1
0
mirror of https://github.com/woodpecker-ci/woodpecker.git synced 2024-12-18 08:26:45 +02:00
woodpecker/vendor/github.com/lib/pq/conn.go
2015-09-29 18:21:17 -07:00

1301 lines
30 KiB
Go

package pq
import (
"bufio"
"crypto/md5"
"crypto/tls"
"database/sql"
"database/sql/driver"
"encoding/binary"
"errors"
"fmt"
"github.com/lib/pq/oid"
"io"
"net"
"os"
"path"
"strconv"
"strings"
"time"
"unicode"
)
// Common error types
var (
ErrSSLNotSupported = errors.New("pq: SSL is not enabled on the server")
ErrNotSupported = errors.New("pq: Unsupported command")
ErrInFailedTransaction = errors.New("pq: Could not complete operation in a failed transaction")
)
type drv struct{}
func (d *drv) Open(name string) (driver.Conn, error) {
return Open(name)
}
func init() {
sql.Register("postgres", &drv{})
}
type parameterStatus struct {
// server version in the same format as server_version_num, or 0 if
// unavailable
serverVersion int
// the current location based on the TimeZone value of the session, if
// available
currentLocation *time.Location
}
type transactionStatus byte
const (
txnStatusIdle transactionStatus = 'I'
txnStatusIdleInTransaction transactionStatus = 'T'
txnStatusInFailedTransaction transactionStatus = 'E'
)
func (s transactionStatus) String() string {
switch s {
case txnStatusIdle:
return "idle"
case txnStatusIdleInTransaction:
return "idle in transaction"
case txnStatusInFailedTransaction:
return "in a failed transaction"
default:
errorf("unknown transactionStatus %d", s)
}
panic("not reached")
}
type Dialer interface {
Dial(network, address string) (net.Conn, error)
DialTimeout(network, address string, timeout time.Duration) (net.Conn, error)
}
type defaultDialer struct{}
func (d defaultDialer) Dial(ntw, addr string) (net.Conn, error) {
return net.Dial(ntw, addr)
}
func (d defaultDialer) DialTimeout(ntw, addr string, timeout time.Duration) (net.Conn, error) {
return net.DialTimeout(ntw, addr, timeout)
}
type conn struct {
c net.Conn
buf *bufio.Reader
namei int
scratch [512]byte
txnStatus transactionStatus
parameterStatus parameterStatus
saveMessageType byte
saveMessageBuffer *readBuf
}
func (c *conn) writeBuf(b byte) *writeBuf {
c.scratch[0] = b
w := writeBuf(c.scratch[:5])
return &w
}
func Open(name string) (_ driver.Conn, err error) {
return DialOpen(defaultDialer{}, name)
}
func DialOpen(d Dialer, name string) (_ driver.Conn, err error) {
defer func() {
// Handle any panics during connection initialization. Note that we
// specifically do *not* want to use errRecover(), as that would turn
// any connection errors into ErrBadConns, hiding the real error
// message from the user.
e := recover()
if e == nil {
// Do nothing
return
}
var ok bool
err, ok = e.(error)
if !ok {
err = fmt.Errorf("pq: unexpected error: %#v", e)
}
}()
o := make(values)
// A number of defaults are applied here, in this order:
//
// * Very low precedence defaults applied in every situation
// * Environment variables
// * Explicitly passed connection information
o.Set("host", "localhost")
o.Set("port", "5432")
// N.B.: Extra float digits should be set to 3, but that breaks
// Postgres 8.4 and older, where the max is 2.
o.Set("extra_float_digits", "2")
for k, v := range parseEnviron(os.Environ()) {
o.Set(k, v)
}
if strings.HasPrefix(name, "postgres://") {
name, err = ParseURL(name)
if err != nil {
return nil, err
}
}
if err := parseOpts(name, o); err != nil {
return nil, err
}
// Use the "fallback" application name if necessary
if fallback := o.Get("fallback_application_name"); fallback != "" {
if !o.Isset("application_name") {
o.Set("application_name", fallback)
}
}
o.Unset("fallback_application_name")
// We can't work with any client_encoding other than UTF-8 currently.
