, ok := errCodeName[e]; ok {
return s
}
return fmt.Sprintf("unknown error code 0x%x", uint32(e))
}
// ConnectionError is an error that results in the termination of the
// entire connection.
type ConnectionError ErrCode
func (e ConnectionError) Error() string { return fmt.Sprintf("connection error: %s", ErrCode(e)) }
// StreamError is an error that only affects one stream within an
// HTTP/2 connection.
type StreamError struct {
StreamID uint32
Code ErrCode
Cause error // optional additional detail
}
func streamError(id uint32, code ErrCode) StreamError {
return StreamError{StreamID: id, Code: code}
}
func (e StreamError) Error() string {
if e.Cause != nil {
return fmt.Sprintf("stream error: stream ID %d; %v; %v", e.StreamID, e.Code, e.Cause)
}
return fmt.Sprintf("stream error: stream ID %d; %v", e.StreamID, e.Code)
}
// 6.9.1 The Flow Control Window
// "If a sender receives a WINDOW_UPDATE that causes a flow control
// window to exceed this maximum it MUST terminate either the stream
// or the connection, as appropriate. For streams, [...]; for the
// connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code."
type goAwayFlowError struct{}
func (goAwayFlowError) Error() string { return "connection exceeded flow control window size" }
// connErrorReason wraps a ConnectionError with an informative error about why it occurs.
// Errors of this type are only returned by the frame parser functions
// and converted into ConnectionError(ErrCodeProtocol).
type connError struct {
Code ErrCode
Reason string
}
func (e connError) Error() string {
return fmt.Sprintf("http2: connection error: %v: %v", e.Code, e.Reason)
}
type pseudoHeaderError string
func (e pseudoHeaderError) Error() string {
return fmt.Sprintf("invalid pseudo-header %q", string(e))
}
type duplicatePseudoHeaderError string
func (e duplicatePseudoHeaderError) Error() string {
return fmt.Sprintf("duplicate pseudo-header %q", string(e))
}
type headerFieldNameError string
func (e headerFieldNameError) Error() string {
return fmt.Sprintf("invalid header field name %q", string(e))
}
type headerFieldValueError string
func (e headerFieldValueError) Error() string {
return fmt.Sprintf("invalid header field value %q", string(e))
}
var (
errMixPseudoHeaderTypes = errors.New("mix of request and response pseudo headers")
errPseudoAfterRegular = errors.New("pseudo header field after regular")
)

50
vendor/golang.org/x/net/http2/flow.go generated vendored Normal file
View File

@ -0,0 +1,50 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Flow control
package http2
// flow is the flow control window's size.
type flow struct {
// n is the number of DATA bytes we're allowed to send.
// A flow is kept both on a conn and a per-stream.
n int32
// conn points to the shared connection-level flow that is
// shared by all streams on that conn. It is nil for the flow
// that's on the conn directly.
conn *flow
}
func (f *flow) setConnFlow(cf *flow) { f.conn = cf }
func (f *flow) available() int32 {
n := f.n
if f.conn != nil && f.conn.n < n {
n = f.conn.n
}
return n
}
func (f *flow) take(n int32) {
if n > f.available() {
panic("internal error: took too much")
}
f.n -= n
if f.conn != nil {
f.conn.n -= n
}
}
// add adds n bytes (positive or negative) to the flow control window.
// It returns false if the sum would exceed 2^31-1.
func (f *flow) add(n int32) bool {
remain := (1<<31 - 1) - f.n
if n > remain {
return false
}
f.n += n
return true
}

1579
vendor/golang.org/x/net/http2/frame.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

43
vendor/golang.org/x/net/http2/go16.go generated vendored Normal file
View File

@ -0,0 +1,43 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.6
package http2
import (
"crypto/tls"
"net/http"
"time"
)
func transportExpectContinueTimeout(t1 *http.Transport) time.Duration {
return t1.ExpectContinueTimeout
}
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
func isBadCipher(cipher uint16) bool {
switch cipher {
case tls.TLS_RSA_WITH_RC4_128_SHA,
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_RSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
return true
default:
return false
}
}

106
vendor/golang.org/x/net/http2/go17.go generated vendored Normal file
View File

@ -0,0 +1,106 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7
package http2
import (
"context"
"net"
"net/http"
"net/http/httptrace"
"time"
)
type contextContext interface {
context.Context
}
func serverConnBaseContext(c net.Conn, opts *ServeConnOpts) (ctx contextContext, cancel func()) {
ctx, cancel = context.WithCancel(context.Background())
ctx = context.WithValue(ctx, http.LocalAddrContextKey, c.LocalAddr())
if hs := opts.baseConfig(); hs != nil {
ctx = context.WithValue(ctx, http.ServerContextKey, hs)
}
return
}
func contextWithCancel(ctx contextContext) (_ contextContext, cancel func()) {
return context.WithCancel(ctx)
}
func requestWithContext(req *http.Request, ctx contextContext) *http.Request {
return req.WithContext(ctx)
}
type clientTrace httptrace.ClientTrace
func reqContext(r *http.Request) context.Context { return r.Context() }
func (t *Transport) idleConnTimeout() time.Duration {
if t.t1 != nil {
return t.t1.IdleConnTimeout
}
return 0
}
func setResponseUncompressed(res *http.Response) { res.Uncompressed = true }
func traceGotConn(req *http.Request, cc *ClientConn) {
trace := httptrace.ContextClientTrace(req.Context())
if trace == nil || trace.GotConn == nil {
return
}
ci := httptrace.GotConnInfo{Conn: cc.tconn}
cc.mu.Lock()
ci.Reused = cc.nextStreamID > 1
ci.WasIdle = len(cc.streams) == 0 && ci.Reused
if ci.WasIdle && !cc.lastActive.IsZero() {
ci.IdleTime = time.Now().Sub(cc.lastActive)
}
cc.mu.Unlock()
trace.GotConn(ci)
}
func traceWroteHeaders(trace *clientTrace) {
if trace != nil && trace.WroteHeaders != nil {
trace.WroteHeaders()
}
}
func traceGot100Continue(trace *clientTrace) {
if trace != nil && trace.Got100Continue != nil {
trace.Got100Continue()
}
}
func traceWait100Continue(trace *clientTrace) {
if trace != nil && trace.Wait100Continue != nil {
trace.Wait100Continue()
}
}
func traceWroteRequest(trace *clientTrace, err error) {
if trace != nil && trace.WroteRequest != nil {
trace.WroteRequest(httptrace.WroteRequestInfo{Err: err})
}
}
func traceFirstResponseByte(trace *clientTrace) {
if trace != nil && trace.GotFirstResponseByte != nil {
trace.GotFirstResponseByte()
}
}
func requestTrace(req *http.Request) *clientTrace {
trace := httptrace.ContextClientTrace(req.Context())
return (*clientTrace)(trace)
}
// Ping sends a PING frame to the server and waits for the ack.
func (cc *ClientConn) Ping(ctx context.Context) error {
return cc.ping(ctx)
}

36
vendor/golang.org/x/net/http2/go17_not18.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7,!go1.8
package http2
import "crypto/tls"
// temporary copy of Go 1.7's private tls.Config.clone:
func cloneTLSConfig(c *tls.Config) *tls.Config {
return &tls.Config{
Rand: c.Rand,
Time: c.Time,
Certificates: c.Certificates,
NameToCertificate: c.NameToCertificate,
GetCertificate: c.GetCertificate,
RootCAs: c.RootCAs,
NextProtos: c.NextProtos,
ServerName: c.ServerName,
ClientAuth: c.ClientAuth,
ClientCAs: c.ClientCAs,
InsecureSkipVerify: c.InsecureSkipVerify,
CipherSuites: c.CipherSuites,
PreferServerCipherSuites: c.PreferServerCipherSuites,
SessionTicketsDisabled: c.SessionTicketsDisabled,
SessionTicketKey: c.SessionTicketKey,
ClientSessionCache: c.ClientSessionCache,
MinVersion: c.MinVersion,
MaxVersion: c.MaxVersion,
CurvePreferences: c.CurvePreferences,
DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
Renegotiation: c.Renegotiation,
}
}

54
vendor/golang.org/x/net/http2/go18.go generated vendored Normal file
View File

@ -0,0 +1,54 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.8
package http2
import (
"crypto/tls"
"io"
"net/http"
)
func cloneTLSConfig(c *tls.Config) *tls.Config {
c2 := c.Clone()
c2.GetClientCertificate = c.GetClientCertificate // golang.org/issue/19264
return c2
}
var _ http.Pusher = (*responseWriter)(nil)
// Push implements http.Pusher.
func (w *responseWriter) Push(target string, opts *http.PushOptions) error {
internalOpts := pushOptions{}
if opts != nil {
internalOpts.Method = opts.Method
internalOpts.Header = opts.Header
}
return w.push(target, internalOpts)
}
func configureServer18(h1 *http.Server, h2 *Server) error {
if h2.IdleTimeout == 0 {
if h1.IdleTimeout != 0 {
h2.IdleTimeout = h1.IdleTimeout
} else {
h2.IdleTimeout = h1.ReadTimeout
}
}
return nil
}
func shouldLogPanic(panicValue interface{}) bool {
return panicValue != nil && panicValue != http.ErrAbortHandler
}
func reqGetBody(req *http.Request) func() (io.ReadCloser, error) {
return req.GetBody
}
func reqBodyIsNoBody(body io.ReadCloser) bool {
return body == http.NoBody
}

170
vendor/golang.org/x/net/http2/gotrack.go generated vendored Normal file
View File

@ -0,0 +1,170 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Defensive debug-only utility to track that functions run on the
// goroutine that they're supposed to.
package http2
import (
"bytes"
"errors"
"fmt"
"os"
"runtime"
"strconv"
"sync"
)
var DebugGoroutines = os.Getenv("DEBUG_HTTP2_GOROUTINES") == "1"
type goroutineLock uint64
func newGoroutineLock() goroutineLock {
if !DebugGoroutines {
return 0
}
return goroutineLock(curGoroutineID())
}
func (g goroutineLock) check() {
if !DebugGoroutines {
return
}
if curGoroutineID() != uint64(g) {
panic("running on the wrong goroutine")
}
}
func (g goroutineLock) checkNotOn() {
if !DebugGoroutines {
return
}
if curGoroutineID() == uint64(g) {
panic("running on the wrong goroutine")
}
}
var goroutineSpace = []byte("goroutine ")
func curGoroutineID() uint64 {
bp := littleBuf.Get().(*[]byte)
defer littleBuf.Put(bp)
b := *bp
b = b[:runtime.Stack(b, false)]
// Parse the 4707 out of "goroutine 4707 ["
b = bytes.TrimPrefix(b, goroutineSpace)
i := bytes.IndexByte(b, ' ')
if i < 0 {
panic(fmt.Sprintf("No space found in %q", b))
}
b = b[:i]
n, err := parseUintBytes(b, 10, 64)
if err != nil {
panic(fmt.Sprintf("Failed to parse goroutine ID out of %q: %v", b, err))
}
return n
}
var littleBuf = sync.Pool{
New: func() interface{} {
buf := make([]byte, 64)
return &buf
},
}
// parseUintBytes is like strconv.ParseUint, but using a []byte.
func parseUintBytes(s []byte, base int, bitSize int) (n uint64, err error) {
var cutoff, maxVal uint64
if bitSize == 0 {
bitSize = int(strconv.IntSize)
}
s0 := s
switch {
case len(s) < 1:
err = strconv.ErrSyntax
goto Error
case 2 <= base && base <= 36:
// valid base; nothing to do
case base == 0:
// Look for octal, hex prefix.
switch {
case s[0] == '0' && len(s) > 1 && (s[1] == 'x' || s[1] == 'X'):
base = 16
s = s[2:]
if len(s) < 1 {
err = strconv.ErrSyntax
goto Error
}
case s[0] == '0':
base = 8
default:
base = 10
}
default:
err = errors.New("invalid base " + strconv.Itoa(base))
goto Error
}
n = 0
cutoff = cutoff64(base)
maxVal = 1<<uint(bitSize) - 1
for i := 0; i < len(s); i++ {
var v byte
d := s[i]
switch {
case '0' <= d && d <= '9':
v = d - '0'
case 'a' <= d && d <= 'z':
v = d - 'a' + 10
case 'A' <= d && d <= 'Z':
v = d - 'A' + 10
default:
n = 0
err = strconv.ErrSyntax
goto Error
}
if int(v) >= base {
n = 0
err = strconv.ErrSyntax
goto Error
}
if n >= cutoff {
// n*base overflows
n = 1<<64 - 1
err = strconv.ErrRange
goto Error
}
n *= uint64(base)
n1 := n + uint64(v)
if n1 < n || n1 > maxVal {
// n+v overflows
n = 1<<64 - 1
err = strconv.ErrRange
goto Error
}
n = n1
}
return n, nil
Error:
return n, &strconv.NumError{Func: "ParseUint", Num: string(s0), Err: err}
}
// Return the first number n such that n*base >= 1<<64.
func cutoff64(base int) uint64 {
if base < 2 {
return 0
}
return (1<<64-1)/uint64(base) + 1
}

78
vendor/golang.org/x/net/http2/headermap.go generated vendored Normal file
View File

@ -0,0 +1,78 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"net/http"
"strings"
)
var (
commonLowerHeader = map[string]string{} // Go-Canonical-Case -> lower-case
commonCanonHeader = map[string]string{} // lower-case -> Go-Canonical-Case
)
func init() {
for _, v := range []string{
"accept",
"accept-charset",
"accept-encoding",
"accept-language",
"accept-ranges",
"age",
"access-control-allow-origin",
"allow",
"authorization",
"cache-control",
"content-disposition",
"content-encoding",
"content-language",
"content-length",
"content-location",
"content-range",
"content-type",
"cookie",
"date",
"etag",
"expect",
"expires",
"from",
"host",
"if-match",
"if-modified-since",
"if-none-match",
"if-unmodified-since",
"last-modified",
"link",
"location",
"max-forwards",
"proxy-authenticate",
"proxy-authorization",
"range",
"referer",
"refresh",
"retry-after",
"server",
"set-cookie",
"strict-transport-security",
"trailer",
"transfer-encoding",
"user-agent",
"vary",
"via",
"www-authenticate",
} {
chk := http.CanonicalHeaderKey(v)
commonLowerHeader[chk] = v
commonCanonHeader[v] = chk
}
}
func lowerHeader(v string) string {
if s, ok := commonLowerHeader[v]; ok {
return s
}
return strings.ToLower(v)
}

240
vendor/golang.org/x/net/http2/hpack/encode.go generated vendored Normal file
View File

