1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-11-23 21:54:53 +02:00
Files
FFmpeg/tests/checkasm/sw_rgb.c

875 lines
32 KiB
C
Raw Normal View History

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
#include "libavutil/pixdesc.h"
#include "libswscale/rgb2rgb.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
static const uint8_t width[] = {12, 16, 20, 32, 36, 128};
static const struct {uint8_t w, h, s;} planes[] = {
{12,16,12}, {16,16,16}, {20,23,25}, {32,18,48}, {8,128,16}, {128,128,128}
};
#define MAX_STRIDE 128
#define MAX_HEIGHT 128
static void check_shuffle_bytes(void * func, const char * report)
{
int i;
LOCAL_ALIGNED_32(uint8_t, src0, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, src1, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, dst0, [MAX_STRIDE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [MAX_STRIDE]);
declare_func(void, const uint8_t *src, uint8_t *dst, int src_size);
memset(dst0, 0, MAX_STRIDE);
memset(dst1, 0, MAX_STRIDE);
randomize_buffers(src0, MAX_STRIDE);
memcpy(src1, src0, MAX_STRIDE);
if (check_func(func, "%s", report)) {
for (i = 0; i < 6; i ++) {
call_ref(src0, dst0, width[i]);
call_new(src1, dst1, width[i]);
if (memcmp(dst0, dst1, MAX_STRIDE))
fail();
}
bench_new(src0, dst0, width[5]);
}
}
static void check_uyvy_to_422p(void)
{
int i;
LOCAL_ALIGNED_32(uint8_t, src0, [MAX_STRIDE * MAX_HEIGHT * 2]);
LOCAL_ALIGNED_32(uint8_t, src1, [MAX_STRIDE * MAX_HEIGHT * 2]);
LOCAL_ALIGNED_32(uint8_t, dst_y_0, [MAX_STRIDE * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_y_1, [MAX_STRIDE * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_u_0, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_u_1, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_v_0, [(MAX_STRIDE/2) * MAX_HEIGHT]);
LOCAL_ALIGNED_32(uint8_t, dst_v_1, [(MAX_STRIDE/2) * MAX_HEIGHT]);
declare_func(void, uint8_t *ydst, uint8_t *udst, uint8_t *vdst,
const uint8_t *src, int width, int height,
int lumStride, int chromStride, int srcStride);
randomize_buffers(src0, MAX_STRIDE * MAX_HEIGHT * 2);
memcpy(src1, src0, MAX_STRIDE * MAX_HEIGHT * 2);
if (check_func(uyvytoyuv422, "uyvytoyuv422")) {
for (i = 0; i < 6; i ++) {
memset(dst_y_0, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst_y_1, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst_u_0, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_u_1, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_v_0, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
memset(dst_v_1, 0, (MAX_STRIDE/2) * MAX_HEIGHT);
call_ref(dst_y_0, dst_u_0, dst_v_0, src0, planes[i].w, planes[i].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[i].s);
call_new(dst_y_1, dst_u_1, dst_v_1, src1, planes[i].w, planes[i].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[i].s);
if (memcmp(dst_y_0, dst_y_1, MAX_STRIDE * MAX_HEIGHT) ||
memcmp(dst_u_0, dst_u_1, (MAX_STRIDE/2) * MAX_HEIGHT) ||
memcmp(dst_v_0, dst_v_1, (MAX_STRIDE/2) * MAX_HEIGHT))
fail();
}
bench_new(dst_y_1, dst_u_1, dst_v_1, src1, planes[5].w, planes[5].h,
MAX_STRIDE, MAX_STRIDE / 2, planes[5].s);
}
}
2024-08-28 20:27:41 +02:00
#define NUM_LINES 5
#define MAX_LINE_SIZE 1920
#define BUFSIZE (NUM_LINES * MAX_LINE_SIZE)
