mirror of
https://github.com/woodpecker-ci/woodpecker.git
synced 2024-12-18 08:26:45 +02:00
229 lines
9.0 KiB
Go
229 lines
9.0 KiB
Go
package congestion
|
|
|
|
import (
|
|
"math"
|
|
"time"
|
|
|
|
"github.com/lucas-clemente/quic-go/internal/utils"
|
|
"github.com/lucas-clemente/quic-go/protocol"
|
|
)
|
|
|
|
// This cubic implementation is based on the one found in Chromiums's QUIC
|
|
// implementation, in the files net/quic/congestion_control/cubic.{hh,cc}.
|
|
|
|
// Constants based on TCP defaults.
|
|
// The following constants are in 2^10 fractions of a second instead of ms to
|
|
// allow a 10 shift right to divide.
|
|
|
|
// 1024*1024^3 (first 1024 is from 0.100^3)
|
|
// where 0.100 is 100 ms which is the scaling
|
|
// round trip time.
|
|
const cubeScale = 40
|
|
const cubeCongestionWindowScale = 410
|
|
const cubeFactor protocol.PacketNumber = 1 << cubeScale / cubeCongestionWindowScale
|
|
|
|
const defaultNumConnections = 2
|
|
|
|
// Default Cubic backoff factor
|
|
const beta float32 = 0.7
|
|
|
|
// Additional backoff factor when loss occurs in the concave part of the Cubic
|
|
// curve. This additional backoff factor is expected to give up bandwidth to
|
|
// new concurrent flows and speed up convergence.
|
|
const betaLastMax float32 = 0.85
|
|
|
|
// If true, Cubic's epoch is shifted when the sender is application-limited.
|
|
const shiftQuicCubicEpochWhenAppLimited = true
|
|
|
|
const maxCubicTimeInterval = 30 * time.Millisecond
|
|
|
|
// Cubic implements the cubic algorithm from TCP
|
|
type Cubic struct {
|
|
clock Clock
|
|
// Number of connections to simulate.
|
|
numConnections int
|
|
// Time when this cycle started, after last loss event.
|
|
epoch time.Time
|
|
// Time when sender went into application-limited period. Zero if not in
|
|
// application-limited period.
|
|
appLimitedStartTime time.Time
|
|
// Time when we updated last_congestion_window.
|
|
lastUpdateTime time.Time
|
|
// Last congestion window (in packets) used.
|
|
lastCongestionWindow protocol.PacketNumber
|
|
// Max congestion window (in packets) used just before last loss event.
|
|
// Note: to improve fairness to other streams an additional back off is
|
|
// applied to this value if the new value is below our latest value.
|
|
lastMaxCongestionWindow protocol.PacketNumber
|
|
// Number of acked packets since the cycle started (epoch).
|
|
ackedPacketsCount protocol.PacketNumber
|
|
// TCP Reno equivalent congestion window in packets.
|
|
estimatedTCPcongestionWindow protocol.PacketNumber
|
|
// Origin point of cubic function.
|
|
originPointCongestionWindow protocol.PacketNumber
|
|
// Time to origin point of cubic function in 2^10 fractions of a second.
|
|
timeToOriginPoint uint32
|
|
// Last congestion window in packets computed by cubic function.