@ -0,0 +1,240 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"io"
)
const (
uint32Max = ^uint32(0)
initialHeaderTableSize = 4096
)
type Encoder struct {
dynTab dynamicTable
// minSize is the minimum table size set by
// SetMaxDynamicTableSize after the previous Header Table Size
// Update.
minSize uint32
// maxSizeLimit is the maximum table size this encoder
// supports. This will protect the encoder from too large
// size.
maxSizeLimit uint32
// tableSizeUpdate indicates whether "Header Table Size
// Update" is required.
tableSizeUpdate bool
w io.Writer
buf []byte
}
// NewEncoder returns a new Encoder which performs HPACK encoding. An
// encoded data is written to w.
func NewEncoder(w io.Writer) *Encoder {
e := &Encoder{
minSize: uint32Max,
maxSizeLimit: initialHeaderTableSize,
tableSizeUpdate: false,
w: w,
}
e.dynTab.table.init()
e.dynTab.setMaxSize(initialHeaderTableSize)
return e
}
// WriteField encodes f into a single Write to e's underlying Writer.
// This function may also produce bytes for "Header Table Size Update"
// if necessary. If produced, it is done before encoding f.
func (e *Encoder) WriteField(f HeaderField) error {
e.buf = e.buf[:0]
if e.tableSizeUpdate {
e.tableSizeUpdate = false
if e.minSize < e.dynTab.maxSize {
e.buf = appendTableSize(e.buf, e.minSize)
}
e.minSize = uint32Max
e.buf = appendTableSize(e.buf, e.dynTab.maxSize)
}
idx, nameValueMatch := e.searchTable(f)
if nameValueMatch {
e.buf = appendIndexed(e.buf, idx)
} else {
indexing := e.shouldIndex(f)
if indexing {
e.dynTab.add(f)
}
if idx == 0 {
e.buf = appendNewName(e.buf, f, indexing)
} else {
e.buf = appendIndexedName(e.buf, f, idx, indexing)
}
}
n, err := e.w.Write(e.buf)
if err == nil && n != len(e.buf) {
err = io.ErrShortWrite
}
return err
}
// searchTable searches f in both stable and dynamic header tables.
// The static header table is searched first. Only when there is no
// exact match for both name and value, the dynamic header table is
// then searched. If there is no match, i is 0. If both name and value
// match, i is the matched index and nameValueMatch becomes true. If
// only name matches, i points to that index and nameValueMatch
// becomes false.
func (e *Encoder) searchTable(f HeaderField) (i uint64, nameValueMatch bool) {
i, nameValueMatch = staticTable.search(f)
if nameValueMatch {
return i, true
}
j, nameValueMatch := e.dynTab.table.search(f)
if nameValueMatch || (i == 0 && j != 0) {
return j + uint64(staticTable.len()), nameValueMatch
}
return i, false
}
// SetMaxDynamicTableSize changes the dynamic header table size to v.
// The actual size is bounded by the value passed to
// SetMaxDynamicTableSizeLimit.
func (e *Encoder) SetMaxDynamicTableSize(v uint32) {
if v > e.maxSizeLimit {
v = e.maxSizeLimit
}
if v < e.minSize {
e.minSize = v
}
e.tableSizeUpdate = true
e.dynTab.setMaxSize(v)
}
// SetMaxDynamicTableSizeLimit changes the maximum value that can be
// specified in SetMaxDynamicTableSize to v. By default, it is set to
// 4096, which is the same size of the default dynamic header table
// size described in HPACK specification. If the current maximum
// dynamic header table size is strictly greater than v, "Header Table
// Size Update" will be done in the next WriteField call and the
// maximum dynamic header table size is truncated to v.
func (e *Encoder) SetMaxDynamicTableSizeLimit(v uint32) {
e.maxSizeLimit = v
if e.dynTab.maxSize > v {
e.tableSizeUpdate = true
e.dynTab.setMaxSize(v)
}
}
// shouldIndex reports whether f should be indexed.
func (e *Encoder) shouldIndex(f HeaderField) bool {
return !f.Sensitive && f.Size() <= e.dynTab.maxSize
}
// appendIndexed appends index i, as encoded in "Indexed Header Field"
// representation, to dst and returns the extended buffer.
func appendIndexed(dst []byte, i uint64) []byte {
first := len(dst)
dst = appendVarInt(dst, 7, i)
dst[first] |= 0x80
return dst
}
// appendNewName appends f, as encoded in one of "Literal Header field
// - New Name" representation variants, to dst and returns the
// extended buffer.
//
// If f.Sensitive is true, "Never Indexed" representation is used. If
// f.Sensitive is false and indexing is true, "Inremental Indexing"
// representation is used.
func appendNewName(dst []byte, f HeaderField, indexing bool) []byte {
dst = append(dst, encodeTypeByte(indexing, f.Sensitive))
dst = appendHpackString(dst, f.Name)
return appendHpackString(dst, f.Value)
}
// appendIndexedName appends f and index i referring indexed name
// entry, as encoded in one of "Literal Header field - Indexed Name"
// representation variants, to dst and returns the extended buffer.
//
// If f.Sensitive is true, "Never Indexed" representation is used. If
// f.Sensitive is false and indexing is true, "Incremental Indexing"
// representation is used.
func appendIndexedName(dst []byte, f HeaderField, i uint64, indexing bool) []byte {
first := len(dst)
var n byte
if indexing {
n = 6
} else {
n = 4
}
dst = appendVarInt(dst, n, i)
dst[first] |= encodeTypeByte(indexing, f.Sensitive)
return appendHpackString(dst, f.Value)
}
// appendTableSize appends v, as encoded in "Header Table Size Update"
// representation, to dst and returns the extended buffer.
func appendTableSize(dst []byte, v uint32) []byte {
first := len(dst)
dst = appendVarInt(dst, 5, uint64(v))
dst[first] |= 0x20
return dst
}
// appendVarInt appends i, as encoded in variable integer form using n
// bit prefix, to dst and returns the extended buffer.
//
// See
// http://http2.github.io/http2-spec/compression.html#integer.representation
func appendVarInt(dst []byte, n byte, i uint64) []byte {
k := uint64((1 << n) - 1)
if i < k {
return append(dst, byte(i))
}
dst = append(dst, byte(k))
i -= k
for ; i >= 128; i >>= 7 {
dst = append(dst, byte(0x80|(i&0x7f)))
}
return append(dst, byte(i))
}
// appendHpackString appends s, as encoded in "String Literal"
// representation, to dst and returns the the extended buffer.
//
// s will be encoded in Huffman codes only when it produces strictly
// shorter byte string.
func appendHpackString(dst []byte, s string) []byte {
huffmanLength := HuffmanEncodeLength(s)
if huffmanLength < uint64(len(s)) {
first := len(dst)
dst = appendVarInt(dst, 7, huffmanLength)
dst = AppendHuffmanString(dst, s)
dst[first] |= 0x80
} else {
dst = appendVarInt(dst, 7, uint64(len(s)))
dst = append(dst, s...)
}
return dst
}
// encodeTypeByte returns type byte. If sensitive is true, type byte
// for "Never Indexed" representation is returned. If sensitive is
// false and indexing is true, type byte for "Incremental Indexing"
// representation is returned. Otherwise, type byte for "Without
// Indexing" is returned.
func encodeTypeByte(indexing, sensitive bool) byte {
if sensitive {
return 0x10
}
if indexing {
return 0x40
}
return 0
}

490
vendor/golang.org/x/net/http2/hpack/hpack.go generated vendored Normal file
View File

@ -0,0 +1,490 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hpack implements HPACK, a compression format for
// efficiently representing HTTP header fields in the context of HTTP/2.
//
// See http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-09
package hpack
import (
"bytes"
"errors"
"fmt"
)
// A DecodingError is something the spec defines as a decoding error.
type DecodingError struct {
Err error
}
func (de DecodingError) Error() string {
return fmt.Sprintf("decoding error: %v", de.Err)
}
// An InvalidIndexError is returned when an encoder references a table
// entry before the static table or after the end of the dynamic table.
type InvalidIndexError int
func (e InvalidIndexError) Error() string {
return fmt.Sprintf("invalid indexed representation index %d", int(e))
}
// A HeaderField is a name-value pair. Both the name and value are
// treated as opaque sequences of octets.
type HeaderField struct {
Name, Value string
// Sensitive means that this header field should never be
// indexed.
Sensitive bool
}
// IsPseudo reports whether the header field is an http2 pseudo header.
// That is, it reports whether it starts with a colon.
// It is not otherwise guaranteed to be a valid pseudo header field,
// though.
func (hf HeaderField) IsPseudo() bool {
return len(hf.Name) != 0 && hf.Name[0] == ':'
}
func (hf HeaderField) String() string {
var suffix string
if hf.Sensitive {
suffix = " (sensitive)"
}
return fmt.Sprintf("header field %q = %q%s", hf.Name, hf.Value, suffix)
}
// Size returns the size of an entry per RFC 7541 section 4.1.
func (hf HeaderField) Size() uint32 {
// http://http2.github.io/http2-spec/compression.html#rfc.section.4.1
// "The size of the dynamic table is the sum of the size of
// its entries. The size of an entry is the sum of its name's
// length in octets (as defined in Section 5.2), its value's
// length in octets (see Section 5.2), plus 32. The size of
// an entry is calculated using the length of the name and
// value without any Huffman encoding applied."
// This can overflow if somebody makes a large HeaderField
// Name and/or Value by hand, but we don't care, because that
// won't happen on the wire because the encoding doesn't allow
// it.
return uint32(len(hf.Name) + len(hf.Value) + 32)
}
// A Decoder is the decoding context for incremental processing of
// header blocks.
type Decoder struct {
dynTab dynamicTable
emit func(f HeaderField)
emitEnabled bool // whether calls to emit are enabled
maxStrLen int // 0 means unlimited
// buf is the unparsed buffer. It's only written to
// saveBuf if it was truncated in the middle of a header
// block. Because it's usually not owned, we can only
// process it under Write.
buf []byte // not owned; only valid during Write
// saveBuf is previous data passed to Write which we weren't able
// to fully parse before. Unlike buf, we own this data.
saveBuf bytes.Buffer
}
// NewDecoder returns a new decoder with the provided maximum dynamic
// table size. The emitFunc will be called for each valid field
// parsed, in the same goroutine as calls to Write, before Write returns.
func NewDecoder(maxDynamicTableSize uint32, emitFunc func(f HeaderField)) *Decoder {
d := &Decoder{
emit: emitFunc,
emitEnabled: true,
}
d.dynTab.table.init()
d.dynTab.allowedMaxSize = maxDynamicTableSize
d.dynTab.setMaxSize(maxDynamicTableSize)
return d
}
// ErrStringLength is returned by Decoder.Write when the max string length
// (as configured by Decoder.SetMaxStringLength) would be violated.
var ErrStringLength = errors.New("hpack: string too long")
// SetMaxStringLength sets the maximum size of a HeaderField name or
// value string. If a string exceeds this length (even after any
// decompression), Write will return ErrStringLength.
// A value of 0 means unlimited and is the default from NewDecoder.
func (d *Decoder) SetMaxStringLength(n int) {
d.maxStrLen = n
}
// SetEmitFunc changes the callback used when new header fields
// are decoded.
// It must be non-nil. It does not affect EmitEnabled.
func (d *Decoder) SetEmitFunc(emitFunc func(f HeaderField)) {
d.emit = emitFunc
}
// SetEmitEnabled controls whether the emitFunc provided to NewDecoder
// should be called. The default is true.
//
// This facility exists to let servers enforce MAX_HEADER_LIST_SIZE
// while still decoding and keeping in-sync with decoder state, but
// without doing unnecessary decompression or generating unnecessary
// garbage for header fields past the limit.
func (d *Decoder) SetEmitEnabled(v bool) { d.emitEnabled = v }
// EmitEnabled reports whether calls to the emitFunc provided to NewDecoder
// are currently enabled. The default is true.
func (d *Decoder) EmitEnabled() bool { return d.emitEnabled }
// TODO: add method *Decoder.Reset(maxSize, emitFunc) to let callers re-use Decoders and their
// underlying buffers for garbage reasons.
func (d *Decoder) SetMaxDynamicTableSize(v uint32) {
d.dynTab.setMaxSize(v)
}
// SetAllowedMaxDynamicTableSize sets the upper bound that the encoded
// stream (via dynamic table size updates) may set the maximum size
// to.
func (d *Decoder) SetAllowedMaxDynamicTableSize(v uint32) {
d.dynTab.allowedMaxSize = v
}
type dynamicTable struct {
// http://http2.github.io/http2-spec/compression.html#rfc.section.2.3.2
table headerFieldTable
size uint32 // in bytes
maxSize uint32 // current maxSize
allowedMaxSize uint32 // maxSize may go up to this, inclusive
}
func (dt *dynamicTable) setMaxSize(v uint32) {
dt.maxSize = v
dt.evict()
}
func (dt *dynamicTable) add(f HeaderField) {
dt.table.addEntry(f)
dt.size += f.Size()
dt.evict()
}
// If we're too big, evict old stuff.
func (dt *dynamicTable) evict() {
var n int
for dt.size > dt.maxSize && n < dt.table.len() {
dt.size -= dt.table.ents[n].Size()
n++
}
dt.table.evictOldest(n)
}
func (d *Decoder) maxTableIndex() int {
// This should never overflow. RFC 7540 Section 6.5.2 limits the size of
// the dynamic table to 2^32 bytes, where each entry will occupy more than
// one byte. Further, the staticTable has a fixed, small length.
return d.dynTab.table.len() + staticTable.len()
}
func (d *Decoder) at(i uint64) (hf HeaderField, ok bool) {
// See Section 2.3.3.
if i == 0 {
return
}
if i <= uint64(staticTable.len()) {
return staticTable.ents[i-1], true
}
if i > uint64(d.maxTableIndex()) {
return
}
// In the dynamic table, newer entries have lower indices.
// However, dt.ents[0] is the oldest entry. Hence, dt.ents is
// the reversed dynamic table.
dt := d.dynTab.table
return dt.ents[dt.len()-(int(i)-staticTable.len())], true
}
// Decode decodes an entire block.
//
// TODO: remove this method and make it incremental later? This is
// easier for debugging now.
func (d *Decoder) DecodeFull(p []byte) ([]HeaderField, error) {
var hf []HeaderField
saveFunc := d.emit
defer func() { d.emit = saveFunc }()
d.emit = func(f HeaderField) { hf = append(hf, f) }
if _, err := d.Write(p); err != nil {
return nil, err
}
if err := d.Close(); err != nil {
return nil, err
}
return hf, nil
}
func (d *Decoder) Close() error {
if d.saveBuf.Len() > 0 {
d.saveBuf.Reset()
return DecodingError{errors.New("truncated headers")}
}
return nil
}
func (d *Decoder) Write(p []byte) (n int, err error) {
if len(p) == 0 {
// Prevent state machine CPU attacks (making us redo
// work up to the point of finding out we don't have
// enough data)
return
}
// Only copy the data if we have to. Optimistically assume
// that p will contain a complete header block.
if d.saveBuf.Len() == 0 {
d.buf = p
} else {
d.saveBuf.Write(p)
d.buf = d.saveBuf.Bytes()
d.saveBuf.Reset()
}
for len(d.buf) > 0 {
err = d.parseHeaderFieldRepr()
if err == errNeedMore {
// Extra paranoia, making sure saveBuf won't
// get too large. All the varint and string
// reading code earlier should already catch
// overlong things and return ErrStringLength,
// but keep this as a last resort.
const varIntOverhead = 8 // conservative
if d.maxStrLen != 0 && int64(len(d.buf)) > 2*(int64(d.maxStrLen)+varIntOverhead) {
return 0, ErrStringLength
}
d.saveBuf.Write(d.buf)
return len(p), nil
}
if err != nil {
break
}
}
return len(p), err
}
// errNeedMore is an internal sentinel error value that means the
// buffer is truncated and we need to read more data before we can
// continue parsing.
var errNeedMore = errors.New("need more data")
type indexType int
const (
indexedTrue indexType = iota
indexedFalse
indexedNever
)
func (v indexType) indexed() bool { return v == indexedTrue }
func (v indexType) sensitive() bool { return v == indexedNever }
// returns errNeedMore if there isn't enough data available.
// any other error is fatal.
// consumes d.buf iff it returns nil.
// precondition: must be called with len(d.buf) > 0
func (d *Decoder) parseHeaderFieldRepr() error {
b := d.buf[0]
switch {
case b&128 != 0:
// Indexed representation.
// High bit set?
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.1
return d.parseFieldIndexed()
case b&192 == 64:
// 6.2.1 Literal Header Field with Incremental Indexing
// 0b10xxxxxx: top two bits are 10
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.1
return d.parseFieldLiteral(6, indexedTrue)
case b&240 == 0:
// 6.2.2 Literal Header Field without Indexing
// 0b0000xxxx: top four bits are 0000
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.2
return d.parseFieldLiteral(4, indexedFalse)
case b&240 == 16:
// 6.2.3 Literal Header Field never Indexed
// 0b0001xxxx: top four bits are 0001
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.3
return d.parseFieldLiteral(4, indexedNever)
case b&224 == 32:
// 6.3 Dynamic Table Size Update
// Top three bits are '001'.
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.3
return d.parseDynamicTableSizeUpdate()
}
return DecodingError{errors.New("invalid encoding")}
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseFieldIndexed() error {
buf := d.buf
idx, buf, err := readVarInt(7, buf)
if err != nil {
return err
}
hf, ok := d.at(idx)
if !ok {
return DecodingError{InvalidIndexError(idx)}
}
d.buf = buf
return d.callEmit(HeaderField{Name: hf.Name, Value: hf.Value})
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseFieldLiteral(n uint8, it indexType) error {
buf := d.buf
nameIdx, buf, err := readVarInt(n, buf)
if err != nil {
return err
}
var hf HeaderField
wantStr := d.emitEnabled || it.indexed()
if nameIdx > 0 {
ihf, ok := d.at(nameIdx)
if !ok {
return DecodingError{InvalidIndexError(nameIdx)}
}
hf.Name = ihf.Name
} else {
hf.Name, buf, err = d.readString(buf, wantStr)
if err != nil {
return err
}
}
hf.Value, buf, err = d.readString(buf, wantStr)
if err != nil {
return err
}
d.buf = buf
if it.indexed() {
d.dynTab.add(hf)
}
hf.Sensitive = it.sensitive()
return d.callEmit(hf)
}
func (d *Decoder) callEmit(hf HeaderField) error {
if d.maxStrLen != 0 {
if len(hf.Name) > d.maxStrLen || len(hf.Value) > d.maxStrLen {
return ErrStringLength
}
}
if d.emitEnabled {
d.emit(hf)
}
return nil
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseDynamicTableSizeUpdate() error {
buf := d.buf
size, buf, err := readVarInt(5, buf)
if err != nil {
return err
}
if size > uint64(d.dynTab.allowedMaxSize) {
return DecodingError{errors.New("dynamic table size update too large")}
}
d.dynTab.setMaxSize(uint32(size))
d.buf = buf
return nil
}
var errVarintOverflow = DecodingError{errors.New("varint integer overflow")}
// readVarInt reads an unsigned variable length integer off the
// beginning of p. n is the parameter as described in
// http://http2.github.io/http2-spec/compression.html#rfc.section.5.1.
//
// n must always be between 1 and 8.
//
// The returned remain buffer is either a smaller suffix of p, or err != nil.
// The error is errNeedMore if p doesn't contain a complete integer.
func readVarInt(n byte, p []byte) (i uint64, remain []byte, err error) {
if n < 1 || n > 8 {
panic("bad n")
}
if len(p) == 0 {
return 0, p, errNeedMore
}
i = uint64(p[0])
if n < 8 {
i &= (1 << uint64(n)) - 1
}
if i < (1<<uint64(n))-1 {
return i, p[1:], nil
}
origP := p
p = p[1:]
var m uint64
for len(p) > 0 {
b := p[0]
p = p[1:]
i += uint64(b&127) << m
if b&128 == 0 {
return i, p, nil
}
m += 7
if m >= 63 { // TODO: proper overflow check. making this up.
return 0, origP, errVarintOverflow
}
}
return 0, origP, errNeedMore
}
// readString decodes an hpack string from p.
//
// wantStr is whether s will be used. If false, decompression and
// []byte->string garbage are skipped if s will be ignored
// anyway. This does mean that huffman decoding errors for non-indexed
// strings past the MAX_HEADER_LIST_SIZE are ignored, but the server
// is returning an error anyway, and because they're not indexed, the error
// won't affect the decoding state.
func (d *Decoder) readString(p []byte, wantStr bool) (s string, remain []byte, err error) {
if len(p) == 0 {
return "", p, errNeedMore
}
isHuff := p[0]&128 != 0
strLen, p, err := readVarInt(7, p)
if err != nil {
return "", p, err
}
if d.maxStrLen != 0 && strLen > uint64(d.maxStrLen) {
return "", nil, ErrStringLength
}
if uint64(len(p)) < strLen {
return "", p, errNeedMore
}
if !isHuff {
if wantStr {
s = string(p[:strLen])
}
return s, p[strLen:], nil
}
if wantStr {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset() // don't trust others
defer bufPool.Put(buf)
if err := huffmanDecode(buf, d.maxStrLen, p[:strLen]); err != nil {
buf.Reset()
return "", nil, err
}
s = buf.String()
buf.Reset() // be nice to GC
}
return s, p[strLen:], nil
}