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
{
for (size_t i = 0; i < n; i++) {
if (abs(ref[i] - test[i]) > accuracy)
return 1;
}
return 0;
}
static void check_rgb24toyv12(SwsContext *sws)
2024-08-28 20:27:41 +02:00
{
static const int input_sizes[] = {16, 128, 512, MAX_LINE_SIZE, -MAX_LINE_SIZE};
SwsInternal *ctx = sws_internal(sws);
2024-08-28 20:27:41 +02:00
LOCAL_ALIGNED_32(uint8_t, src, [BUFSIZE * 3]);
LOCAL_ALIGNED_32(uint8_t, buf_y_0, [BUFSIZE]);
LOCAL_ALIGNED_32(uint8_t, buf_y_1, [BUFSIZE]);
LOCAL_ALIGNED_32(uint8_t, buf_u_0, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_u_1, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_v_0, [BUFSIZE / 4]);
LOCAL_ALIGNED_32(uint8_t, buf_v_1, [BUFSIZE / 4]);
declare_func(void, const uint8_t *src, uint8_t *ydst, uint8_t *udst,
uint8_t *vdst, int width, int height, int lumStride,
int chromStride, int srcStride, const int32_t *rgb2yuv);
2024-08-28 20:27:41 +02:00
randomize_buffers(src, BUFSIZE * 3);
for (int isi = 0; isi < FF_ARRAY_ELEMS(input_sizes); isi++) {
int input_size = input_sizes[isi];
int negstride = input_size < 0;
const char *negstride_str = negstride ? "_negstride" : "";
int width = FFABS(input_size);
int linesize = width + 32;
/* calculate height based on specified width to use the entire buffer. */
int height = (BUFSIZE / linesize) & ~1;
uint8_t *src0 = src;
uint8_t *src1 = src;
uint8_t *dst_y_0 = buf_y_0;
uint8_t *dst_y_1 = buf_y_1;
uint8_t *dst_u_0 = buf_u_0;
uint8_t *dst_u_1 = buf_u_1;
uint8_t *dst_v_0 = buf_v_0;
uint8_t *dst_v_1 = buf_v_1;
if (negstride) {
src0 += (height - 1) * (linesize * 3);
src1 += (height - 1) * (linesize * 3);
dst_y_0 += (height - 1) * linesize;
dst_y_1 += (height - 1) * linesize;
dst_u_0 += ((height / 2) - 1) * (linesize / 2);
dst_u_1 += ((height / 2) - 1) * (linesize / 2);
dst_v_0 += ((height / 2) - 1) * (linesize / 2);
dst_v_1 += ((height / 2) - 1) * (linesize / 2);
linesize *= -1;
}
if (check_func(ff_rgb24toyv12, "rgb24toyv12_%d_%d%s", width, height, negstride_str)) {
memset(buf_y_0, 0xFF, BUFSIZE);
memset(buf_y_1, 0xFF, BUFSIZE);
memset(buf_u_0, 0xFF, BUFSIZE / 4);
memset(buf_u_1, 0xFF, BUFSIZE / 4);
memset(buf_v_0, 0xFF, BUFSIZE / 4);
memset(buf_v_1, 0xFF, BUFSIZE / 4);
call_ref(src0, dst_y_0, dst_u_0, dst_v_0, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
call_new(src1, dst_y_1, dst_u_1, dst_v_1, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
if (cmp_off_by_n(buf_y_0, buf_y_1, BUFSIZE, 1) ||
cmp_off_by_n(buf_u_0, buf_u_1, BUFSIZE / 4, 1) ||
cmp_off_by_n(buf_v_0, buf_v_1, BUFSIZE / 4, 1))
fail();
bench_new(src1, dst_y_1, dst_u_1, dst_v_1, width, height,
linesize, linesize / 2, linesize * 3, ctx->input_rgb2yuv_table);
}
}
}
#undef NUM_LINES
#undef MAX_LINE_SIZE
#undef BUFSIZE
static void check_interleave_bytes(void)
{
LOCAL_ALIGNED_16(uint8_t, src0_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, src1_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst0_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
LOCAL_ALIGNED_16(uint8_t, dst1_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
// Intentionally using unaligned buffers, as this function doesn't have
// any alignment requirements.