// However, we have historically allowed the user to set it to UTF-8
// explicitly, and there's no reason to break such programs, so allow that.
// Note that the "options" setting could also set client_encoding, but
// parsing its value is not worth it. Instead, we always explicitly send
// client_encoding as a separate run-time parameter, which should override
// anything set in options.
if enc := o.Get("client_encoding"); enc != "" && !isUTF8(enc) {
return nil, errors.New("client_encoding must be absent or 'UTF8'")
}
o.Set("client_encoding", "UTF8")
// DateStyle needs a similar treatment.
if datestyle := o.Get("datestyle"); datestyle != "" {
if datestyle != "ISO, MDY" {
panic(fmt.Sprintf("setting datestyle must be absent or %v; got %v",
"ISO, MDY", datestyle))
}
} else {
o.Set("datestyle", "ISO, MDY")
}
// If a user is not provided by any other means, the last
// resort is to use the current operating system provided user
// name.
if o.Get("user") == "" {
u, err := userCurrent()
if err != nil {
return nil, err
} else {
o.Set("user", u)
}
}
c, err := dial(d, o)
if err != nil {
return nil, err
}
cn := &conn{c: c}
cn.ssl(o)
cn.buf = bufio.NewReader(cn.c)
cn.startup(o)
// reset the deadline, in case one was set (see dial)
err = cn.c.SetDeadline(time.Time{})
return cn, err
}
func dial(d Dialer, o values) (net.Conn, error) {
ntw, addr := network(o)
timeout := o.Get("connect_timeout")
// Ensure the option will not be sent.
o.Unset("connect_timeout")
// Zero or not specified means wait indefinitely.
if timeout != "" && timeout != "0" {
seconds, err := strconv.ParseInt(timeout, 10, 0)
if err != nil {
return nil, fmt.Errorf("invalid value for parameter connect_timeout: %s", err)
}
duration := time.Duration(seconds) * time.Second
// connect_timeout should apply to the entire connection establishment
// procedure, so we both use a timeout for the TCP connection
// establishment and set a deadline for doing the initial handshake.
// The deadline is then reset after startup() is done.
deadline := time.Now().Add(duration)
conn, err := d.DialTimeout(ntw, addr, duration)
if err != nil {
return nil, err
}
err = conn.SetDeadline(deadline)
return conn, err
}
return d.Dial(ntw, addr)
}
func network(o values) (string, string) {
host := o.Get("host")
if strings.HasPrefix(host, "/") {
sockPath := path.Join(host, ".s.PGSQL."+o.Get("port"))
return "unix", sockPath
}
return "tcp", host + ":" + o.Get("port")
}
type values map[string]string
func (vs values) Set(k, v string) {
vs[k] = v
}
func (vs values) Get(k string) (v string) {
return vs[k]
}
func (vs values) Isset(k string) bool {
_, ok := vs[k]
return ok
}
func (vs values) Unset(k string) {
delete(vs, k)
}
// scanner implements a tokenizer for libpq-style option strings.
type scanner struct {
s []rune
i int
}
// newScanner returns a new scanner initialized with the option string s.
func newScanner(s string) *scanner {
return &scanner{[]rune(s), 0}
}
// Next returns the next rune.
// It returns 0, false if the end of the text has been reached.
func (s *scanner) Next() (rune, bool) {
if s.i >= len(s.s) {
return 0, false
}
r := s.s[s.i]
s.i++
return r, true
}
// SkipSpaces returns the next non-whitespace rune.
// It returns 0, false if the end of the text has been reached.
func (s *scanner) SkipSpaces() (rune, bool) {
r, ok := s.Next()
for unicode.IsSpace(r) && ok {
r, ok = s.Next()
}
return r, ok
}
// parseOpts parses the options from name and adds them to the values.