212
vendor/golang.org/x/net/http2/hpack/huffman.go generated vendored Normal file
View File

@ -0,0 +1,212 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"bytes"
"errors"
"io"
"sync"
)
var bufPool = sync.Pool{
New: func() interface{} { return new(bytes.Buffer) },
}
// HuffmanDecode decodes the string in v and writes the expanded
// result to w, returning the number of bytes written to w and the
// Write call's return value. At most one Write call is made.
func HuffmanDecode(w io.Writer, v []byte) (int, error) {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset()
defer bufPool.Put(buf)
if err := huffmanDecode(buf, 0, v); err != nil {
return 0, err
}
return w.Write(buf.Bytes())
}
// HuffmanDecodeToString decodes the string in v.
func HuffmanDecodeToString(v []byte) (string, error) {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset()
defer bufPool.Put(buf)
if err := huffmanDecode(buf, 0, v); err != nil {
return "", err
}
return buf.String(), nil
}
// ErrInvalidHuffman is returned for errors found decoding
// Huffman-encoded strings.
var ErrInvalidHuffman = errors.New("hpack: invalid Huffman-encoded data")
// huffmanDecode decodes v to buf.
// If maxLen is greater than 0, attempts to write more to buf than
// maxLen bytes will return ErrStringLength.
func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
n := rootHuffmanNode
// cur is the bit buffer that has not been fed into n.
// cbits is the number of low order bits in cur that are valid.
// sbits is the number of bits of the symbol prefix being decoded.
cur, cbits, sbits := uint(0), uint8(0), uint8(0)
for _, b := range v {
cur = cur<<8 | uint(b)
cbits += 8
sbits += 8
for cbits >= 8 {
idx := byte(cur >> (cbits - 8))
n = n.children[idx]
if n == nil {
return ErrInvalidHuffman
}
if n.children == nil {
if maxLen != 0 && buf.Len() == maxLen {
return ErrStringLength
}
buf.WriteByte(n.sym)
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
} else {
cbits -= 8
}
}
}
for cbits > 0 {
n = n.children[byte(cur<<(8-cbits))]
if n == nil {
return ErrInvalidHuffman
}
if n.children != nil || n.codeLen > cbits {
break
}
if maxLen != 0 && buf.Len() == maxLen {
return ErrStringLength
}
buf.WriteByte(n.sym)
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
}
if sbits > 7 {
// Either there was an incomplete symbol, or overlong padding.
// Both are decoding errors per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
if mask := uint(1<<cbits - 1); cur&mask != mask {
// Trailing bits must be a prefix of EOS per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
return nil
}
type node struct {
// children is non-nil for internal nodes
children []*node
// The following are only valid if children is nil:
codeLen uint8 // number of bits that led to the output of sym
sym byte // output symbol
}
func newInternalNode() *node {
return &node{children: make([]*node, 256)}
}
var rootHuffmanNode = newInternalNode()
func init() {
if len(huffmanCodes) != 256 {
panic("unexpected size")
}
for i, code := range huffmanCodes {
addDecoderNode(byte(i), code, huffmanCodeLen[i])
}
}
func addDecoderNode(sym byte, code uint32, codeLen uint8) {
cur := rootHuffmanNode
for codeLen > 8 {
codeLen -= 8
i := uint8(code >> codeLen)
if cur.children[i] == nil {
cur.children[i] = newInternalNode()
}
cur = cur.children[i]
}
shift := 8 - codeLen
start, end := int(uint8(code<<shift)), int(1<<shift)
for i := start; i < start+end; i++ {
cur.children[i] = &node{sym: sym, codeLen: codeLen}
}
}
// AppendHuffmanString appends s, as encoded in Huffman codes, to dst
// and returns the extended buffer.
func AppendHuffmanString(dst []byte, s string) []byte {
rembits := uint8(8)
for i := 0; i < len(s); i++ {
if rembits == 8 {
dst = append(dst, 0)
}
dst, rembits = appendByteToHuffmanCode(dst, rembits, s[i])
}
if rembits < 8 {
// special EOS symbol
code := uint32(0x3fffffff)
nbits := uint8(30)
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
}
return dst
}
// HuffmanEncodeLength returns the number of bytes required to encode
// s in Huffman codes. The result is round up to byte boundary.
func HuffmanEncodeLength(s string) uint64 {
n := uint64(0)
for i := 0; i < len(s); i++ {
n += uint64(huffmanCodeLen[s[i]])
}
return (n + 7) / 8
}
// appendByteToHuffmanCode appends Huffman code for c to dst and
// returns the extended buffer and the remaining bits in the last
// element. The appending is not byte aligned and the remaining bits
// in the last element of dst is given in rembits.
func appendByteToHuffmanCode(dst []byte, rembits uint8, c byte) ([]byte, uint8) {
code := huffmanCodes[c]
nbits := huffmanCodeLen[c]
for {
if rembits > nbits {
t := uint8(code << (rembits - nbits))
dst[len(dst)-1] |= t
rembits -= nbits
break
}
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
nbits -= rembits
rembits = 8
if nbits == 0 {
break
}
dst = append(dst, 0)
}
return dst, rembits
}

478
vendor/golang.org/x/net/http2/hpack/tables.go generated vendored Normal file
View File