|
|
lastTargetCongestionWindow protocol.PacketNumber
|
|
}
|
|
|
|
// NewCubic returns a new Cubic instance
|
|
func NewCubic(clock Clock) *Cubic {
|
|
c := &Cubic{
|
|
clock: clock,
|
|
numConnections: defaultNumConnections,
|
|
}
|
|
c.Reset()
|
|
return c
|
|
}
|
|
|
|
// Reset is called after a timeout to reset the cubic state
|
|
func (c *Cubic) Reset() {
|
|
c.epoch = time.Time{}
|
|
c.appLimitedStartTime = time.Time{}
|
|
c.lastUpdateTime = time.Time{}
|
|
c.lastCongestionWindow = 0
|
|
c.lastMaxCongestionWindow = 0
|
|
c.ackedPacketsCount = 0
|
|
c.estimatedTCPcongestionWindow = 0
|
|
c.originPointCongestionWindow = 0
|
|
c.timeToOriginPoint = 0
|
|
c.lastTargetCongestionWindow = 0
|
|
}
|
|
|
|
func (c *Cubic) alpha() float32 {
|
|
// TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
|
|
// beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
|
|
// We derive the equivalent alpha for an N-connection emulation as:
|
|
b := c.beta()
|
|
return 3 * float32(c.numConnections) * float32(c.numConnections) * (1 - b) / (1 + b)
|
|
}
|
|
|
|
func (c *Cubic) beta() float32 {
|
|
// kNConnectionBeta is the backoff factor after loss for our N-connection
|
|
// emulation, which emulates the effective backoff of an ensemble of N
|
|
// TCP-Reno connections on a single loss event. The effective multiplier is
|
|
// computed as:
|
|
return (float32(c.numConnections) - 1 + beta) / float32(c.numConnections)
|
|
}
|
|
|
|
// OnApplicationLimited is called on ack arrival when sender is unable to use
|
|
// the available congestion window. Resets Cubic state during quiescence.
|
|
func (c *Cubic) OnApplicationLimited() {
|
|
if shiftQuicCubicEpochWhenAppLimited {
|
|
// When sender is not using the available congestion window, Cubic's epoch
|
|
// should not continue growing. Record the time when sender goes into an
|
|
// app-limited period here, to compensate later when cwnd growth happens.
|
|
if c.appLimitedStartTime.IsZero() {
|
|
c.appLimitedStartTime = c.clock.Now()
|
|
}
|
|
} else {
|
|
// When sender is not using the available congestion window, Cubic's epoch
|
|
// should not continue growing. Reset the epoch when in such a period.
|
|
c.epoch = time.Time{}
|
|
}
|
|
}
|
|
|
|
// CongestionWindowAfterPacketLoss computes a new congestion window to use after
|
|
// a loss event. Returns the new congestion window in packets. The new
|
|
// congestion window is a multiplicative decrease of our current window.
|
|
func (c *Cubic) CongestionWindowAfterPacketLoss(currentCongestionWindow protocol.PacketNumber) protocol.PacketNumber {
|
|
if currentCongestionWindow < c.lastMaxCongestionWindow {
|
|
// We never reached the old max, so assume we are competing with another
|
|
// flow. Use our extra back off factor to allow the other flow to go up.
|
|
c.lastMaxCongestionWindow = protocol.PacketNumber(betaLastMax * float32(currentCongestionWindow))
|
|
} else {
|
|
c.lastMaxCongestionWindow = currentCongestionWindow
|
|
}
|
|
c.epoch = time.Time{} // Reset time.
|
|
return protocol.PacketNumber(float32(currentCongestionWindow) * c.beta())
|
|
}
|
|
|
|
// CongestionWindowAfterAck computes a new congestion window to use after a received ACK.
|
|
// Returns the new congestion window in packets. The new congestion window
|
|
// follows a cubic function that depends on the time passed since last
|
|
// packet loss.
|
|
func (c *Cubic) CongestionWindowAfterAck(currentCongestionWindow protocol.PacketNumber, delayMin time.Duration) protocol.PacketNumber {
|
|
c.ackedPacketsCount++ // Packets acked.
|
|
currentTime := c.clock.Now()
|
|
|
|
// Cubic is "independent" of RTT, the update is limited by the time elapsed.
|
|
if c.lastCongestionWindow == currentCongestionWindow && (currentTime.Sub(c.lastUpdateTime) <= maxCubicTimeInterval) {
|
|
return utils.MaxPacketNumber(c.lastTargetCongestionWindow, c.estimatedTCPcongestionWindow)
|
|
}
|
|
c.lastCongestionWindow = currentCongestionWindow
|
|
c.lastUpdateTime = currentTime
|
|
|
|
if c.epoch.IsZero() {
|
|
// First ACK after a loss event.