//
// The parsing code is based on conninfo_parse from libpq's fe-connect.c
func parseOpts(name string, o values) error {
s := newScanner(name)
for {
var (
keyRunes, valRunes []rune
r rune
ok bool
)
if r, ok = s.SkipSpaces(); !ok {
break
}
// Scan the key
for !unicode.IsSpace(r) && r != '=' {
keyRunes = append(keyRunes, r)
if r, ok = s.Next(); !ok {
break
}
}
// Skip any whitespace if we're not at the = yet
if r != '=' {
r, ok = s.SkipSpaces()
}
// The current character should be =
if r != '=' || !ok {
return fmt.Errorf(`missing "=" after %q in connection info string"`, string(keyRunes))
}
// Skip any whitespace after the =
if r, ok = s.SkipSpaces(); !ok {
// If we reach the end here, the last value is just an empty string as per libpq.
o.Set(string(keyRunes), "")
break
}
if r != '\'' {
for !unicode.IsSpace(r) {
if r == '\\' {
if r, ok = s.Next(); !ok {
return fmt.Errorf(`missing character after backslash`)
}
}
valRunes = append(valRunes, r)
if r, ok = s.Next(); !ok {
break
}
}
} else {
quote:
for {
if r, ok = s.Next(); !ok {
return fmt.Errorf(`unterminated quoted string literal in connection string`)
}
switch r {
case '\'':
break quote
case '\\':
r, _ = s.Next()
fallthrough
default:
valRunes = append(valRunes, r)
}
}
}
o.Set(string(keyRunes), string(valRunes))
}
return nil
}
func (cn *conn) isInTransaction() bool {
return cn.txnStatus == txnStatusIdleInTransaction ||
cn.txnStatus == txnStatusInFailedTransaction
}
func (cn *conn) checkIsInTransaction(intxn bool) {
if cn.isInTransaction() != intxn {
errorf("unexpected transaction status %v", cn.txnStatus)
}
}
func (cn *conn) Begin() (_ driver.Tx, err error) {
defer errRecover(&err)
cn.checkIsInTransaction(false)
_, commandTag, err := cn.simpleExec("BEGIN")
if err != nil {
return nil, err
}
if commandTag != "BEGIN" {
return nil, fmt.Errorf("unexpected command tag %s", commandTag)
}
if cn.txnStatus != txnStatusIdleInTransaction {
return nil, fmt.Errorf("unexpected transaction status %v", cn.txnStatus)
}
return cn, nil
}
func (cn *conn) Commit() (err error) {
defer errRecover(&err)
cn.checkIsInTransaction(true)
// We don't want the client to think that everything is okay if it tries
// to commit a failed transaction. However, no matter what we return,
// database/sql will release this connection back into the free connection
// pool so we have to abort the current transaction here. Note that you
// would get the same behaviour if you issued a COMMIT in a failed
// transaction, so it's also the least surprising thing to do here.
if cn.txnStatus == txnStatusInFailedTransaction {
if err := cn.Rollback(); err != nil {
return err
}
return ErrInFailedTransaction
}
_, commandTag, err := cn.simpleExec("COMMIT")
if err != nil {
return err
}
if commandTag != "COMMIT" {
return fmt.Errorf("unexpected command tag %s", commandTag)
}
cn.checkIsInTransaction(false)
return nil
}
func (cn *conn) Rollback() (err error) {
defer errRecover(&err)
cn.checkIsInTransaction(true)
_, commandTag, err := cn.simpleExec("ROLLBACK")
if err != nil {
return err
}
if commandTag != "ROLLBACK" {
return fmt.Errorf("unexpected command tag %s", commandTag)
}
cn.checkIsInTransaction(false)
return nil
}
func (cn *conn) gname() string {
cn.namei++
return strconv.FormatInt(int64(cn.namei), 10)
}
func (cn *conn) simpleExec(q string) (res driver.Result, commandTag string, err error) {
defer errRecover(&err)
b := cn.writeBuf('Q')
b.string(q)
cn.send(b)
for {
t, r := cn.recv1()
switch t {
case 'C':
res, commandTag = parseComplete(r.string())
case 'Z':
cn.processReadyForQuery(r)
// done
return
case 'E':
err = parseError(r)
case 'T', 'D', 'I':
// ignore any results
default:
errorf("unknown response for simple query: %q", t)
}
}
panic("not reached")
}
func (cn *conn) simpleQuery(q string) (res driver.Rows, err error) {
defer errRecover(&err)
st := &stmt{cn: cn, name: "", query: q}
b := cn.writeBuf('Q')
b.string(q)
cn.send(b)
for {
t, r := cn.recv1()
switch t {
case 'C', 'I':
// We allow queries which don't return any results through Query as
// well as Exec. We still have to give database/sql a rows object
// the user can close, though, to avoid connections from being
// leaked. A "rows" with done=true works fine for that purpose.