@ -0,0 +1,478 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"fmt"
)
// headerFieldTable implements a list of HeaderFields.
// This is used to implement the static and dynamic tables.
type headerFieldTable struct {
// For static tables, entries are never evicted.
//
// For dynamic tables, entries are evicted from ents[0] and added to the end.
// Each entry has a unique id that starts at one and increments for each
// entry that is added. This unique id is stable across evictions, meaning
// it can be used as a pointer to a specific entry. As in hpack, unique ids
// are 1-based. The unique id for ents[k] is k + evictCount + 1.
//
// Zero is not a valid unique id.
//
// evictCount should not overflow in any remotely practical situation. In
// practice, we will have one dynamic table per HTTP/2 connection. If we
// assume a very powerful server that handles 1M QPS per connection and each
// request adds (then evicts) 100 entries from the table, it would still take
// 2M years for evictCount to overflow.
ents []HeaderField
evictCount uint64
// byName maps a HeaderField name to the unique id of the newest entry with
// the same name. See above for a definition of "unique id".
byName map[string]uint64
// byNameValue maps a HeaderField name/value pair to the unique id of the newest
// entry with the same name and value. See above for a definition of "unique id".
byNameValue map[pairNameValue]uint64
}
type pairNameValue struct {
name, value string
}
func (t *headerFieldTable) init() {
t.byName = make(map[string]uint64)
t.byNameValue = make(map[pairNameValue]uint64)
}
// len reports the number of entries in the table.
func (t *headerFieldTable) len() int {
return len(t.ents)
}
// addEntry adds a new entry.
func (t *headerFieldTable) addEntry(f HeaderField) {
id := uint64(t.len()) + t.evictCount + 1
t.byName[f.Name] = id
t.byNameValue[pairNameValue{f.Name, f.Value}] = id
t.ents = append(t.ents, f)
}
// evictOldest evicts the n oldest entries in the table.
func (t *headerFieldTable) evictOldest(n int) {
if n > t.len() {
panic(fmt.Sprintf("evictOldest(%v) on table with %v entries", n, t.len()))
}
for k := 0; k < n; k++ {
f := t.ents[k]
id := t.evictCount + uint64(k) + 1
if t.byName[f.Name] == id {
t.byName[f.Name] = 0
}
if p := (pairNameValue{f.Name, f.Value}); t.byNameValue[p] == id {
t.byNameValue[p] = 0
}
}
copy(t.ents, t.ents[n:])
for k := t.len() - n; k < t.len(); k++ {
t.ents[k] = HeaderField{} // so strings can be garbage collected
}
t.ents = t.ents[:t.len()-n]
if t.evictCount+uint64(n) < t.evictCount {
panic("evictCount overflow")
}
t.evictCount += uint64(n)
}
// search finds f in the table. If there is no match, i is 0.
// If both name and value match, i is the matched index and nameValueMatch
// becomes true. If only name matches, i points to that index and
// nameValueMatch becomes false.
//
// The returned index is a 1-based HPACK index. For dynamic tables, HPACK says
// that index 1 should be the newest entry, but t.ents[0] is the oldest entry,
// meaning t.ents is reversed for dynamic tables. Hence, when t is a dynamic
// table, the return value i actually refers to the entry t.ents[t.len()-i].
//
// All tables are assumed to be a dynamic tables except for the global
// staticTable pointer.
//
// See Section 2.3.3.
func (t *headerFieldTable) search(f HeaderField) (i uint64, nameValueMatch bool) {
if !f.Sensitive {
if id := t.byNameValue[pairNameValue{f.Name, f.Value}]; id != 0 {
return t.idToIndex(id), true
}
}
if id := t.byName[f.Name]; id != 0 {
return t.idToIndex(id), false
}
return 0, false
}
// idToIndex converts a unique id to an HPACK index.
// See Section 2.3.3.
func (t *headerFieldTable) idToIndex(id uint64) uint64 {
if id <= t.evictCount {
panic(fmt.Sprintf("id (%v) <= evictCount (%v)", id, t.evictCount))
}
k := id - t.evictCount - 1 // convert id to an index t.ents[k]
if t != staticTable {
return uint64(t.len()) - k // dynamic table
}
return k + 1
}
func pair(name, value string) HeaderField {
return HeaderField{Name: name, Value: value}
}
// http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-07#appendix-B
var staticTable = newStaticTable()
func newStaticTable() *headerFieldTable {
t := &headerFieldTable{}
t.init()
t.addEntry(pair(":authority", ""))
t.addEntry(pair(":method", "GET"))
t.addEntry(pair(":method", "POST"))
t.addEntry(pair(":path", "/"))
t.addEntry(pair(":path", "/index.html"))
t.addEntry(pair(":scheme", "http"))
t.addEntry(pair(":scheme", "https"))
t.addEntry(pair(":status", "200"))
t.addEntry(pair(":status", "204"))
t.addEntry(pair(":status", "206"))
t.addEntry(pair(":status", "304"))
t.addEntry(pair(":status", "400"))
t.addEntry(pair(":status", "404"))
t.addEntry(pair(":status", "500"))
t.addEntry(pair("accept-charset", ""))
t.addEntry(pair("accept-encoding", "gzip, deflate"))
t.addEntry(pair("accept-language", ""))
t.addEntry(pair("accept-ranges", ""))
t.addEntry(pair("accept", ""))
t.addEntry(pair("access-control-allow-origin", ""))
t.addEntry(pair("age", ""))
t.addEntry(pair("allow", ""))
t.addEntry(pair("authorization", ""))
t.addEntry(pair("cache-control", ""))
t.addEntry(pair("content-disposition", ""))
t.addEntry(pair("content-encoding", ""))
t.addEntry(pair("content-language", ""))
t.addEntry(pair("content-length", ""))
t.addEntry(pair("content-location", ""))
t.addEntry(pair("content-range", ""))
t.addEntry(pair("content-type", ""))
t.addEntry(pair("cookie", ""))
t.addEntry(pair("date", ""))
t.addEntry(pair("etag", ""))
t.addEntry(pair("expect", ""))
t.addEntry(pair("expires", ""))
t.addEntry(pair("from", ""))
t.addEntry(pair("host", ""))
t.addEntry(pair("if-match", ""))
t.addEntry(pair("if-modified-since", ""))
t.addEntry(pair("if-none-match", ""))
t.addEntry(pair("if-range", ""))
t.addEntry(pair("if-unmodified-since", ""))
t.addEntry(pair("last-modified", ""))
t.addEntry(pair("link", ""))
t.addEntry(pair("location", ""))
t.addEntry(pair("max-forwards", ""))
t.addEntry(pair("proxy-authenticate", ""))
t.addEntry(pair("proxy-authorization", ""))
t.addEntry(pair("range", ""))
t.addEntry(pair("referer", ""))
t.addEntry(pair("refresh", ""))
t.addEntry(pair("retry-after", ""))
t.addEntry(pair("server", ""))
t.addEntry(pair("set-cookie", ""))
t.addEntry(pair("strict-transport-security", ""))
t.addEntry(pair("transfer-encoding", ""))
t.addEntry(pair("user-agent", ""))
t.addEntry(pair("vary", ""))
t.addEntry(pair("via", ""))
t.addEntry(pair("www-authenticate", ""))
return t
}
var huffmanCodes = [256]uint32{
0x1ff8,
0x7fffd8,
0xfffffe2,
0xfffffe3,
0xfffffe4,
0xfffffe5,
0xfffffe6,
0xfffffe7,
0xfffffe8,
0xffffea,
0x3ffffffc,
0xfffffe9,
0xfffffea,
0x3ffffffd,
0xfffffeb,
0xfffffec,
0xfffffed,
0xfffffee,
0xfffffef,
0xffffff0,
0xffffff1,
0xffffff2,
0x3ffffffe,
0xffffff3,
0xffffff4,
0xffffff5,
0xffffff6,
0xffffff7,
0xffffff8,
0xffffff9,
0xffffffa,
0xffffffb,
0x14,
0x3f8,
0x3f9,
0xffa,
0x1ff9,
0x15,
0xf8,
0x7fa,
0x3fa,
0x3fb,
0xf9,
0x7fb,
0xfa,
0x16,
0x17,
0x18,
0x0,
0x1,
0x2,
0x19,
0x1a,
0x1b,
0x1c,
0x1d,
0x1e,
0x1f,
0x5c,
0xfb,
0x7ffc,
0x20,
0xffb,
0x3fc,
0x1ffa,
0x21,
0x5d,
0x5e,
0x5f,
0x60,
0x61,
0x62,
0x63,
0x64,
0x65,
0x66,
0x67,
0x68,
0x69,
0x6a,
0x6b,
0x6c,
0x6d,
0x6e,
0x6f,
0x70,
0x71,
0x72,
0xfc,
0x73,
0xfd,
0x1ffb,
0x7fff0,
0x1ffc,
0x3ffc,
0x22,
0x7ffd,
0x3,
0x23,
0x4,
0x24,
0x5,
0x25,
0x26,
0x27,
0x6,
0x74,
0x75,
0x28,
0x29,
0x2a,
0x7,
0x2b,
0x76,
0x2c,
0x8,
0x9,
0x2d,
0x77,
0x78,
0x79,
0x7a,
0x7b,
0x7ffe,
0x7fc,
0x3ffd,
0x1ffd,
0xffffffc,
0xfffe6,
0x3fffd2,
0xfffe7,
0xfffe8,
0x3fffd3,
0x3fffd4,
0x3fffd5,
0x7fffd9,
0x3fffd6,
0x7fffda,
0x7fffdb,
0x7fffdc,
0x7fffdd,
0x7fffde,
0xffffeb,
0x7fffdf,
0xffffec,
0xffffed,
0x3fffd7,
0x7fffe0,
0xffffee,
0x7fffe1,
0x7fffe2,
0x7fffe3,
0x7fffe4,
0x1fffdc,
0x3fffd8,
0x7fffe5,
0x3fffd9,
0x7fffe6,
0x7fffe7,
0xffffef,
0x3fffda,
0x1fffdd,
0xfffe9,
0x3fffdb,
0x3fffdc,
0x7fffe8,
0x7fffe9,
0x1fffde,
0x7fffea,
0x3fffdd,
0x3fffde,
0xfffff0,
0x1fffdf,
0x3fffdf,
0x7fffeb,
0x7fffec,
0x1fffe0,
0x1fffe1,
0x3fffe0,
0x1fffe2,
0x7fffed,
0x3fffe1,
0x7fffee,
0x7fffef,
0xfffea,
0x3fffe2,
0x3fffe3,
0x3fffe4,
0x7ffff0,
0x3fffe5,
0x3fffe6,
0x7ffff1,
0x3ffffe0,
0x3ffffe1,
0xfffeb,
0x7fff1,
0x3fffe7,
0x7ffff2,
0x3fffe8,
0x1ffffec,
0x3ffffe2,
0x3ffffe3,
0x3ffffe4,
0x7ffffde,
0x7ffffdf,
0x3ffffe5,
0xfffff1,
0x1ffffed,
0x7fff2,
0x1fffe3,
0x3ffffe6,
0x7ffffe0,
0x7ffffe1,
0x3ffffe7,
0x7ffffe2,
0xfffff2,
0x1fffe4,
0x1fffe5,
0x3ffffe8,
0x3ffffe9,
0xffffffd,
0x7ffffe3,
0x7ffffe4,
0x7ffffe5,
0xfffec,
0xfffff3,
0xfffed,
0x1fffe6,
0x3fffe9,
0x1fffe7,
0x1fffe8,
0x7ffff3,
0x3fffea,
0x3fffeb,
0x1ffffee,
0x1ffffef,
0xfffff4,
0xfffff5,
0x3ffffea,
0x7ffff4,
0x3ffffeb,
0x7ffffe6,
0x3ffffec,
0x3ffffed,
0x7ffffe7,
0x7ffffe8,
0x7ffffe9,
0x7ffffea,
0x7ffffeb,
0xffffffe,
0x7ffffec,
0x7ffffed,
0x7ffffee,
0x7ffffef,
0x7fffff0,
0x3ffffee,
}
var huffmanCodeLen = [256]uint8{
13, 23, 28, 28, 28, 28, 28, 28, 28, 24, 30, 28, 28, 30, 28, 28,
28, 28, 28, 28, 28, 28, 30, 28, 28, 28, 28, 28, 28, 28, 28, 28,
6, 10, 10, 12, 13, 6, 8, 11, 10, 10, 8, 11, 8, 6, 6, 6,
5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 15, 6, 12, 10,
13, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 13, 19, 13, 14, 6,
15, 5, 6, 5, 6, 5, 6, 6, 6, 5, 7, 7, 6, 6, 6, 5,
6, 7, 6, 5, 5, 6, 7, 7, 7, 7, 7, 15, 11, 14, 13, 28,
20, 22, 20, 20, 22, 22, 22, 23, 22, 23, 23, 23, 23, 23, 24, 23,
24, 24, 22, 23, 24, 23, 23, 23, 23, 21, 22, 23, 22, 23, 23, 24,
22, 21, 20, 22, 22, 23, 23, 21, 23, 22, 22, 24, 21, 22, 23, 23,
21, 21, 22, 21, 23, 22, 23, 23, 20, 22, 22, 22, 23, 22, 22, 23,
26, 26, 20, 19, 22, 23, 22, 25, 26, 26, 26, 27, 27, 26, 24, 25,
19, 21, 26, 27, 27, 26, 27, 24, 21, 21, 26, 26, 28, 27, 27, 27,
20, 24, 20, 21, 22, 21, 21, 23, 22, 22, 25, 25, 24, 24, 26, 23,
26, 27, 26, 26, 27, 27, 27, 27, 27, 28, 27, 27, 27, 27, 27, 26,
}

387
vendor/golang.org/x/net/http2/http2.go generated vendored Normal file
View File

@ -0,0 +1,387 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package http2 implements the HTTP/2 protocol.
//
// This package is low-level and intended to be used directly by very
// few people. Most users will use it indirectly through the automatic
// use by the net/http package (from Go 1.6 and later).
// For use in earlier Go versions see ConfigureServer. (Transport support
// requires Go 1.6 or later)
//
// See https://http2.github.io/ for more information on HTTP/2.
//
// See https://http2.golang.org/ for a test server running this code.
//
package http2 // import "golang.org/x/net/http2"
import (
"bufio"
"crypto/tls"
"errors"
"fmt"
"io"
"net/http"
"os"
"sort"
"strconv"
"strings"
"sync"
"golang.org/x/net/lex/httplex"
)
var (
VerboseLogs bool
logFrameWrites bool
logFrameReads bool
inTests bool
)
func init() {
e := os.Getenv("GODEBUG")
if strings.Contains(e, "http2debug=1") {
VerboseLogs = true
}
if strings.Contains(e, "http2debug=2") {
VerboseLogs = true
logFrameWrites = true
logFrameReads = true
}
}
const (
// ClientPreface is the string that must be sent by new
// connections from clients.
ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
// SETTINGS_MAX_FRAME_SIZE default
// http://http2.github.io/http2-spec/#rfc.section.6.5.2
initialMaxFrameSize = 16384
// NextProtoTLS is the NPN/ALPN protocol negotiated during
// HTTP/2's TLS setup.
NextProtoTLS = "h2"
// http://http2.github.io/http2-spec/#SettingValues
initialHeaderTableSize = 4096
initialWindowSize = 65535 // 6.9.2 Initial Flow Control Window Size
defaultMaxReadFrameSize = 1 << 20
)
var (
clientPreface = []byte(ClientPreface)
)
type streamState int
// HTTP/2 stream states.
//
// See http://tools.ietf.org/html/rfc7540#section-5.1.
//
// For simplicity, the server code merges "reserved (local)" into
// "half-closed (remote)". This is one less state transition to track.
// The only downside is that we send PUSH_PROMISEs slightly less
// liberally than allowable. More discussion here:
// https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0599.html
//
// "reserved (remote)" is omitted since the client code does not
// support server push.
const (
stateIdle streamState = iota
stateOpen
stateHalfClosedLocal
stateHalfClosedRemote
stateClosed
)
var stateName = [...]string{
stateIdle: "Idle",
stateOpen: "Open",
stateHalfClosedLocal: "HalfClosedLocal",
stateHalfClosedRemote: "HalfClosedRemote",
stateClosed: "Closed",
}
func (st streamState) String() string {
return stateName[st]
}
// Setting is a setting parameter: which setting it is, and its value.
type Setting struct {
// ID is which setting is being set.
// See http://http2.github.io/http2-spec/#SettingValues
ID SettingID
// Val is the value.
Val uint32
}
func (s Setting) String() string {
return fmt.Sprintf("[%v = %d]", s.ID, s.Val)
}
// Valid reports whether the setting is valid.
func (s Setting) Valid() error {
// Limits and error codes from 6.5.2 Defined SETTINGS Parameters
switch s.ID {
case SettingEnablePush:
if s.Val != 1 && s.Val != 0 {
return ConnectionError(ErrCodeProtocol)
}
case SettingInitialWindowSize:
if s.Val > 1<<31-1 {
return ConnectionError(ErrCodeFlowControl)
}
case SettingMaxFrameSize:
if s.Val < 16384 || s.Val > 1<<24-1 {
return ConnectionError(ErrCodeProtocol)
}
}
return nil
}
// A SettingID is an HTTP/2 setting as defined in
// http://http2.github.io/http2-spec/#iana-settings
type SettingID uint16
const (
SettingHeaderTableSize SettingID = 0x1
SettingEnablePush SettingID = 0x2
SettingMaxConcurrentStreams SettingID = 0x3
SettingInitialWindowSize SettingID = 0x4
SettingMaxFrameSize SettingID = 0x5
SettingMaxHeaderListSize SettingID = 0x6
)
var settingName = map[SettingID]string{
SettingHeaderTableSize: "HEADER_TABLE_SIZE",
SettingEnablePush: "ENABLE_PUSH",
SettingMaxConcurrentStreams: "MAX_CONCURRENT_STREAMS",
SettingInitialWindowSize: "INITIAL_WINDOW_SIZE",
SettingMaxFrameSize: "MAX_FRAME_SIZE",
SettingMaxHeaderListSize: "MAX_HEADER_LIST_SIZE",
}
func (s SettingID) String() string {
if v, ok := settingName[s]; ok {
return v
}
return fmt.Sprintf("UNKNOWN_SETTING_%d", uint16(s))
}
var (
errInvalidHeaderFieldName = errors.New("http2: invalid header field name")
errInvalidHeaderFieldValue = errors.New("http2: invalid header field value")
)
// validWireHeaderFieldName reports whether v is a valid header field
// name (key). See httplex.ValidHeaderName for the base rules.
//
// Further, http2 says:
// "Just as in HTTP/1.x, header field names are strings of ASCII
// characters that are compared in a case-insensitive
// fashion. However, header field names MUST be converted to
// lowercase prior to their encoding in HTTP/2. "
func validWireHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if !httplex.IsTokenRune(r) {
return false
}
if 'A' <= r && r <= 'Z' {
return false
}
}
return true
}
var httpCodeStringCommon = map[int]string{} // n -> strconv.Itoa(n)
func init() {
for i := 100; i <= 999; i++ {
if v := http.StatusText(i); v != "" {
httpCodeStringCommon[i] = strconv.Itoa(i)
}
}
}
func httpCodeString(code int) string {
if s, ok := httpCodeStringCommon[code]; ok {
return s
}
return strconv.Itoa(code)
}
// from pkg io
type stringWriter interface {
WriteString(s string) (n int, err error)
}
// A gate lets two goroutines coordinate their activities.
type gate chan struct{}
func (g gate) Done() { g <- struct{}{} }
func (g gate) Wait() { <-g }
// A closeWaiter is like a sync.WaitGroup but only goes 1 to 0 (open to closed).
type closeWaiter chan struct{}
// Init makes a closeWaiter usable.
// It exists because so a closeWaiter value can be placed inside a
// larger struct and have the Mutex and Cond's memory in the same
// allocation.
func (cw *closeWaiter) Init() {
*cw = make(chan struct{})
}
// Close marks the closeWaiter as closed and unblocks any waiters.
func (cw closeWaiter) Close() {
close(cw)
}
// Wait waits for the closeWaiter to become closed.
func (cw closeWaiter) Wait() {
<-cw
}
// bufferedWriter is a buffered writer that writes to w.
// Its buffered writer is lazily allocated as needed, to minimize
// idle memory usage with many connections.
type bufferedWriter struct {
w io.Writer // immutable
bw *bufio.Writer // non-nil when data is buffered
}
func newBufferedWriter(w io.Writer) *bufferedWriter {
return &bufferedWriter{w: w}
}
// bufWriterPoolBufferSize is the size of bufio.Writer's
// buffers created using bufWriterPool.
//
// TODO: pick a less arbitrary value? this is a bit under
// (3 x typical 1500 byte MTU) at least. Other than that,
// not much thought went into it.
const bufWriterPoolBufferSize = 4 << 10
var bufWriterPool = sync.Pool{
New: func() interface{} {
return bufio.NewWriterSize(nil, bufWriterPoolBufferSize)
},
}
func (w *bufferedWriter) Available() int {
if w.bw == nil {
return bufWriterPoolBufferSize
}
return w.bw.Available()
}
func (w *bufferedWriter) Write(p []byte) (n int, err error) {
if w.bw == nil {
bw := bufWriterPool.Get().(*bufio.Writer)
bw.Reset(w.w)
w.bw = bw
}
return w.bw.Write(p)
}
func (w *bufferedWriter) Flush() error {
bw := w.bw
if bw == nil {
return nil
}
err := bw.Flush()
bw.Reset(nil)
bufWriterPool.Put(bw)
w.bw = nil
return err
}
func mustUint31(v int32) uint32 {
if v < 0 || v > 2147483647 {
panic("out of range")
}
return uint32(v)
}
// bodyAllowedForStatus reports whether a given response status code
// permits a body. See RFC 2616, section 4.4.
func bodyAllowedForStatus(status int) bool {
switch {
case status >= 100 && status <= 199:
return false
case status == 204:
return false
case status == 304:
return false
}
return true
}
type httpError struct {
msg string
timeout bool
}
func (e *httpError) Error() string { return e.msg }
func (e *httpError) Timeout() bool { return e.timeout }
func (e *httpError) Temporary() bool { return true }
var errTimeout error = &httpError{msg: "http2: timeout awaiting response headers", timeout: true}
type connectionStater interface {
ConnectionState() tls.ConnectionState
}
var sorterPool = sync.Pool{New: func() interface{} { return new(sorter) }}
type sorter struct {
v []string // owned by sorter
}
func (s *sorter) Len() int { return len(s.v) }
func (s *sorter) Swap(i, j int) { s.v[i], s.v[j] = s.v[j], s.v[i] }
func (s *sorter) Less(i, j int) bool { return s.v[i] < s.v[j] }
// Keys returns the sorted keys of h.
//
// The returned slice is only valid until s used again or returned to
// its pool.
func (s *sorter) Keys(h http.Header) []string {
keys := s.v[:0]
for k := range h {
keys = append(keys, k)
}
s.v = keys
sort.Sort(s)
return keys
}
func (s *sorter) SortStrings(ss []string) {
// Our sorter works on s.v, which sorter owns, so
// stash it away while we sort the user's buffer.
save := s.v
s.v = ss
sort.Sort(s)
s.v = save
}
// validPseudoPath reports whether v is a valid :path pseudo-header
// value. It must be either:
//
// *) a non-empty string starting with '/', but not with with "//",
// *) the string '*', for OPTIONS requests.
//
// For now this is only used a quick check for deciding when to clean
// up Opaque URLs before sending requests from the Transport.
// See golang.org/issue/16847
func validPseudoPath(v string) bool {
return (len(v) > 0 && v[0] == '/' && (len(v) == 1 || v[1] != '/')) || v == "*"
}