uint8_t *src0 = src0_buf + 1;
uint8_t *src1 = src1_buf + 1;
uint8_t *dst0 = dst0_buf + 2;
uint8_t *dst1 = dst1_buf + 2;
declare_func(void, const uint8_t *, const uint8_t *,
uint8_t *, int, int, int, int, int);
randomize_buffers(src0, MAX_STRIDE * MAX_HEIGHT);
randomize_buffers(src1, MAX_STRIDE * MAX_HEIGHT);
if (check_func(interleaveBytes, "interleave_bytes")) {
for (int i = 0; i <= 16; i++) {
// Try all widths [1,16], and try one random width.
int w = i > 0 ? i : (1 + (rnd() % (MAX_STRIDE-2)));
int h = 1 + (rnd() % (MAX_HEIGHT-2));
int src0_offset = 0, src0_stride = MAX_STRIDE;
int src1_offset = 0, src1_stride = MAX_STRIDE;
int dst_offset = 0, dst_stride = 2 * MAX_STRIDE;
memset(dst0, 0, 2 * MAX_STRIDE * MAX_HEIGHT);
memset(dst1, 0, 2 * MAX_STRIDE * MAX_HEIGHT);
// Try different combinations of negative strides
if (i & 1) {
src0_offset = (h-1)*src0_stride;
src0_stride = -src0_stride;
}
if (i & 2) {
src1_offset = (h-1)*src1_stride;
src1_stride = -src1_stride;
}
if (i & 4) {
dst_offset = (h-1)*dst_stride;
dst_stride = -dst_stride;
}
call_ref(src0 + src0_offset, src1 + src1_offset, dst0 + dst_offset,
w, h, src0_stride, src1_stride, dst_stride);
call_new(src0 + src0_offset, src1 + src1_offset, dst1 + dst_offset,
w, h, src0_stride, src1_stride, dst_stride);
// Check a one pixel-pair edge around the destination area,
// to catch overwrites past the end.
checkasm_check(uint8_t, dst0, 2*MAX_STRIDE, dst1, 2*MAX_STRIDE,
2 * w + 2, h + 1, "dst");
}
bench_new(src0, src1, dst1, 127, MAX_HEIGHT,
MAX_STRIDE, MAX_STRIDE, 2*MAX_STRIDE);
}
if (check_func(interleaveBytes, "interleave_bytes_aligned")) {
// Bench the function in a more typical case, with aligned
// buffers and widths.
bench_new(src0_buf, src1_buf, dst1_buf, 128, MAX_HEIGHT,
MAX_STRIDE, MAX_STRIDE, 2*MAX_STRIDE);
}
}
2024-09-01 15:01:32 +02:00
static void check_deinterleave_bytes(void)
{
LOCAL_ALIGNED_16(uint8_t, src_buf, [2*MAX_STRIDE*MAX_HEIGHT+2]);
LOCAL_ALIGNED_16(uint8_t, dst0_u_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst0_v_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst1_u_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
LOCAL_ALIGNED_16(uint8_t, dst1_v_buf, [MAX_STRIDE*MAX_HEIGHT+1]);
// Intentionally using unaligned buffers, as this function doesn't have
// any alignment requirements.
uint8_t *src = src_buf + 2;
uint8_t *dst0_u = dst0_u_buf + 1;
uint8_t *dst0_v = dst0_v_buf + 1;
uint8_t *dst1_u = dst1_u_buf + 1;
uint8_t *dst1_v = dst1_v_buf + 1;
declare_func(void, const uint8_t *src, uint8_t *dst1, uint8_t *dst2,
int width, int height, int srcStride,
int dst1Stride, int dst2Stride);
randomize_buffers(src, 2*MAX_STRIDE*MAX_HEIGHT);
2024-09-01 15:01:32 +02:00
if (check_func(deinterleaveBytes, "deinterleave_bytes")) {
for (int i = 0; i <= 16; i++) {
// Try all widths [1,16], and try one random width.