if err != nil {
errorf("unexpected message %q in simple query execution", t)
}
res = &rows{st: st, done: true}
case 'Z':
cn.processReadyForQuery(r)
// done
return
case 'E':
res = nil
err = parseError(r)
case 'D':
if res == nil {
errorf("unexpected DataRow in simple query execution")
}
// the query didn't fail; kick off to Next
cn.saveMessage(t, r)
return
case 'T':
// res might be non-nil here if we received a previous
// CommandComplete, but that's fine; just overwrite it
res = &rows{st: st}
st.cols, st.rowTyps = parseMeta(r)
// To work around a bug in QueryRow in Go 1.2 and earlier, wait
// until the first DataRow has been received.
default:
errorf("unknown response for simple query: %q", t)
}
}
panic("not reached")
}
func (cn *conn) prepareTo(q, stmtName string) (_ *stmt, err error) {
defer errRecover(&err)
st := &stmt{cn: cn, name: stmtName, query: q}
b := cn.writeBuf('P')
b.string(st.name)
b.string(q)
b.int16(0)
cn.send(b)
b = cn.writeBuf('D')
b.byte('S')
b.string(st.name)
cn.send(b)
cn.send(cn.writeBuf('S'))
for {
t, r := cn.recv1()
switch t {
case '1':
case 't':
nparams := int(r.int16())
st.paramTyps = make([]oid.Oid, nparams)
for i := range st.paramTyps {
st.paramTyps[i] = r.oid()
}
case 'T':
st.cols, st.rowTyps = parseMeta(r)
case 'n':
// no data
case 'Z':
cn.processReadyForQuery(r)
return st, err
case 'E':
err = parseError(r)
default:
errorf("unexpected describe rows response: %q", t)
}
}
panic("not reached")
}
func (cn *conn) Prepare(q string) (driver.Stmt, error) {
if len(q) >= 4 && strings.EqualFold(q[:4], "COPY") {
return cn.prepareCopyIn(q)
}
return cn.prepareTo(q, cn.gname())
}
func (cn *conn) Close() (err error) {
defer errRecover(&err)
// Don't go through send(); ListenerConn relies on us not scribbling on the
// scratch buffer of this connection.
err = cn.sendSimpleMessage('X')
if err != nil {
return err
}
return cn.c.Close()
}
// Implement the "Queryer" interface
func (cn *conn) Query(query string, args []driver.Value) (_ driver.Rows, err error) {
defer errRecover(&err)
// Check to see if we can use the "simpleQuery" interface, which is
// *much* faster than going through prepare/exec
if len(args) == 0 {
return cn.simpleQuery(query)
}
st, err := cn.prepareTo(query, "")
if err != nil {
panic(err)
}
st.exec(args)
return &rows{st: st}, nil
}
// Implement the optional "Execer" interface for one-shot queries
func (cn *conn) Exec(query string, args []driver.Value) (_ driver.Result, err error) {
defer errRecover(&err)
// Check to see if we can use the "simpleExec" interface, which is
// *much* faster than going through prepare/exec
if len(args) == 0 {
// ignore commandTag, our caller doesn't care
r, _, err := cn.simpleExec(query)
return r, err
}
// Use the unnamed statement to defer planning until bind
// time, or else value-based selectivity estimates cannot be
// used.