46
vendor/golang.org/x/net/http2/not_go16.go generated vendored Normal file
View File

@ -0,0 +1,46 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.6
package http2
import (
"crypto/tls"
"net/http"
"time"
)
func configureTransport(t1 *http.Transport) (*Transport, error) {
return nil, errTransportVersion
}
func transportExpectContinueTimeout(t1 *http.Transport) time.Duration {
return 0
}
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
func isBadCipher(cipher uint16) bool {
switch cipher {
case tls.TLS_RSA_WITH_RC4_128_SHA,
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
return true
default:
return false
}
}

87
vendor/golang.org/x/net/http2/not_go17.go generated vendored Normal file
View File

@ -0,0 +1,87 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.7
package http2
import (
"crypto/tls"
"net"
"net/http"
"time"
)
type contextContext interface {
Done() <-chan struct{}
Err() error
}
type fakeContext struct{}
func (fakeContext) Done() <-chan struct{} { return nil }
func (fakeContext) Err() error { panic("should not be called") }
func reqContext(r *http.Request) fakeContext {
return fakeContext{}
}
func setResponseUncompressed(res *http.Response) {
// Nothing.
}
type clientTrace struct{}
func requestTrace(*http.Request) *clientTrace { return nil }
func traceGotConn(*http.Request, *ClientConn) {}
func traceFirstResponseByte(*clientTrace) {}
func traceWroteHeaders(*clientTrace) {}
func traceWroteRequest(*clientTrace, error) {}
func traceGot100Continue(trace *clientTrace) {}
func traceWait100Continue(trace *clientTrace) {}
func nop() {}
func serverConnBaseContext(c net.Conn, opts *ServeConnOpts) (ctx contextContext, cancel func()) {
return nil, nop
}
func contextWithCancel(ctx contextContext) (_ contextContext, cancel func()) {
return ctx, nop
}
func requestWithContext(req *http.Request, ctx contextContext) *http.Request {
return req
}
// temporary copy of Go 1.6's private tls.Config.clone:
func cloneTLSConfig(c *tls.Config) *tls.Config {
return &tls.Config{
Rand: c.Rand,
Time: c.Time,
Certificates: c.Certificates,
NameToCertificate: c.NameToCertificate,
GetCertificate: c.GetCertificate,
RootCAs: c.RootCAs,
NextProtos: c.NextProtos,
ServerName: c.ServerName,
ClientAuth: c.ClientAuth,
ClientCAs: c.ClientCAs,
InsecureSkipVerify: c.InsecureSkipVerify,
CipherSuites: c.CipherSuites,
PreferServerCipherSuites: c.PreferServerCipherSuites,
SessionTicketsDisabled: c.SessionTicketsDisabled,
SessionTicketKey: c.SessionTicketKey,
ClientSessionCache: c.ClientSessionCache,
MinVersion: c.MinVersion,
MaxVersion: c.MaxVersion,
CurvePreferences: c.CurvePreferences,
}
}
func (cc *ClientConn) Ping(ctx contextContext) error {
return cc.ping(ctx)
}
func (t *Transport) idleConnTimeout() time.Duration { return 0 }

27
vendor/golang.org/x/net/http2/not_go18.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.8
package http2
import (
"io"
"net/http"
)
func configureServer18(h1 *http.Server, h2 *Server) error {
// No IdleTimeout to sync prior to Go 1.8.
return nil
}
func shouldLogPanic(panicValue interface{}) bool {
return panicValue != nil
}
func reqGetBody(req *http.Request) func() (io.ReadCloser, error) {
return nil
}
func reqBodyIsNoBody(io.ReadCloser) bool { return false }

153
vendor/golang.org/x/net/http2/pipe.go generated vendored Normal file
View File

@ -0,0 +1,153 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"io"
"sync"
)
// pipe is a goroutine-safe io.Reader/io.Writer pair. It's like
// io.Pipe except there are no PipeReader/PipeWriter halves, and the
// underlying buffer is an interface. (io.Pipe is always unbuffered)
type pipe struct {
mu sync.Mutex
c sync.Cond // c.L lazily initialized to &p.mu
b pipeBuffer
err error // read error once empty. non-nil means closed.
breakErr error // immediate read error (caller doesn't see rest of b)
donec chan struct{} // closed on error
readFn func() // optional code to run in Read before error
}
type pipeBuffer interface {
Len() int
io.Writer
io.Reader
}
func (p *pipe) Len() int {
p.mu.Lock()
defer p.mu.Unlock()
return p.b.Len()
}
// Read waits until data is available and copies bytes
// from the buffer into p.
func (p *pipe) Read(d []byte) (n int, err error) {
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
for {
if p.breakErr != nil {
return 0, p.breakErr
}
if p.b.Len() > 0 {
return p.b.Read(d)
}
if p.err != nil {
if p.readFn != nil {
p.readFn() // e.g. copy trailers
p.readFn = nil // not sticky like p.err
}
return 0, p.err
}
p.c.Wait()
}
}
var errClosedPipeWrite = errors.New("write on closed buffer")
// Write copies bytes from p into the buffer and wakes a reader.
// It is an error to write more data than the buffer can hold.
func (p *pipe) Write(d []byte) (n int, err error) {
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
defer p.c.Signal()
if p.err != nil {
return 0, errClosedPipeWrite
}
return p.b.Write(d)
}
// CloseWithError causes the next Read (waking up a current blocked
// Read if needed) to return the provided err after all data has been
// read.
//
// The error must be non-nil.
func (p *pipe) CloseWithError(err error) { p.closeWithError(&p.err, err, nil) }
// BreakWithError causes the next Read (waking up a current blocked
// Read if needed) to return the provided err immediately, without
// waiting for unread data.
func (p *pipe) BreakWithError(err error) { p.closeWithError(&p.breakErr, err, nil) }
// closeWithErrorAndCode is like CloseWithError but also sets some code to run
// in the caller's goroutine before returning the error.
func (p *pipe) closeWithErrorAndCode(err error, fn func()) { p.closeWithError(&p.err, err, fn) }
func (p *pipe) closeWithError(dst *error, err error, fn func()) {
if err == nil {
panic("err must be non-nil")
}
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
defer p.c.Signal()
if *dst != nil {
// Already been done.
return
}
p.readFn = fn
*dst = err
p.closeDoneLocked()
}
// requires p.mu be held.
func (p *pipe) closeDoneLocked() {
if p.donec == nil {
return
}
// Close if unclosed. This isn't racy since we always
// hold p.mu while closing.
select {
case <-p.donec:
default:
close(p.donec)
}
}
// Err returns the error (if any) first set by BreakWithError or CloseWithError.
func (p *pipe) Err() error {
p.mu.Lock()
defer p.mu.Unlock()
if p.breakErr != nil {
return p.breakErr
}
return p.err
}
// Done returns a channel which is closed if and when this pipe is closed
// with CloseWithError.
func (p *pipe) Done() <-chan struct{} {
p.mu.Lock()
defer p.mu.Unlock()
if p.donec == nil {
p.donec = make(chan struct{})
if p.err != nil || p.breakErr != nil {
// Already hit an error.
p.closeDoneLocked()
}
}
return p.donec
}

2758
vendor/golang.org/x/net/http2/server.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

2128
vendor/golang.org/x/net/http2/transport.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

370
vendor/golang.org/x/net/http2/write.go generated vendored Normal file
View File