|
|
c.epoch = currentTime // Start of epoch.
|
|
c.ackedPacketsCount = 1 // Reset count.
|
|
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
|
|
c.estimatedTCPcongestionWindow = currentCongestionWindow
|
|
if c.lastMaxCongestionWindow <= currentCongestionWindow {
|
|
c.timeToOriginPoint = 0
|
|
c.originPointCongestionWindow = currentCongestionWindow
|
|
} else {
|
|
c.timeToOriginPoint = uint32(math.Cbrt(float64(cubeFactor * (c.lastMaxCongestionWindow - currentCongestionWindow))))
|
|
c.originPointCongestionWindow = c.lastMaxCongestionWindow
|
|
}
|
|
} else {
|
|
// If sender was app-limited, then freeze congestion window growth during
|
|
// app-limited period. Continue growth now by shifting the epoch-start
|
|
// through the app-limited period.
|
|
if shiftQuicCubicEpochWhenAppLimited && !c.appLimitedStartTime.IsZero() {
|
|
shift := currentTime.Sub(c.appLimitedStartTime)
|
|
c.epoch = c.epoch.Add(shift)
|
|
c.appLimitedStartTime = time.Time{}
|
|
}
|
|
}
|
|
|
|
// Change the time unit from microseconds to 2^10 fractions per second. Take
|
|
// the round trip time in account. This is done to allow us to use shift as a
|
|
// divide operator.
|
|
elapsedTime := int64((currentTime.Add(delayMin).Sub(c.epoch)/time.Microsecond)<<10) / 1000000
|
|
|
|
offset := int64(c.timeToOriginPoint) - elapsedTime
|
|
// Right-shifts of negative, signed numbers have
|
|
// implementation-dependent behavior. Force the offset to be
|
|
// positive, similar to the kernel implementation.
|
|
if offset < 0 {
|
|
offset = -offset
|
|
}
|
|
deltaCongestionWindow := protocol.PacketNumber((cubeCongestionWindowScale * offset * offset * offset) >> cubeScale)
|
|
var targetCongestionWindow protocol.PacketNumber
|
|
if elapsedTime > int64(c.timeToOriginPoint) {
|
|
targetCongestionWindow = c.originPointCongestionWindow + deltaCongestionWindow
|
|
} else {
|
|
targetCongestionWindow = c.originPointCongestionWindow - deltaCongestionWindow
|
|
}
|
|
// With dynamic beta/alpha based on number of active streams, it is possible
|
|
// for the required_ack_count to become much lower than acked_packets_count_
|
|
// suddenly, leading to more than one iteration through the following loop.
|
|
for {
|
|
// Update estimated TCP congestion_window.
|
|
requiredAckCount := protocol.PacketNumber(float32(c.estimatedTCPcongestionWindow) / c.alpha())
|
|
if c.ackedPacketsCount < requiredAckCount {
|
|
break
|
|
}
|
|
c.ackedPacketsCount -= requiredAckCount
|
|
c.estimatedTCPcongestionWindow++
|
|
}
|
|
|
|
// We have a new cubic congestion window.
|
|
c.lastTargetCongestionWindow = targetCongestionWindow
|
|
|
|
// Compute target congestion_window based on cubic target and estimated TCP
|
|
// congestion_window, use highest (fastest).
|
|
if targetCongestionWindow < c.estimatedTCPcongestionWindow {
|
|
targetCongestionWindow = c.estimatedTCPcongestionWindow
|
|
}
|
|
|
|
return targetCongestionWindow
|
|
}
|
|
|
|
// SetNumConnections sets the number of emulated connections
|
|
func (c *Cubic) SetNumConnections(n int) {
|
|
c.numConnections = n
|
|
}
|