st, err := cn.prepareTo(query, "")
if err != nil {
panic(err)
}
r, err := st.Exec(args)
if err != nil {
panic(err)
}
return r, err
}
// Assumes len(*m) is > 5
func (cn *conn) send(m *writeBuf) {
b := (*m)[1:]
binary.BigEndian.PutUint32(b, uint32(len(b)))
if (*m)[0] == 0 {
*m = b
}
_, err := cn.c.Write(*m)
if err != nil {
panic(err)
}
}
// Send a message of type typ to the server on the other end of cn. The
// message should have no payload. This method does not use the scratch
// buffer.
func (cn *conn) sendSimpleMessage(typ byte) (err error) {
_, err = cn.c.Write([]byte{typ, '\x00', '\x00', '\x00', '\x04'})
return err
}
// saveMessage memorizes a message and its buffer in the conn struct.
// recvMessage will then return these values on the next call to it. This
// method is useful in cases where you have to see what the next message is
// going to be (e.g. to see whether it's an error or not) but you can't handle
// the message yourself.
func (cn *conn) saveMessage(typ byte, buf *readBuf) {
if cn.saveMessageType != 0 {
errorf("unexpected saveMessageType %d", cn.saveMessageType)
}
cn.saveMessageType = typ
cn.saveMessageBuffer = buf
}
// recvMessage receives any message from the backend, or returns an error if
// a problem occurred while reading the message.
func (cn *conn) recvMessage() (byte, *readBuf, error) {
// workaround for a QueryRow bug, see exec
if cn.saveMessageType != 0 {
t, r := cn.saveMessageType, cn.saveMessageBuffer
cn.saveMessageType = 0
cn.saveMessageBuffer = nil
return t, r, nil
}
x := cn.scratch[:5]
_, err := io.ReadFull(cn.buf, x)
if err != nil {
return 0, nil, err
}
// read the type and length of the message that follows
t := x[0]
n := int(binary.BigEndian.Uint32(x[1:])) - 4
var y []byte
if n <= len(cn.scratch) {
y = cn.scratch[:n]
} else {
y = make([]byte, n)
}
_, err = io.ReadFull(cn.buf, y)
if err != nil {
return 0, nil, err
}
return t, (*readBuf)(&y), nil
}
// recv receives a message from the backend, but if an error happened while
// reading the message or the received message was an ErrorResponse, it panics.
// NoticeResponses are ignored. This function should generally be used only
// during the startup sequence.
func (cn *conn) recv() (t byte, r *readBuf) {
for {
var err error
t, r, err = cn.recvMessage()
if err != nil {
panic(err)
}
switch t {
case 'E':
panic(parseError(r))
case 'N':
// ignore
default:
return
}
}
panic("not reached")
}
// recv1 receives a message from the backend, panicking if an error occurs
// while attempting to read it. All asynchronous messages are ignored, with
// the exception of ErrorResponse.
func (cn *conn) recv1() (t byte, r *readBuf) {
for {
var err error
t, r, err = cn.recvMessage()
if err != nil {
panic(err)
}
switch t {
case 'A', 'N':
// ignore
case 'S':
cn.processParameterStatus(r)
default:
return
}
}
panic("not reached")
}
func (cn *conn) ssl(o values) {
tlsConf := tls.Config{}
switch mode := o.Get("sslmode"); mode {
case "require", "":
tlsConf.InsecureSkipVerify = true
case "verify-full":
tlsConf.ServerName = o.Get("host")
case "disable":
return
default:
errorf(`unsupported sslmode %q; only "require" (default), "verify-full", and "disable" supported`, mode)
}
w := cn.writeBuf(0)
w.int32(80877103)
cn.send(w)
b := cn.scratch[:1]
_, err := io.ReadFull(cn.c, b)
if err != nil {
panic(err)
}
if b[0] != 'S' {
panic(ErrSSLNotSupported)
}
cn.c = tls.Client(cn.c, &tlsConf)
}
func (cn *conn) startup(o values) {
w := cn.writeBuf(0)
w.int32(196608)
// Send the backend the name of the database we want to connect to, and the
// user we want to connect as. Additionally, we send over any run-time
// parameters potentially included in the connection string. If the server
// doesn't recognize any of them, it will reply with an error.