@ -0,0 +1,370 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"bytes"
"fmt"
"log"
"net/http"
"net/url"
"time"
"golang.org/x/net/http2/hpack"
"golang.org/x/net/lex/httplex"
)
// writeFramer is implemented by any type that is used to write frames.
type writeFramer interface {
writeFrame(writeContext) error
// staysWithinBuffer reports whether this writer promises that
// it will only write less than or equal to size bytes, and it
// won't Flush the write context.
staysWithinBuffer(size int) bool
}
// writeContext is the interface needed by the various frame writer
// types below. All the writeFrame methods below are scheduled via the
// frame writing scheduler (see writeScheduler in writesched.go).
//
// This interface is implemented by *serverConn.
//
// TODO: decide whether to a) use this in the client code (which didn't
// end up using this yet, because it has a simpler design, not
// currently implementing priorities), or b) delete this and
// make the server code a bit more concrete.
type writeContext interface {
Framer() *Framer
Flush() error
CloseConn() error
// HeaderEncoder returns an HPACK encoder that writes to the
// returned buffer.
HeaderEncoder() (*hpack.Encoder, *bytes.Buffer)
}
// writeEndsStream reports whether w writes a frame that will transition
// the stream to a half-closed local state. This returns false for RST_STREAM,
// which closes the entire stream (not just the local half).
func writeEndsStream(w writeFramer) bool {
switch v := w.(type) {
case *writeData:
return v.endStream
case *writeResHeaders:
return v.endStream
case nil:
// This can only happen if the caller reuses w after it's
// been intentionally nil'ed out to prevent use. Keep this
// here to catch future refactoring breaking it.
panic("writeEndsStream called on nil writeFramer")
}
return false
}
type flushFrameWriter struct{}
func (flushFrameWriter) writeFrame(ctx writeContext) error {
return ctx.Flush()
}
func (flushFrameWriter) staysWithinBuffer(max int) bool { return false }
type writeSettings []Setting
func (s writeSettings) staysWithinBuffer(max int) bool {
const settingSize = 6 // uint16 + uint32
return frameHeaderLen+settingSize*len(s) <= max
}
func (s writeSettings) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettings([]Setting(s)...)
}
type writeGoAway struct {
maxStreamID uint32
code ErrCode
}
func (p *writeGoAway) writeFrame(ctx writeContext) error {
err := ctx.Framer().WriteGoAway(p.maxStreamID, p.code, nil)
if p.code != 0 {
ctx.Flush() // ignore error: we're hanging up on them anyway
time.Sleep(50 * time.Millisecond)
ctx.CloseConn()
}
return err
}
func (*writeGoAway) staysWithinBuffer(max int) bool { return false } // flushes
type writeData struct {
streamID uint32
p []byte
endStream bool
}
func (w *writeData) String() string {
return fmt.Sprintf("writeData(stream=%d, p=%d, endStream=%v)", w.streamID, len(w.p), w.endStream)
}
func (w *writeData) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteData(w.streamID, w.endStream, w.p)
}
func (w *writeData) staysWithinBuffer(max int) bool {
return frameHeaderLen+len(w.p) <= max
}
// handlerPanicRST is the message sent from handler goroutines when
// the handler panics.
type handlerPanicRST struct {
StreamID uint32
}
func (hp handlerPanicRST) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(hp.StreamID, ErrCodeInternal)
}
func (hp handlerPanicRST) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (se StreamError) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(se.StreamID, se.Code)
}
func (se StreamError) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
type writePingAck struct{ pf *PingFrame }
func (w writePingAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WritePing(true, w.pf.Data)
}
func (w writePingAck) staysWithinBuffer(max int) bool { return frameHeaderLen+len(w.pf.Data) <= max }
type writeSettingsAck struct{}
func (writeSettingsAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettingsAck()
}
func (writeSettingsAck) staysWithinBuffer(max int) bool { return frameHeaderLen <= max }
// splitHeaderBlock splits headerBlock into fragments so that each fragment fits
// in a single frame, then calls fn for each fragment. firstFrag/lastFrag are true
// for the first/last fragment, respectively.
func splitHeaderBlock(ctx writeContext, headerBlock []byte, fn func(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error) error {
// For now we're lazy and just pick the minimum MAX_FRAME_SIZE
// that all peers must support (16KB). Later we could care
// more and send larger frames if the peer advertised it, but
// there's little point. Most headers are small anyway (so we
// generally won't have CONTINUATION frames), and extra frames
// only waste 9 bytes anyway.
const maxFrameSize = 16384
first := true
for len(headerBlock) > 0 {
frag := headerBlock
if len(frag) > maxFrameSize {
frag = frag[:maxFrameSize]
}
headerBlock = headerBlock[len(frag):]
if err := fn(ctx, frag, first, len(headerBlock) == 0); err != nil {
return err
}
first = false
}
return nil
}
// writeResHeaders is a request to write a HEADERS and 0+ CONTINUATION frames
// for HTTP response headers or trailers from a server handler.
type writeResHeaders struct {
streamID uint32
httpResCode int // 0 means no ":status" line
h http.Header // may be nil
trailers []string // if non-nil, which keys of h to write. nil means all.
endStream bool
date string
contentType string
contentLength string
}
func encKV(enc *hpack.Encoder, k, v string) {
if VerboseLogs {
log.Printf("http2: server encoding header %q = %q", k, v)
}
enc.WriteField(hpack.HeaderField{Name: k, Value: v})
}
func (w *writeResHeaders) staysWithinBuffer(max int) bool {
// TODO: this is a common one. It'd be nice to return true
// here and get into the fast path if we could be clever and
// calculate the size fast enough, or at least a conservative
// uppper bound that usually fires. (Maybe if w.h and
// w.trailers are nil, so we don't need to enumerate it.)
// Otherwise I'm afraid that just calculating the length to
// answer this question would be slower than the ~2µs benefit.
return false
}
func (w *writeResHeaders) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
if w.httpResCode != 0 {
encKV(enc, ":status", httpCodeString(w.httpResCode))
}
encodeHeaders(enc, w.h, w.trailers)
if w.contentType != "" {
encKV(enc, "content-type", w.contentType)
}
if w.contentLength != "" {
encKV(enc, "content-length", w.contentLength)
}
if w.date != "" {
encKV(enc, "date", w.date)
}
headerBlock := buf.Bytes()
if len(headerBlock) == 0 && w.trailers == nil {
panic("unexpected empty hpack")
}
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
func (w *writeResHeaders) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: frag,
EndStream: w.endStream,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
}
// writePushPromise is a request to write a PUSH_PROMISE and 0+ CONTINUATION frames.
type writePushPromise struct {
streamID uint32 // pusher stream
method string // for :method
url *url.URL // for :scheme, :authority, :path
h http.Header
// Creates an ID for a pushed stream. This runs on serveG just before
// the frame is written. The returned ID is copied to promisedID.
allocatePromisedID func() (uint32, error)
promisedID uint32
}
func (w *writePushPromise) staysWithinBuffer(max int) bool {
// TODO: see writeResHeaders.staysWithinBuffer
return false
}
func (w *writePushPromise) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
encKV(enc, ":method", w.method)
encKV(enc, ":scheme", w.url.Scheme)
encKV(enc, ":authority", w.url.Host)
encKV(enc, ":path", w.url.RequestURI())
encodeHeaders(enc, w.h, nil)
headerBlock := buf.Bytes()
if len(headerBlock) == 0 {
panic("unexpected empty hpack")
}
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
func (w *writePushPromise) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WritePushPromise(PushPromiseParam{
StreamID: w.streamID,
PromiseID: w.promisedID,
BlockFragment: frag,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
}
type write100ContinueHeadersFrame struct {
streamID uint32
}
func (w write100ContinueHeadersFrame) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
encKV(enc, ":status", "100")
return ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: buf.Bytes(),
EndStream: false,
EndHeaders: true,
})
}
func (w write100ContinueHeadersFrame) staysWithinBuffer(max int) bool {
// Sloppy but conservative:
return 9+2*(len(":status")+len("100")) <= max
}
type writeWindowUpdate struct {
streamID uint32 // or 0 for conn-level
n uint32
}
func (wu writeWindowUpdate) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (wu writeWindowUpdate) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteWindowUpdate(wu.streamID, wu.n)
}
// encodeHeaders encodes an http.Header. If keys is not nil, then (k, h[k])
// is encoded only only if k is in keys.
func encodeHeaders(enc *hpack.Encoder, h http.Header, keys []string) {
if keys == nil {
sorter := sorterPool.Get().(*sorter)
// Using defer here, since the returned keys from the
// sorter.Keys method is only valid until the sorter
// is returned:
defer sorterPool.Put(sorter)
keys = sorter.Keys(h)
}
for _, k := range keys {
vv := h[k]
k = lowerHeader(k)
if !validWireHeaderFieldName(k) {
// Skip it as backup paranoia. Per
// golang.org/issue/14048, these should
// already be rejected at a higher level.
continue
}
isTE := k == "transfer-encoding"
for _, v := range vv {
if !httplex.ValidHeaderFieldValue(v) {
// TODO: return an error? golang.org/issue/14048
// For now just omit it.
continue
}
// TODO: more of "8.1.2.2 Connection-Specific Header Fields"
if isTE && v != "trailers" {
continue
}
encKV(enc, k, v)
}
}
}

242
vendor/golang.org/x/net/http2/writesched.go generated vendored Normal file
View File

@ -0,0 +1,242 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "fmt"
// WriteScheduler is the interface implemented by HTTP/2 write schedulers.
// Methods are never called concurrently.
type WriteScheduler interface {
// OpenStream opens a new stream in the write scheduler.
// It is illegal to call this with streamID=0 or with a streamID that is
// already open -- the call may panic.
OpenStream(streamID uint32, options OpenStreamOptions)
// CloseStream closes a stream in the write scheduler. Any frames queued on
// this stream should be discarded. It is illegal to call this on a stream
// that is not open -- the call may panic.
CloseStream(streamID uint32)
// AdjustStream adjusts the priority of the given stream. This may be called
// on a stream that has not yet been opened or has been closed. Note that
// RFC 7540 allows PRIORITY frames to be sent on streams in any state. See:
// https://tools.ietf.org/html/rfc7540#section-5.1
AdjustStream(streamID uint32, priority PriorityParam)
// Push queues a frame in the scheduler. In most cases, this will not be
// called with wr.StreamID()!=0 unless that stream is currently open. The one
// exception is RST_STREAM frames, which may be sent on idle or closed streams.
Push(wr FrameWriteRequest)
// Pop dequeues the next frame to write. Returns false if no frames can
// be written. Frames with a given wr.StreamID() are Pop'd in the same
// order they are Push'd.
Pop() (wr FrameWriteRequest, ok bool)
}
// OpenStreamOptions specifies extra options for WriteScheduler.OpenStream.
type OpenStreamOptions struct {
// PusherID is zero if the stream was initiated by the client. Otherwise,
// PusherID names the stream that pushed the newly opened stream.
PusherID uint32
}
// FrameWriteRequest is a request to write a frame.
type FrameWriteRequest struct {
// write is the interface value that does the writing, once the
// WriteScheduler has selected this frame to write. The write
// functions are all defined in write.go.
write writeFramer
// stream is the stream on which this frame will be written.
// nil for non-stream frames like PING and SETTINGS.
stream *stream
// done, if non-nil, must be a buffered channel with space for
// 1 message and is sent the return value from write (or an
// earlier error) when the frame has been written.
done chan error
}
// StreamID returns the id of the stream this frame will be written to.
// 0 is used for non-stream frames such as PING and SETTINGS.
func (wr FrameWriteRequest) StreamID() uint32 {
if wr.stream == nil {
if se, ok := wr.write.(StreamError); ok {
// (*serverConn).resetStream doesn't set
// stream because it doesn't necessarily have
// one. So special case this type of write
// message.
return se.StreamID
}
return 0
}
return wr.stream.id
}
// DataSize returns the number of flow control bytes that must be consumed
// to write this entire frame. This is 0 for non-DATA frames.
func (wr FrameWriteRequest) DataSize() int {
if wd, ok := wr.write.(*writeData); ok {
return len(wd.p)
}
return 0
}
// Consume consumes min(n, available) bytes from this frame, where available
// is the number of flow control bytes available on the stream. Consume returns
// 0, 1, or 2 frames, where the integer return value gives the number of frames
// returned.
//
// If flow control prevents consuming any bytes, this returns (_, _, 0). If
// the entire frame was consumed, this returns (wr, _, 1). Otherwise, this
// returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and
// 'rest' contains the remaining bytes. The consumed bytes are deducted from the
// underlying stream's flow control budget.
func (wr FrameWriteRequest) Consume(n int32) (FrameWriteRequest, FrameWriteRequest, int) {
var empty FrameWriteRequest
// Non-DATA frames are always consumed whole.
wd, ok := wr.write.(*writeData)
if !ok || len(wd.p) == 0 {
return wr, empty, 1
}
// Might need to split after applying limits.
allowed := wr.stream.flow.available()
if n < allowed {
allowed = n
}
if wr.stream.sc.maxFrameSize < allowed {
allowed = wr.stream.sc.maxFrameSize
}
if allowed <= 0 {
return empty, empty, 0
}
if len(wd.p) > int(allowed) {
wr.stream.flow.take(allowed)
consumed := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[:allowed],
// Even if the original had endStream set, there
// are bytes remaining because len(wd.p) > allowed,
// so we know endStream is false.
endStream: false,
},
// Our caller is blocking on the final DATA frame, not
// this intermediate frame, so no need to wait.
done: nil,
}
rest := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[allowed:],
endStream: wd.endStream,
},
done: wr.done,
}
return consumed, rest, 2
}
// The frame is consumed whole.
// NB: This cast cannot overflow because allowed is <= math.MaxInt32.
wr.stream.flow.take(int32(len(wd.p)))
return wr, empty, 1
}
// String is for debugging only.
func (wr FrameWriteRequest) String() string {
var des string
if s, ok := wr.write.(fmt.Stringer); ok {
des = s.String()
} else {
des = fmt.Sprintf("%T", wr.write)
}
return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des)
}
// replyToWriter sends err to wr.done and panics if the send must block
// This does nothing if wr.done is nil.
func (wr *FrameWriteRequest) replyToWriter(err error) {
if wr.done == nil {
return
}
select {
case wr.done <- err:
default:
panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write))
}
wr.write = nil // prevent use (assume it's tainted after wr.done send)
}
// writeQueue is used by implementations of WriteScheduler.
type writeQueue struct {
s []FrameWriteRequest
}
func (q *writeQueue) empty() bool { return len(q.s) == 0 }
func (q *writeQueue) push(wr FrameWriteRequest) {
q.s = append(q.s, wr)
}
func (q *writeQueue) shift() FrameWriteRequest {
if len(q.s) == 0 {
panic("invalid use of queue")
}
wr := q.s[0]
// TODO: less copy-happy queue.
copy(q.s, q.s[1:])
q.s[len(q.s)-1] = FrameWriteRequest{}
q.s = q.s[:len(q.s)-1]
return wr
}
// consume consumes up to n bytes from q.s[0]. If the frame is
// entirely consumed, it is removed from the queue. If the frame
// is partially consumed, the frame is kept with the consumed
// bytes removed. Returns true iff any bytes were consumed.
func (q *writeQueue) consume(n int32) (FrameWriteRequest, bool) {
if len(q.s) == 0 {
return FrameWriteRequest{}, false
}
consumed, rest, numresult := q.s[0].Consume(n)
switch numresult {
case 0:
return FrameWriteRequest{}, false
case 1:
q.shift()
case 2:
q.s[0] = rest
}
return consumed, true
}
type writeQueuePool []*writeQueue
// put inserts an unused writeQueue into the pool.
func (p *writeQueuePool) put(q *writeQueue) {
for i := range q.s {
q.s[i] = FrameWriteRequest{}
}
q.s = q.s[:0]
*p = append(*p, q)
}
// get returns an empty writeQueue.
func (p *writeQueuePool) get() *writeQueue {
ln := len(*p)
if ln == 0 {
return new(writeQueue)
}
x := ln - 1
q := (*p)[x]
(*p)[x] = nil
*p = (*p)[:x]
return q
}

452
vendor/golang.org/x/net/http2/writesched_priority.go generated vendored Normal file
View File