int w = i > 0 ? i : (1 + (rnd() % (MAX_STRIDE-2)));
int h = 1 + (rnd() % (MAX_HEIGHT-2));
int src_offset = 0, src_stride = 2 * MAX_STRIDE;
int dst_u_offset = 0, dst_u_stride = MAX_STRIDE;
int dst_v_offset = 0, dst_v_stride = MAX_STRIDE;
memset(dst0_u, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst0_v, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst1_u, 0, MAX_STRIDE * MAX_HEIGHT);
memset(dst1_v, 0, MAX_STRIDE * MAX_HEIGHT);
// Try different combinations of negative strides
if (i & 1) {
src_offset = (h-1)*src_stride;
src_stride = -src_stride;
}
if (i & 2) {
dst_u_offset = (h-1)*dst_u_stride;
dst_u_stride = -dst_u_stride;
}
if (i & 4) {
dst_v_offset = (h-1)*dst_v_stride;
dst_v_stride = -dst_v_stride;
}
call_ref(src + src_offset, dst0_u + dst_u_offset, dst0_v + dst_v_offset,
w, h, src_stride, dst_u_stride, dst_v_stride);
call_new(src + src_offset, dst1_u + dst_u_offset, dst1_v + dst_v_offset,
w, h, src_stride, dst_u_stride, dst_v_stride);
// Check a one pixel-pair edge around the destination area,
// to catch overwrites past the end.
checkasm_check(uint8_t, dst0_u, MAX_STRIDE, dst1_u, MAX_STRIDE,
w + 1, h + 1, "dst_u");
checkasm_check(uint8_t, dst0_v, MAX_STRIDE, dst1_v, MAX_STRIDE,
w + 1, h + 1, "dst_v");
}
bench_new(src, dst1_u, dst1_v, 127, MAX_HEIGHT,
2*MAX_STRIDE, MAX_STRIDE, MAX_STRIDE);
}
if (check_func(deinterleaveBytes, "deinterleave_bytes_aligned")) {
// Bench the function in a more typical case, with aligned
// buffers and widths.
bench_new(src_buf, dst1_u_buf, dst1_v_buf, 128, MAX_HEIGHT,
2*MAX_STRIDE, MAX_STRIDE, MAX_STRIDE);
}
}
#define MAX_LINE_SIZE 1920
static const int input_sizes[] = {8, 128, 1080, MAX_LINE_SIZE};
static const enum AVPixelFormat rgb_formats[] = {
AV_PIX_FMT_RGB24,
AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA,
AV_PIX_FMT_BGRA,
AV_PIX_FMT_ABGR,
AV_PIX_FMT_ARGB,
};
static void check_rgb_to_y(SwsContext *sws)
{
SwsInternal *ctx = sws_internal(sws);
LOCAL_ALIGNED_16(uint8_t, src24, [MAX_LINE_SIZE * 3]);
LOCAL_ALIGNED_16(uint8_t, src32, [MAX_LINE_SIZE * 4]);
LOCAL_ALIGNED_32(uint8_t, dst0_y, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_32(uint8_t, dst1_y, [MAX_LINE_SIZE * 2]);
declare_func(void, uint8_t *dst, const uint8_t *src,
const uint8_t *unused1, const uint8_t *unused2, int width,
uint32_t *rgb2yuv, void *opq);
randomize_buffers(src24, MAX_LINE_SIZE * 3);
randomize_buffers(src32, MAX_LINE_SIZE * 4);
for (int i = 0; i < FF_ARRAY_ELEMS(rgb_formats); i++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(rgb_formats[i]);
sws->src_format = rgb_formats[i];
ff_sws_init_scale(ctx);
for (int j = 0; j < FF_ARRAY_ELEMS(input_sizes); j++) {
int w = input_sizes[j];
if (check_func(ctx->lumToYV12, "%s_to_y_%d", desc->name, w)) {
const uint8_t *src = desc->nb_components == 3 ? src24 : src32;
memset(dst0_y, 0xFA, MAX_LINE_SIZE * 2);
memset(dst1_y, 0xFA, MAX_LINE_SIZE * 2);
call_ref(dst0_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
call_new(dst1_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