for k, v := range o {
// skip options which can't be run-time parameters
if k == "password" || k == "host" ||
k == "port" || k == "sslmode" {
continue
}
// The protocol requires us to supply the database name as "database"
// instead of "dbname".
if k == "dbname" {
k = "database"
}
w.string(k)
w.string(v)
}
w.string("")
cn.send(w)
for {
t, r := cn.recv()
switch t {
case 'K':
case 'S':
cn.processParameterStatus(r)
case 'R':
cn.auth(r, o)
case 'Z':
cn.processReadyForQuery(r)
return
default:
errorf("unknown response for startup: %q", t)
}
}
}
func (cn *conn) auth(r *readBuf, o values) {
switch code := r.int32(); code {
case 0:
// OK
case 3:
w := cn.writeBuf('p')
w.string(o.Get("password"))
cn.send(w)
t, r := cn.recv()
if t != 'R' {
errorf("unexpected password response: %q", t)
}
if r.int32() != 0 {
errorf("unexpected authentication response: %q", t)
}
case 5:
s := string(r.next(4))
w := cn.writeBuf('p')
w.string("md5" + md5s(md5s(o.Get("password")+o.Get("user"))+s))
cn.send(w)
t, r := cn.recv()
if t != 'R' {
errorf("unexpected password response: %q", t)
}
if r.int32() != 0 {
errorf("unexpected authentication response: %q", t)
}
default:
errorf("unknown authentication response: %d", code)
}
}
type stmt struct {
cn *conn
name string
query string
cols []string
rowTyps []oid.Oid
paramTyps []oid.Oid
closed bool
}
func (st *stmt) Close() (err error) {
if st.closed {
return nil
}
defer errRecover(&err)
w := st.cn.writeBuf('C')
w.byte('S')
w.string(st.name)
st.cn.send(w)
st.cn.send(st.cn.writeBuf('S'))
t, _ := st.cn.recv1()
if t != '3' {
errorf("unexpected close response: %q", t)
}
st.closed = true
t, r := st.cn.recv1()
if t != 'Z' {
errorf("expected ready for query, but got: %q", t)
}
st.cn.processReadyForQuery(r)
return nil
}
func (st *stmt) Query(v []driver.Value) (r driver.Rows, err error) {
defer errRecover(&err)
st.exec(v)
return &rows{st: st}, nil
}
func (st *stmt) Exec(v []driver.Value) (res driver.Result, err error) {
defer errRecover(&err)
if len(v) == 0 {
// ignore commandTag, our caller doesn't care
r, _, err := st.cn.simpleExec(st.query)
return r, err
}
st.exec(v)
for {
t, r := st.cn.recv1()
switch t {
case 'E':
err = parseError(r)
case 'C':
res, _ = parseComplete(r.string())
case 'Z':
st.cn.processReadyForQuery(r)
// done
return
case 'T', 'D':
// ignore any results
default:
errorf("unknown exec response: %q", t)
}
}
panic("not reached")
}
func (st *stmt) exec(v []driver.Value) {
if len(v) != len(st.paramTyps) {
errorf("got %d parameters but the statement requires %d", len(v), len(st.paramTyps))
}
w := st.cn.writeBuf('B')
w.string("")
w.string(st.name)
w.int16(0)
w.int16(len(v))
for i, x := range v {
if x == nil {
w.int32(-1)
} else {
b := encode(&st.cn.parameterStatus, x, st.paramTyps[i])
w.int32(len(b))
w.bytes(b)
}
}
w.int16(0)
st.cn.send(w)
w = st.cn.writeBuf('E')
w.string("")
w.int32(0)
st.cn.send(w)
st.cn.send(st.cn.writeBuf('S'))
var err error
for {
t, r := st.cn.recv1()
switch t {
case 'E':
err = parseError(r)
case '2':
if err != nil {
panic(err)
}
goto workaround
case 'Z':
st.cn.processReadyForQuery(r)
if err != nil {
panic(err)
}
return
default:
errorf("unexpected bind response: %q", t)
}
}
// Work around a bug in sql.DB.QueryRow: in Go 1.2 and earlier it ignores
// any errors from rows.Next, which masks errors that happened during the
// execution of the query. To avoid the problem in common cases, we wait
// here for one more message from the database. If it's not an error the
// query will likely succeed (or perhaps has already, if it's a
// CommandComplete), so we push the message into the conn struct; recv1
// will return it as the next message for rows.Next or rows.Close.