@ -0,0 +1,452 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"fmt"
"math"
"sort"
)
// RFC 7540, Section 5.3.5: the default weight is 16.
const priorityDefaultWeight = 15 // 16 = 15 + 1
// PriorityWriteSchedulerConfig configures a priorityWriteScheduler.
type PriorityWriteSchedulerConfig struct {
// MaxClosedNodesInTree controls the maximum number of closed streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// "It is possible for a stream to become closed while prioritization
// information ... is in transit. ... This potentially creates suboptimal
// prioritization, since the stream could be given a priority that is
// different from what is intended. To avoid these problems, an endpoint
// SHOULD retain stream prioritization state for a period after streams
// become closed. The longer state is retained, the lower the chance that
// streams are assigned incorrect or default priority values."
MaxClosedNodesInTree int
// MaxIdleNodesInTree controls the maximum number of idle streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// Similarly, streams that are in the "idle" state can be assigned
// priority or become a parent of other streams. This allows for the
// creation of a grouping node in the dependency tree, which enables
// more flexible expressions of priority. Idle streams begin with a
// default priority (Section 5.3.5).
MaxIdleNodesInTree int
// ThrottleOutOfOrderWrites enables write throttling to help ensure that
// data is delivered in priority order. This works around a race where
// stream B depends on stream A and both streams are about to call Write
// to queue DATA frames. If B wins the race, a naive scheduler would eagerly
// write as much data from B as possible, but this is suboptimal because A
// is a higher-priority stream. With throttling enabled, we write a small
// amount of data from B to minimize the amount of bandwidth that B can
// steal from A.
ThrottleOutOfOrderWrites bool
}
// NewPriorityWriteScheduler constructs a WriteScheduler that schedules
// frames by following HTTP/2 priorities as described in RFC 7340 Section 5.3.
// If cfg is nil, default options are used.
func NewPriorityWriteScheduler(cfg *PriorityWriteSchedulerConfig) WriteScheduler {
if cfg == nil {
// For justification of these defaults, see:
// https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY
cfg = &PriorityWriteSchedulerConfig{
MaxClosedNodesInTree: 10,
MaxIdleNodesInTree: 10,
ThrottleOutOfOrderWrites: false,
}
}
ws := &priorityWriteScheduler{
nodes: make(map[uint32]*priorityNode),
maxClosedNodesInTree: cfg.MaxClosedNodesInTree,
maxIdleNodesInTree: cfg.MaxIdleNodesInTree,
enableWriteThrottle: cfg.ThrottleOutOfOrderWrites,
}
ws.nodes[0] = &ws.root
if cfg.ThrottleOutOfOrderWrites {
ws.writeThrottleLimit = 1024
} else {
ws.writeThrottleLimit = math.MaxInt32
}
return ws
}
type priorityNodeState int
const (
priorityNodeOpen priorityNodeState = iota
priorityNodeClosed
priorityNodeIdle
)
// priorityNode is a node in an HTTP/2 priority tree.
// Each node is associated with a single stream ID.
// See RFC 7540, Section 5.3.
type priorityNode struct {
q writeQueue // queue of pending frames to write
id uint32 // id of the stream, or 0 for the root of the tree
weight uint8 // the actual weight is weight+1, so the value is in [1,256]
state priorityNodeState // open | closed | idle
bytes int64 // number of bytes written by this node, or 0 if closed
subtreeBytes int64 // sum(node.bytes) of all nodes in this subtree
// These links form the priority tree.
parent *priorityNode
kids *priorityNode // start of the kids list
prev, next *priorityNode // doubly-linked list of siblings
}
func (n *priorityNode) setParent(parent *priorityNode) {
if n == parent {
panic("setParent to self")
}
if n.parent == parent {
return
}
// Unlink from current parent.
if parent := n.parent; parent != nil {
if n.prev == nil {
parent.kids = n.next
} else {
n.prev.next = n.next
}
if n.next != nil {
n.next.prev = n.prev
}
}
// Link to new parent.
// If parent=nil, remove n from the tree.
// Always insert at the head of parent.kids (this is assumed by walkReadyInOrder).
n.parent = parent
if parent == nil {
n.next = nil
n.prev = nil
} else {
n.next = parent.kids
n.prev = nil
if n.next != nil {
n.next.prev = n
}
parent.kids = n
}
}
func (n *priorityNode) addBytes(b int64) {
n.bytes += b
for ; n != nil; n = n.parent {
n.subtreeBytes += b
}
}
// walkReadyInOrder iterates over the tree in priority order, calling f for each node
// with a non-empty write queue. When f returns true, this funcion returns true and the
// walk halts. tmp is used as scratch space for sorting.
//
// f(n, openParent) takes two arguments: the node to visit, n, and a bool that is true
// if any ancestor p of n is still open (ignoring the root node).
func (n *priorityNode) walkReadyInOrder(openParent bool, tmp *[]*priorityNode, f func(*priorityNode, bool) bool) bool {
if !n.q.empty() && f(n, openParent) {
return true
}
if n.kids == nil {
return false
}
// Don't consider the root "open" when updating openParent since
// we can't send data frames on the root stream (only control frames).
if n.id != 0 {
openParent = openParent || (n.state == priorityNodeOpen)
}
// Common case: only one kid or all kids have the same weight.
// Some clients don't use weights; other clients (like web browsers)
// use mostly-linear priority trees.
w := n.kids.weight
needSort := false
for k := n.kids.next; k != nil; k = k.next {
if k.weight != w {
needSort = true
break
}
}
if !needSort {
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
// Uncommon case: sort the child nodes. We remove the kids from the parent,
// then re-insert after sorting so we can reuse tmp for future sort calls.
*tmp = (*tmp)[:0]
for n.kids != nil {
*tmp = append(*tmp, n.kids)
n.kids.setParent(nil)
}
sort.Sort(sortPriorityNodeSiblings(*tmp))
for i := len(*tmp) - 1; i >= 0; i-- {
(*tmp)[i].setParent(n) // setParent inserts at the head of n.kids
}
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
type sortPriorityNodeSiblings []*priorityNode
func (z sortPriorityNodeSiblings) Len() int { return len(z) }
func (z sortPriorityNodeSiblings) Swap(i, k int) { z[i], z[k] = z[k], z[i] }
func (z sortPriorityNodeSiblings) Less(i, k int) bool {
// Prefer the subtree that has sent fewer bytes relative to its weight.
// See sections 5.3.2 and 5.3.4.
wi, bi := float64(z[i].weight+1), float64(z[i].subtreeBytes)
wk, bk := float64(z[k].weight+1), float64(z[k].subtreeBytes)
if bi == 0 && bk == 0 {
return wi >= wk
}
if bk == 0 {
return false
}
return bi/bk <= wi/wk
}
type priorityWriteScheduler struct {
// root is the root of the priority tree, where root.id = 0.
// The root queues control frames that are not associated with any stream.
root priorityNode
// nodes maps stream ids to priority tree nodes.
nodes map[uint32]*priorityNode
// maxID is the maximum stream id in nodes.
maxID uint32
// lists of nodes that have been closed or are idle, but are kept in
// the tree for improved prioritization. When the lengths exceed either
// maxClosedNodesInTree or maxIdleNodesInTree, old nodes are discarded.
closedNodes, idleNodes []*priorityNode
// From the config.
maxClosedNodesInTree int
maxIdleNodesInTree int
writeThrottleLimit int32
enableWriteThrottle bool
// tmp is scratch space for priorityNode.walkReadyInOrder to reduce allocations.
tmp []*priorityNode
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *priorityWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// The stream may be currently idle but cannot be opened or closed.
if curr := ws.nodes[streamID]; curr != nil {
if curr.state != priorityNodeIdle {
panic(fmt.Sprintf("stream %d already opened", streamID))
}
curr.state = priorityNodeOpen
return
}
// RFC 7540, Section 5.3.5:
// "All streams are initially assigned a non-exclusive dependency on stream 0x0.
// Pushed streams initially depend on their associated stream. In both cases,
// streams are assigned a default weight of 16."
parent := ws.nodes[options.PusherID]
if parent == nil {
parent = &ws.root
}
n := &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeOpen,
}
n.setParent(parent)
ws.nodes[streamID] = n
if streamID > ws.maxID {
ws.maxID = streamID
}
}
func (ws *priorityWriteScheduler) CloseStream(streamID uint32) {
if streamID == 0 {
panic("violation of WriteScheduler interface: cannot close stream 0")
}
if ws.nodes[streamID] == nil {
panic(fmt.Sprintf("violation of WriteScheduler interface: unknown stream %d", streamID))
}
if ws.nodes[streamID].state != priorityNodeOpen {
panic(fmt.Sprintf("violation of WriteScheduler interface: stream %d already closed", streamID))
}
n := ws.nodes[streamID]
n.state = priorityNodeClosed
n.addBytes(-n.bytes)
q := n.q
ws.queuePool.put(&q)
n.q.s = nil
if ws.maxClosedNodesInTree > 0 {
ws.addClosedOrIdleNode(&ws.closedNodes, ws.maxClosedNodesInTree, n)
} else {
ws.removeNode(n)
}
}
func (ws *priorityWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
if streamID == 0 {
panic("adjustPriority on root")
}
// If streamID does not exist, there are two cases:
// - A closed stream that has been removed (this will have ID <= maxID)
// - An idle stream that is being used for "grouping" (this will have ID > maxID)
n := ws.nodes[streamID]
if n == nil {
if streamID <= ws.maxID || ws.maxIdleNodesInTree == 0 {
return
}
ws.maxID = streamID
n = &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeIdle,
}
n.setParent(&ws.root)
ws.nodes[streamID] = n
ws.addClosedOrIdleNode(&ws.idleNodes, ws.maxIdleNodesInTree, n)
}
// Section 5.3.1: A dependency on a stream that is not currently in the tree
// results in that stream being given a default priority (Section 5.3.5).
parent := ws.nodes[priority.StreamDep]
if parent == nil {
n.setParent(&ws.root)
n.weight = priorityDefaultWeight
return
}
// Ignore if the client tries to make a node its own parent.
if n == parent {
return
}
// Section 5.3.3:
// "If a stream is made dependent on one of its own dependencies, the
// formerly dependent stream is first moved to be dependent on the
// reprioritized stream's previous parent. The moved dependency retains
// its weight."
//
// That is: if parent depends on n, move parent to depend on n.parent.
for x := parent.parent; x != nil; x = x.parent {
if x == n {
parent.setParent(n.parent)
break
}
}
// Section 5.3.3: The exclusive flag causes the stream to become the sole
// dependency of its parent stream, causing other dependencies to become
// dependent on the exclusive stream.
if priority.Exclusive {
k := parent.kids
for k != nil {
next := k.next
if k != n {
k.setParent(n)
}
k = next
}
}
n.setParent(parent)
n.weight = priority.Weight
}
func (ws *priorityWriteScheduler) Push(wr FrameWriteRequest) {
var n *priorityNode
if id := wr.StreamID(); id == 0 {
n = &ws.root
} else {
n = ws.nodes[id]
if n == nil {
// id is an idle or closed stream. wr should not be a HEADERS or
// DATA frame. However, wr can be a RST_STREAM. In this case, we
// push wr onto the root, rather than creating a new priorityNode,
// since RST_STREAM is tiny and the stream's priority is unknown
// anyway. See issue #17919.
if wr.DataSize() > 0 {
panic("add DATA on non-open stream")
}
n = &ws.root
}
}
n.q.push(wr)
}
func (ws *priorityWriteScheduler) Pop() (wr FrameWriteRequest, ok bool) {
ws.root.walkReadyInOrder(false, &ws.tmp, func(n *priorityNode, openParent bool) bool {
limit := int32(math.MaxInt32)
if openParent {
limit = ws.writeThrottleLimit
}
wr, ok = n.q.consume(limit)
if !ok {
return false
}
n.addBytes(int64(wr.DataSize()))
// If B depends on A and B continuously has data available but A
// does not, gradually increase the throttling limit to allow B to
// steal more and more bandwidth from A.
if openParent {
ws.writeThrottleLimit += 1024
if ws.writeThrottleLimit < 0 {
ws.writeThrottleLimit = math.MaxInt32
}
} else if ws.enableWriteThrottle {
ws.writeThrottleLimit = 1024
}
return true
})
return wr, ok
}
func (ws *priorityWriteScheduler) addClosedOrIdleNode(list *[]*priorityNode, maxSize int, n *priorityNode) {
if maxSize == 0 {
return
}
if len(*list) == maxSize {
// Remove the oldest node, then shift left.
ws.removeNode((*list)[0])
x := (*list)[1:]
copy(*list, x)
*list = (*list)[:len(x)]
}
*list = append(*list, n)
}
func (ws *priorityWriteScheduler) removeNode(n *priorityNode) {
for k := n.kids; k != nil; k = k.next {
k.setParent(n.parent)
}
n.setParent(nil)
delete(ws.nodes, n.id)
}

72
vendor/golang.org/x/net/http2/writesched_random.go generated vendored Normal file
View File

@ -0,0 +1,72 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "math"
// NewRandomWriteScheduler constructs a WriteScheduler that ignores HTTP/2
// priorities. Control frames like SETTINGS and PING are written before DATA
// frames, but if no control frames are queued and multiple streams have queued
// HEADERS or DATA frames, Pop selects a ready stream arbitrarily.
func NewRandomWriteScheduler() WriteScheduler {
return &randomWriteScheduler{sq: make(map[uint32]*writeQueue)}
}
type randomWriteScheduler struct {
// zero are frames not associated with a specific stream.
zero writeQueue
// sq contains the stream-specific queues, keyed by stream ID.
// When a stream is idle or closed, it's deleted from the map.
sq map[uint32]*writeQueue
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *randomWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// no-op: idle streams are not tracked
}
func (ws *randomWriteScheduler) CloseStream(streamID uint32) {
q, ok := ws.sq[streamID]
if !ok {
return
}
delete(ws.sq, streamID)
ws.queuePool.put(q)
}
func (ws *randomWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
// no-op: priorities are ignored
}
func (ws *randomWriteScheduler) Push(wr FrameWriteRequest) {
id := wr.StreamID()
if id == 0 {
ws.zero.push(wr)
return
}
q, ok := ws.sq[id]
if !ok {
q = ws.queuePool.get()
ws.sq[id] = q
}
q.push(wr)
}
func (ws *randomWriteScheduler) Pop() (FrameWriteRequest, bool) {
// Control frames first.
if !ws.zero.empty() {
return ws.zero.shift(), true
}
// Iterate over all non-idle streams until finding one that can be consumed.
for _, q := range ws.sq {
if wr, ok := q.consume(math.MaxInt32); ok {
return wr, true
}
}
return FrameWriteRequest{}, false
}

68
vendor/golang.org/x/net/idna/idna.go generated vendored Normal file
View File

@ -0,0 +1,68 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package idna implements IDNA2008 (Internationalized Domain Names for
// Applications), defined in RFC 5890, RFC 5891, RFC 5892, RFC 5893 and
// RFC 5894.
package idna // import "golang.org/x/net/idna"
import (
"strings"
"unicode/utf8"
)
// TODO(nigeltao): specify when errors occur. For example, is ToASCII(".") or
// ToASCII("foo\x00") an error? See also http://www.unicode.org/faq/idn.html#11
// acePrefix is the ASCII Compatible Encoding prefix.
const acePrefix = "xn--"
// ToASCII converts a domain or domain label to its ASCII form. For example,
// ToASCII("bücher.example.com") is "xn--bcher-kva.example.com", and
// ToASCII("golang") is "golang".
func ToASCII(s string) (string, error) {
if ascii(s) {
return s, nil
}
labels := strings.Split(s, ".")
for i, label := range labels {
if !ascii(label) {
a, err := encode(acePrefix, label)
if err != nil {
return "", err
}
labels[i] = a
}
}
return strings.Join(labels, "."), nil
}
// ToUnicode converts a domain or domain label to its Unicode form. For example,
// ToUnicode("xn--bcher-kva.example.com") is "bücher.example.com", and
// ToUnicode("golang") is "golang".
func ToUnicode(s string) (string, error) {
if !strings.Contains(s, acePrefix) {
return s, nil
}
labels := strings.Split(s, ".")
for i, label := range labels {
if strings.HasPrefix(label, acePrefix) {
u, err := decode(label[len(acePrefix):])
if err != nil {
return "", err
}
labels[i] = u
}
}
return strings.Join(labels, "."), nil
}
func ascii(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}

200
vendor/golang.org/x/net/idna/punycode.go generated vendored Normal file
View File