if (memcmp(dst0_y, dst1_y, w * 2))
fail();
if (desc->nb_components == 3 ||
// only bench native endian formats
(sws->src_format == AV_PIX_FMT_RGB32 || sws->src_format == AV_PIX_FMT_RGB32_1))
bench_new(dst1_y, src, NULL, NULL, w, ctx->input_rgb2yuv_table, NULL);
}
}
}
}
static void check_rgb_to_uv(SwsContext *sws)
{
SwsInternal *ctx = sws_internal(sws);
LOCAL_ALIGNED_16(uint8_t, src24, [MAX_LINE_SIZE * 3]);
LOCAL_ALIGNED_16(uint8_t, src32, [MAX_LINE_SIZE * 4]);
LOCAL_ALIGNED_16(uint8_t, dst0_u, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0_v, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1_u, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1_v, [MAX_LINE_SIZE * 2]);
declare_func(void, uint8_t *dstU, uint8_t *dstV,
const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal, void *opq);
randomize_buffers(src24, MAX_LINE_SIZE * 3);
randomize_buffers(src32, MAX_LINE_SIZE * 4);
for (int i = 0; i < 2 * FF_ARRAY_ELEMS(rgb_formats); i++) {
enum AVPixelFormat src_fmt = rgb_formats[i / 2];
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(src_fmt);
ctx->chrSrcHSubSample = (i % 2) ? 0 : 1;
sws->src_format = src_fmt;
sws->dst_format = ctx->chrSrcHSubSample ? AV_PIX_FMT_YUV420P : AV_PIX_FMT_YUV444P;
ff_sws_init_scale(ctx);
for (int j = 0; j < FF_ARRAY_ELEMS(input_sizes); j++) {
int w = input_sizes[j] >> ctx->chrSrcHSubSample;
if (check_func(ctx->chrToYV12, "%s_to_uv%s_%d", desc->name,
ctx->chrSrcHSubSample ? "_half" : "",
input_sizes[j])) {
const uint8_t *src = desc->nb_components == 3 ? src24 : src32;
memset(dst0_u, 0xFF, MAX_LINE_SIZE * 2);
memset(dst0_v, 0xFF, MAX_LINE_SIZE * 2);
memset(dst1_u, 0xFF, MAX_LINE_SIZE * 2);
memset(dst1_v, 0xFF, MAX_LINE_SIZE * 2);
call_ref(dst0_u, dst0_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
call_new(dst1_u, dst1_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
if (memcmp(dst0_u, dst1_u, w * 2) || memcmp(dst0_v, dst1_v, w * 2))
fail();
if (desc->nb_components == 3 ||
// only bench native endian formats
(sws->src_format == AV_PIX_FMT_RGB32 || sws->src_format == AV_PIX_FMT_RGB32_1))
bench_new(dst1_u, dst1_v, NULL, src, src, w, ctx->input_rgb2yuv_table, NULL);
}
}
}
}
static void check_rgba_to_a(SwsContext *sws)
{
SwsInternal *ctx = sws_internal(sws);
LOCAL_ALIGNED_16(uint8_t, src, [MAX_LINE_SIZE * 4]);
LOCAL_ALIGNED_32(uint8_t, dst0_y, [MAX_LINE_SIZE * 2]);
LOCAL_ALIGNED_32(uint8_t, dst1_y, [MAX_LINE_SIZE * 2]);
declare_func(void, uint8_t *dst, const uint8_t *src1,
const uint8_t *src2, const uint8_t *src3, int width,
uint32_t *rgb2yuv, void *opq);
randomize_buffers(src, MAX_LINE_SIZE * 4);
for (int i = 0; i < FF_ARRAY_ELEMS(rgb_formats); i++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(rgb_formats[i]);
if (desc->nb_components < 4)
continue;
sws->src_format = rgb_formats[i];
ff_sws_init_scale(ctx);
for (int j = 0; j < FF_ARRAY_ELEMS(input_sizes); j++) {
int w = input_sizes[j];
if (check_func(ctx->alpToYV12, "%s_to_y_%d", desc->name, w)) {
memset(dst0_y, 0xFA, MAX_LINE_SIZE * 2);