// However, if it's an error, we wait until ReadyForQuery and then return
// the error to our caller.
workaround:
for {
t, r := st.cn.recv1()
switch t {
case 'E':
err = parseError(r)
case 'C', 'D', 'I':
// the query didn't fail, but we can't process this message
st.cn.saveMessage(t, r)
return
case 'Z':
if err == nil {
errorf("unexpected ReadyForQuery during extended query execution")
}
st.cn.processReadyForQuery(r)
panic(err)
default:
errorf("unexpected message during query execution: %q", t)
}
}
}
func (st *stmt) NumInput() int {
return len(st.paramTyps)
}
// parseComplete parses the "command tag" from a CommandComplete message, and
// returns the number of rows affected (if applicable) and a string
// identifying only the command that was executed, e.g. "ALTER TABLE". If the
// command tag could not be parsed, parseComplete panics.
func parseComplete(commandTag string) (driver.Result, string) {
commandsWithAffectedRows := []string{
"SELECT ",
// INSERT is handled below
"UPDATE ",
"DELETE ",
"FETCH ",
"MOVE ",
"COPY ",
}
var affectedRows *string
for _, tag := range commandsWithAffectedRows {
if strings.HasPrefix(commandTag, tag) {
t := commandTag[len(tag):]
affectedRows = &t
commandTag = tag[:len(tag)-1]
break
}
}
// INSERT also includes the oid of the inserted row in its command tag.
// Oids in user tables are deprecated, and the oid is only returned when
// exactly one row is inserted, so it's unlikely to be of value to any
// real-world application and we can ignore it.
if affectedRows == nil && strings.HasPrefix(commandTag, "INSERT ") {
parts := strings.Split(commandTag, " ")
if len(parts) != 3 {
errorf("unexpected INSERT command tag %s", commandTag)
}
affectedRows = &parts[len(parts)-1]
commandTag = "INSERT"
}
// There should be no affected rows attached to the tag, just return it
if affectedRows == nil {
return driver.RowsAffected(0), commandTag
}
n, err := strconv.ParseInt(*affectedRows, 10, 64)
if err != nil {
errorf("could not parse commandTag: %s", err)
}
return driver.RowsAffected(n), commandTag
}
type rows struct {
st *stmt
done bool
}
func (rs *rows) Close() error {
for {
err := rs.Next(nil)
switch err {
case nil:
case io.EOF:
return nil
default:
return err
}
}
panic("not reached")
}
func (rs *rows) Columns() []string {
return rs.st.cols
}
func (rs *rows) Next(dest []driver.Value) (err error) {
if rs.done {
return io.EOF
}
defer errRecover(&err)
conn := rs.st.cn
for {
t, r := conn.recv1()
switch t {
case 'E':
err = parseError(r)
case 'C', 'I':
continue
case 'Z':
conn.processReadyForQuery(r)
rs.done = true
if err != nil {
return err
}
return io.EOF
case 'D':
n := r.int16()
if n < len(dest) {
dest = dest[:n]
}
for i := range dest {
l := r.int32()
if l == -1 {
dest[i] = nil
continue
}
dest[i] = decode(&conn.parameterStatus, r.next(l), rs.st.rowTyps[i])
}
return
default:
errorf("unexpected message after execute: %q", t)
}
}
panic("not reached")
}
// QuoteIdentifier quotes an "identifier" (e.g. a table or a column name) to be
// used as part of an SQL statement. For example:
//
// tblname := "my_table"
// data := "my_data"
// err = db.Exec(fmt.Sprintf("INSERT INTO %s VALUES ($1)", pq.QuoteIdentifier(tblname)), data)
//
// Any double quotes in name will be escaped. The quoted identifier will be
// case sensitive when used in a query. If the input string contains a zero
// byte, the result will be truncated immediately before it.