@ -0,0 +1,200 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// This file implements the Punycode algorithm from RFC 3492.
import (
"fmt"
"math"
"strings"
"unicode/utf8"
)
// These parameter values are specified in section 5.
//
// All computation is done with int32s, so that overflow behavior is identical
// regardless of whether int is 32-bit or 64-bit.
const (
base int32 = 36
damp int32 = 700
initialBias int32 = 72
initialN int32 = 128
skew int32 = 38
tmax int32 = 26
tmin int32 = 1
)
// decode decodes a string as specified in section 6.2.
func decode(encoded string) (string, error) {
if encoded == "" {
return "", nil
}
pos := 1 + strings.LastIndex(encoded, "-")
if pos == 1 {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
if pos == len(encoded) {
return encoded[:len(encoded)-1], nil
}
output := make([]rune, 0, len(encoded))
if pos != 0 {
for _, r := range encoded[:pos-1] {
output = append(output, r)
}
}
i, n, bias := int32(0), initialN, initialBias
for pos < len(encoded) {
oldI, w := i, int32(1)
for k := base; ; k += base {
if pos == len(encoded) {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
digit, ok := decodeDigit(encoded[pos])
if !ok {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
pos++
i += digit * w
if i < 0 {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if digit < t {
break
}
w *= base - t
if w >= math.MaxInt32/base {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
}
x := int32(len(output) + 1)
bias = adapt(i-oldI, x, oldI == 0)
n += i / x
i %= x
if n > utf8.MaxRune || len(output) >= 1024 {
return "", fmt.Errorf("idna: invalid label %q", encoded)
}
output = append(output, 0)
copy(output[i+1:], output[i:])
output[i] = n
i++
}
return string(output), nil
}
// encode encodes a string as specified in section 6.3 and prepends prefix to
// the result.
//
// The "while h < length(input)" line in the specification becomes "for
// remaining != 0" in the Go code, because len(s) in Go is in bytes, not runes.
func encode(prefix, s string) (string, error) {
output := make([]byte, len(prefix), len(prefix)+1+2*len(s))
copy(output, prefix)
delta, n, bias := int32(0), initialN, initialBias
b, remaining := int32(0), int32(0)
for _, r := range s {
if r < 0x80 {
b++
output = append(output, byte(r))
} else {
remaining++
}
}
h := b
if b > 0 {
output = append(output, '-')
}
for remaining != 0 {
m := int32(0x7fffffff)
for _, r := range s {
if m > r && r >= n {
m = r
}
}
delta += (m - n) * (h + 1)
if delta < 0 {
return "", fmt.Errorf("idna: invalid label %q", s)
}
n = m
for _, r := range s {
if r < n {
delta++
if delta < 0 {
return "", fmt.Errorf("idna: invalid label %q", s)
}
continue
}
if r > n {
continue
}
q := delta
for k := base; ; k += base {
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if q < t {
break
}
output = append(output, encodeDigit(t+(q-t)%(base-t)))
q = (q - t) / (base - t)
}
output = append(output, encodeDigit(q))
bias = adapt(delta, h+1, h == b)
delta = 0
h++
remaining--
}
delta++
n++
}
return string(output), nil
}
func decodeDigit(x byte) (digit int32, ok bool) {
switch {
case '0' <= x && x <= '9':
return int32(x - ('0' - 26)), true
case 'A' <= x && x <= 'Z':
return int32(x - 'A'), true
case 'a' <= x && x <= 'z':
return int32(x - 'a'), true
}
return 0, false
}
func encodeDigit(digit int32) byte {
switch {
case 0 <= digit && digit < 26:
return byte(digit + 'a')
case 26 <= digit && digit < 36:
return byte(digit + ('0' - 26))
}
panic("idna: internal error in punycode encoding")
}
// adapt is the bias adaptation function specified in section 6.1.
func adapt(delta, numPoints int32, firstTime bool) int32 {
if firstTime {
delta /= damp
} else {
delta /= 2
}
delta += delta / numPoints
k := int32(0)
for delta > ((base-tmin)*tmax)/2 {
delta /= base - tmin
k += base
}
return k + (base-tmin+1)*delta/(delta+skew)
}

351
vendor/golang.org/x/net/lex/httplex/httplex.go generated vendored Normal file
View File

@ -0,0 +1,351 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package httplex contains rules around lexical matters of various
// HTTP-related specifications.
//
// This package is shared by the standard library (which vendors it)
// and x/net/http2. It comes with no API stability promise.
package httplex
import (
"net"
"strings"
"unicode/utf8"
"golang.org/x/net/idna"
)
var isTokenTable = [127]bool{
'!': true,
'#': true,
'$': true,
'%': true,
'&': true,
'\'': true,
'*': true,
'+': true,
'-': true,
'.': true,
'0': true,
'1': true,
'2': true,
'3': true,
'4': true,
'5': true,
'6': true,
'7': true,
'8': true,
'9': true,
'A': true,
'B': true,
'C': true,
'D': true,
'E': true,
'F': true,
'G': true,
'H': true,
'I': true,
'J': true,
'K': true,
'L': true,
'M': true,
'N': true,
'O': true,
'P': true,
'Q': true,
'R': true,
'S': true,
'T': true,
'U': true,
'W': true,
'V': true,
'X': true,
'Y': true,
'Z': true,
'^': true,
'_': true,
'`': true,
'a': true,
'b': true,
'c': true,
'd': true,
'e': true,
'f': true,
'g': true,
'h': true,
'i': true,
'j': true,
'k': true,
'l': true,
'm': true,
'n': true,
'o': true,
'p': true,
'q': true,
'r': true,
's': true,
't': true,
'u': true,
'v': true,
'w': true,
'x': true,
'y': true,
'z': true,
'|': true,
'~': true,
}
func IsTokenRune(r rune) bool {
i := int(r)
return i < len(isTokenTable) && isTokenTable[i]
}
func isNotToken(r rune) bool {
return !IsTokenRune(r)
}
// HeaderValuesContainsToken reports whether any string in values
// contains the provided token, ASCII case-insensitively.
func HeaderValuesContainsToken(values []string, token string) bool {
for _, v := range values {
if headerValueContainsToken(v, token) {
return true
}
}
return false
}
// isOWS reports whether b is an optional whitespace byte, as defined
// by RFC 7230 section 3.2.3.
func isOWS(b byte) bool { return b == ' ' || b == '\t' }
// trimOWS returns x with all optional whitespace removes from the
// beginning and end.
func trimOWS(x string) string {
// TODO: consider using strings.Trim(x, " \t") instead,
// if and when it's fast enough. See issue 10292.
// But this ASCII-only code will probably always beat UTF-8
// aware code.
for len(x) > 0 && isOWS(x[0]) {
x = x[1:]
}
for len(x) > 0 && isOWS(x[len(x)-1]) {
x = x[:len(x)-1]
}
return x
}
// headerValueContainsToken reports whether v (assumed to be a
// 0#element, in the ABNF extension described in RFC 7230 section 7)
// contains token amongst its comma-separated tokens, ASCII
// case-insensitively.
func headerValueContainsToken(v string, token string) bool {
v = trimOWS(v)
if comma := strings.IndexByte(v, ','); comma != -1 {
return tokenEqual(trimOWS(v[:comma]), token) || headerValueContainsToken(v[comma+1:], token)
}
return tokenEqual(v, token)
}
// lowerASCII returns the ASCII lowercase version of b.
func lowerASCII(b byte) byte {
if 'A' <= b && b <= 'Z' {
return b + ('a' - 'A')
}
return b
}
// tokenEqual reports whether t1 and t2 are equal, ASCII case-insensitively.
func tokenEqual(t1, t2 string) bool {
if len(t1) != len(t2) {
return false
}
for i, b := range t1 {
if b >= utf8.RuneSelf {
// No UTF-8 or non-ASCII allowed in tokens.
return false
}
if lowerASCII(byte(b)) != lowerASCII(t2[i]) {
return false
}
}
return true
}
// isLWS reports whether b is linear white space, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// LWS = [CRLF] 1*( SP | HT )
func isLWS(b byte) bool { return b == ' ' || b == '\t' }
// isCTL reports whether b is a control byte, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
func isCTL(b byte) bool {
const del = 0x7f // a CTL
return b < ' ' || b == del
}
// ValidHeaderFieldName reports whether v is a valid HTTP/1.x header name.
// HTTP/2 imposes the additional restriction that uppercase ASCII
// letters are not allowed.
//
// RFC 7230 says:
// header-field = field-name ":" OWS field-value OWS
// field-name = token
// token = 1*tchar
// tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
// "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
func ValidHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if !IsTokenRune(r) {
return false
}
}
return true
}
// ValidHostHeader reports whether h is a valid host header.
func ValidHostHeader(h string) bool {
// The latest spec is actually this:
//
// http://tools.ietf.org/html/rfc7230#section-5.4
// Host = uri-host [ ":" port ]
//
// Where uri-host is:
// http://tools.ietf.org/html/rfc3986#section-3.2.2
//
// But we're going to be much more lenient for now and just
// search for any byte that's not a valid byte in any of those
// expressions.
for i := 0; i < len(h); i++ {
if !validHostByte[h[i]] {
return false
}
}
return true
}
// See the validHostHeader comment.
var validHostByte = [256]bool{
'0': true, '1': true, '2': true, '3': true, '4': true, '5': true, '6': true, '7': true,
'8': true, '9': true,
'a': true, 'b': true, 'c': true, 'd': true, 'e': true, 'f': true, 'g': true, 'h': true,
'i': true, 'j': true, 'k': true, 'l': true, 'm': true, 'n': true, 'o': true, 'p': true,
'q': true, 'r': true, 's': true, 't': true, 'u': true, 'v': true, 'w': true, 'x': true,
'y': true, 'z': true,
'A': true, 'B': true, 'C': true, 'D': true, 'E': true, 'F': true, 'G': true, 'H': true,
'I': true, 'J': true, 'K': true, 'L': true, 'M': true, 'N': true, 'O': true, 'P': true,
'Q': true, 'R': true, 'S': true, 'T': true, 'U': true, 'V': true, 'W': true, 'X': true,
'Y': true, 'Z': true,
'!': true, // sub-delims
'$': true, // sub-delims
'%': true, // pct-encoded (and used in IPv6 zones)
'&': true, // sub-delims
'(': true, // sub-delims
')': true, // sub-delims
'*': true, // sub-delims
'+': true, // sub-delims
',': true, // sub-delims
'-': true, // unreserved
'.': true, // unreserved
':': true, // IPv6address + Host expression's optional port
';': true, // sub-delims
'=': true, // sub-delims
'[': true,
'\'': true, // sub-delims
']': true,
'_': true, // unreserved
'~': true, // unreserved
}
// ValidHeaderFieldValue reports whether v is a valid "field-value" according to
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2 :
//
// message-header = field-name ":" [ field-value ]
// field-value = *( field-content | LWS )
// field-content = <the OCTETs making up the field-value
// and consisting of either *TEXT or combinations
// of token, separators, and quoted-string>
//
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2 :
//
// TEXT = <any OCTET except CTLs,
// but including LWS>
// LWS = [CRLF] 1*( SP | HT )
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
//
// RFC 7230 says:
// field-value = *( field-content / obs-fold )
// obj-fold = N/A to http2, and deprecated
// field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
// field-vchar = VCHAR / obs-text
// obs-text = %x80-FF
// VCHAR = "any visible [USASCII] character"
//
// http2 further says: "Similarly, HTTP/2 allows header field values
// that are not valid. While most of the values that can be encoded
// will not alter header field parsing, carriage return (CR, ASCII
// 0xd), line feed (LF, ASCII 0xa), and the zero character (NUL, ASCII
// 0x0) might be exploited by an attacker if they are translated
// verbatim. Any request or response that contains a character not
// permitted in a header field value MUST be treated as malformed
// (Section 8.1.2.6). Valid characters are defined by the
// field-content ABNF rule in Section 3.2 of [RFC7230]."
//
// This function does not (yet?) properly handle the rejection of
// strings that begin or end with SP or HTAB.
func ValidHeaderFieldValue(v string) bool {
for i := 0; i < len(v); i++ {
b := v[i]
if isCTL(b) && !isLWS(b) {
return false
}
}
return true
}
func isASCII(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}
// PunycodeHostPort returns the IDNA Punycode version
// of the provided "host" or "host:port" string.
func PunycodeHostPort(v string) (string, error) {
if isASCII(v) {
return v, nil
}
host, port, err := net.SplitHostPort(v)
if err != nil {
// The input 'v' argument was just a "host" argument,
// without a port. This error should not be returned
// to the caller.
host = v
port = ""
}
host, err = idna.ToASCII(host)
if err != nil {
// Non-UTF-8? Not representable in Punycode, in any
// case.
return "", err
}
if port == "" {
return host, nil
}
return net.JoinHostPort(host, port), nil
}

48
vendor/vendor.json vendored
View File

@ -393,12 +393,30 @@
"revision": "1f512fc3f05332ba7117626cdfb4e07474e58e60",
"revisionTime": "2016-04-28T09:34:18-07:00"
},
{
"checksumSHA1": "Uzyon2091lmwacNsl1hCytjhHtg=",
"path": "github.com/hashicorp/go-cleanhttp",
"revision": "ad28ea4487f05916463e2423a55166280e8254b5",
"revisionTime": "2016-04-07T17:41:26Z"
},
{
"checksumSHA1": "8VOnoB0DNWtRNMFvfuA8AuYOLik=",
"path": "github.com/hashicorp/vault/api",
"revision": "92dd48be2efcf520c7eb1117e47b1a0eff997e88",
"revisionTime": "2017-05-05T23:40:26Z"
},
{
"checksumSHA1": "ft77GtqeZEeCXioGpF/s6DlGm/U=",
"path": "github.com/hashicorp/vault/helper/compressutil",
"revision": "92dd48be2efcf520c7eb1117e47b1a0eff997e88",
"revisionTime": "2017-05-05T23:40:26Z"
},
{
"checksumSHA1": "yUiSTPf0QUuL2r/81sjuytqBoeQ=",
"path": "github.com/hashicorp/vault/helper/jsonutil",
"revision": "92dd48be2efcf520c7eb1117e47b1a0eff997e88",
"revisionTime": "2017-05-05T23:40:26Z"
},
{
"path": "github.com/ianschenck/envflag",
"revision": "9111d830d133f952887a936367fb0211c3134f0d",
@ -451,6 +469,12 @@
"revision": "c12348ce28de40eed0136aa2b644d0ee0650e56c",
"revisionTime": "2016-04-24T11:30:07Z"
},
{
"checksumSHA1": "LUrnGREfnifW4WDMaavmc9MlLI0=",
"path": "github.com/mitchellh/mapstructure",
"revision": "ca63d7c062ee3c9f34db231e352b60012b4fd0c1",
"revisionTime": "2016-08-08T18:12:53Z"
},
{
"checksumSHA1": "spRLFk8daizvEzOmRsxlxeECdHI=",
"path": "github.com/mrjones/oauth",
@ -619,6 +643,30 @@
"revision": "fb93926129b8ec0056f2f458b1f519654814edf0",
"revisionTime": "2016-04-13T08:48:50+10:00"
},
{
"checksumSHA1": "cdT+oqPhYKGf3r+HkPo51IauZnA=",
"path": "golang.org/x/net/http2",
"revision": "3e967e1d28d2c9c06e749dc2bdc14b04df89e689",
"revisionTime": "2017-03-19T17:08:14Z"
},
{
"checksumSHA1": "kyClpesDqa6LA7CFPGgKrX9NKkA=",
"path": "golang.org/x/net/http2/hpack",
"revision": "3e967e1d28d2c9c06e749dc2bdc14b04df89e689",
"revisionTime": "2017-03-19T17:08:14Z"
},
{
"checksumSHA1": "GIGmSrYACByf5JDIP9ByBZksY80=",
"path": "golang.org/x/net/idna",
"revision": "3e967e1d28d2c9c06e749dc2bdc14b04df89e689",
"revisionTime": "2017-03-19T17:08:14Z"
},
{
"checksumSHA1": "3xyuaSNmClqG4YWC7g0isQIbUTc=",
"path": "golang.org/x/net/lex/httplex",
"revision": "3e967e1d28d2c9c06e749dc2bdc14b04df89e689",
"revisionTime": "2017-03-19T17:08:14Z"
},
{
"checksumSHA1": "LvdVRE0FqdR68SvVpRkHs1rxhcA=",
"path": "golang.org/x/net/proxy",