memset(dst1_y, 0xFA, MAX_LINE_SIZE * 2);
call_ref(dst0_y, NULL, NULL, src, w, ctx->input_rgb2yuv_table, NULL);
call_new(dst1_y, NULL, NULL, src, w, ctx->input_rgb2yuv_table, NULL);
if (memcmp(dst0_y, dst1_y, w * 2))
fail();
// only bench native endian formats
if (sws->src_format == AV_PIX_FMT_RGB32 || sws->src_format == AV_PIX_FMT_RGB32_1)
bench_new(dst1_y, NULL, NULL, src, w, ctx->input_rgb2yuv_table, NULL);
}
}
}
}
static const int packed_rgb_fmts[] = {
AV_PIX_FMT_RGB24,
AV_PIX_FMT_BGR24,
AV_PIX_FMT_ARGB,
AV_PIX_FMT_RGBA,
AV_PIX_FMT_ABGR,
AV_PIX_FMT_BGRA,
AV_PIX_FMT_RGB48BE,
AV_PIX_FMT_RGB48LE,
AV_PIX_FMT_RGB565BE,
AV_PIX_FMT_RGB565LE,
AV_PIX_FMT_RGB555BE,
AV_PIX_FMT_RGB555LE,
AV_PIX_FMT_BGR565BE,
AV_PIX_FMT_BGR565LE,
AV_PIX_FMT_BGR555BE,
AV_PIX_FMT_BGR555LE,
AV_PIX_FMT_RGB444LE,
AV_PIX_FMT_RGB444BE,
AV_PIX_FMT_BGR444LE,
AV_PIX_FMT_BGR444BE,
AV_PIX_FMT_BGR48BE,
AV_PIX_FMT_BGR48LE,
AV_PIX_FMT_RGBA64BE,
AV_PIX_FMT_RGBA64LE,
AV_PIX_FMT_BGRA64BE,
AV_PIX_FMT_BGRA64LE,
AV_PIX_FMT_RGB8,
AV_PIX_FMT_BGR8,
AV_PIX_FMT_RGB4,
AV_PIX_FMT_BGR4,
AV_PIX_FMT_RGB4_BYTE,
AV_PIX_FMT_BGR4_BYTE,
};
#define INPUT_SIZE 512
static void check_yuv2packed1(void)
{
static const int alpha_values[] = {0, 2048, 4096};
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT,
void, SwsInternal *c, const int16_t *lumSrc,
const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
const int16_t *alpSrc, uint8_t *dest,
int dstW, int uvalpha, int y);
const int16_t *luma;
const int16_t *chru[2];
const int16_t *chrv[2];
const int16_t *alpha;
LOCAL_ALIGNED_8(int32_t, src_y, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_u, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_v, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_a, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dst0, [INPUT_SIZE * sizeof(int32_t[4])]);
LOCAL_ALIGNED_8(uint8_t, dst1, [INPUT_SIZE * sizeof(int32_t[4])]);
randomize_buffers((uint8_t*)src_y, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_u, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_v, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_a, 2 * INPUT_SIZE * sizeof(int32_t));
/* Limit to 14 bit input range */
for (int i = 0; i < 2 * INPUT_SIZE; i++) {
src_y[i] &= 0x3FFF3FFF;
src_a[i] &= 0x3FFF3FFF;
src_u[i] &= 0x3FFF3FFF;
src_v[i] &= 0x3FFF3FFF;
}
luma = (int16_t *)src_y;
alpha = (int16_t *)src_a;
for (int i = 0; i < 2; i++) {
chru[i] = (int16_t *)(src_u + i*INPUT_SIZE);
chrv[i] = (int16_t *)(src_v + i*INPUT_SIZE);
}
for (int fmi = 0; fmi < FF_ARRAY_ELEMS(packed_rgb_fmts); fmi++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(packed_rgb_fmts[fmi]);
int line_size = INPUT_SIZE * desc->comp[0].step;
SwsContext *sws;
SwsInternal *c;
if (desc->flags & AV_PIX_FMT_FLAG_BITSTREAM)
line_size = AV_CEIL_RSHIFT(line_size, 3);
sws = sws_getContext(MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_YUV420P,
MAX_LINE_SIZE, MAX_LINE_SIZE, packed_rgb_fmts[fmi],
SWS_ACCURATE_RND | SWS_BITEXACT, NULL, NULL, NULL);
if (!sws)
fail();