func QuoteIdentifier(name string) string {
end := strings.IndexRune(name, 0)
if end > -1 {
name = name[:end]
}
return `"` + strings.Replace(name, `"`, `""`, -1) + `"`
}
func md5s(s string) string {
h := md5.New()
h.Write([]byte(s))
return fmt.Sprintf("%x", h.Sum(nil))
}
func (c *conn) processParameterStatus(r *readBuf) {
var err error
param := r.string()
switch param {
case "server_version":
var major1 int
var major2 int
var minor int
_, err = fmt.Sscanf(r.string(), "%d.%d.%d", &major1, &major2, &minor)
if err == nil {
c.parameterStatus.serverVersion = major1*10000 + major2*100 + minor
}
case "TimeZone":
c.parameterStatus.currentLocation, err = time.LoadLocation(r.string())
if err != nil {
c.parameterStatus.currentLocation = nil
}
default:
// ignore
}
}
func (c *conn) processReadyForQuery(r *readBuf) {
c.txnStatus = transactionStatus(r.byte())
}
func parseMeta(r *readBuf) (cols []string, rowTyps []oid.Oid) {
n := r.int16()
cols = make([]string, n)
rowTyps = make([]oid.Oid, n)
for i := range cols {
cols[i] = r.string()
r.next(6)
rowTyps[i] = r.oid()
r.next(8)
}
return
}
// parseEnviron tries to mimic some of libpq's environment handling
//
// To ease testing, it does not directly reference os.Environ, but is
// designed to accept its output.
//
// Environment-set connection information is intended to have a higher
// precedence than a library default but lower than any explicitly
// passed information (such as in the URL or connection string).
func parseEnviron(env []string) (out map[string]string) {
out = make(map[string]string)
for _, v := range env {
parts := strings.SplitN(v, "=", 2)
accrue := func(keyname string) {
out[keyname] = parts[1]
}
unsupported := func() {
panic(fmt.Sprintf("setting %v not supported", parts[0]))
}
// The order of these is the same as is seen in the
// PostgreSQL 9.1 manual. Unsupported but well-defined
// keys cause a panic; these should be unset prior to
// execution. Options which pq expects to be set to a
// certain value are allowed, but must be set to that
// value if present (they can, of course, be absent).
switch parts[0] {
case "PGHOST":
accrue("host")
case "PGHOSTADDR":
unsupported()
case "PGPORT":
accrue("port")
case "PGDATABASE":
accrue("dbname")
case "PGUSER":
accrue("user")
case "PGPASSWORD":
accrue("password")
case "PGPASSFILE", "PGSERVICE", "PGSERVICEFILE", "PGREALM":
unsupported()
case "PGOPTIONS":
accrue("options")
case "PGAPPNAME":
accrue("application_name")
case "PGSSLMODE":
accrue("sslmode")
case "PGREQUIRESSL", "PGSSLCERT", "PGSSLKEY", "PGSSLROOTCERT", "PGSSLCRL":
unsupported()
case "PGREQUIREPEER":
unsupported()
case "PGKRBSRVNAME", "PGGSSLIB":
unsupported()
case "PGCONNECT_TIMEOUT":
accrue("connect_timeout")
case "PGCLIENTENCODING":
accrue("client_encoding")
case "PGDATESTYLE":
accrue("datestyle")
case "PGTZ":
accrue("timezone")
case "PGGEQO":
accrue("geqo")
case "PGSYSCONFDIR", "PGLOCALEDIR":
unsupported()
}
}
return out
}
// isUTF8 returns whether name is a fuzzy variation of the string "UTF-8".
func isUTF8(name string) bool {
// Recognize all sorts of silly things as "UTF-8", like Postgres does
s := strings.Map(alnumLowerASCII, name)
return s == "utf8" || s == "unicode"
}
func alnumLowerASCII(ch rune) rune {
if 'A' <= ch && ch <= 'Z' {
return ch + ('a' - 'A')
}
if 'a' <= ch && ch <= 'z' || '0' <= ch && ch <= '9' {
return ch
}
return -1 // discard
}