c = sws_internal(sws);
for (int ai = 0; ai < FF_ARRAY_ELEMS(alpha_values); ai++) {
const int chr_alpha = alpha_values[ai];
if (check_func(c->yuv2packed1, "yuv2%s_1_%d_%d", desc->name, chr_alpha, INPUT_SIZE)) {
memset(dst0, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
memset(dst1, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
call_ref(c, luma, chru, chrv, alpha, dst0, INPUT_SIZE, chr_alpha, 0);
call_new(c, luma, chru, chrv, alpha, dst1, INPUT_SIZE, chr_alpha, 0);
if (memcmp(dst0, dst1, line_size))
fail();
bench_new(c, luma, chru, chrv, alpha, dst1, INPUT_SIZE, chr_alpha, 0);
}
}
sws_freeContext(sws);
}
}
static void check_yuv2packed2(void)
{
static const int alpha_values[] = {0, 2048, 4096};
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT,
void, SwsInternal *c, const int16_t *lumSrc[2],
const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
const int16_t *alpSrc[2], uint8_t *dest,
int dstW, int yalpha, int uvalpha, int y);
const int16_t *luma[2];
const int16_t *chru[2];
const int16_t *chrv[2];
const int16_t *alpha[2];
LOCAL_ALIGNED_8(int32_t, src_y, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_u, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_v, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_a, [2 * INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dst0, [INPUT_SIZE * sizeof(int32_t[4])]);
LOCAL_ALIGNED_8(uint8_t, dst1, [INPUT_SIZE * sizeof(int32_t[4])]);
randomize_buffers((uint8_t*)src_y, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_u, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_v, 2 * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_a, 2 * INPUT_SIZE * sizeof(int32_t));
/* Limit to 14 bit input range */
for (int i = 0; i < 2 * INPUT_SIZE; i++) {
src_y[i] &= 0x3FFF3FFF;
src_u[i] &= 0x3FFF3FFF;
src_v[i] &= 0x3FFF3FFF;
src_a[i] &= 0x3FFF3FFF;
}
for (int i = 0; i < 2; i++) {
luma[i] = (int16_t *)(src_y + i*INPUT_SIZE);
chru[i] = (int16_t *)(src_u + i*INPUT_SIZE);
chrv[i] = (int16_t *)(src_v + i*INPUT_SIZE);
alpha[i] = (int16_t *)(src_a + i*INPUT_SIZE);
}
for (int fmi = 0; fmi < FF_ARRAY_ELEMS(packed_rgb_fmts); fmi++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(packed_rgb_fmts[fmi]);
int line_size = INPUT_SIZE * desc->comp[0].step;
SwsContext *sws;
SwsInternal *c;
if (desc->flags & AV_PIX_FMT_FLAG_BITSTREAM)
line_size = AV_CEIL_RSHIFT(line_size, 3);
sws = sws_getContext(MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_YUV420P,
MAX_LINE_SIZE, MAX_LINE_SIZE, packed_rgb_fmts[fmi],
SWS_ACCURATE_RND | SWS_BITEXACT, NULL, NULL, NULL);
if (!sws)
fail();
c = sws_internal(sws);
for (int ai = 0; ai < FF_ARRAY_ELEMS(alpha_values); ai++) {
const int lum_alpha = alpha_values[ai];
const int chr_alpha = alpha_values[ai];
if (check_func(c->yuv2packed2, "yuv2%s_2_%d_%d", desc->name, lum_alpha, INPUT_SIZE)) {
memset(dst0, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
memset(dst1, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
call_ref(c, luma, chru, chrv, alpha, dst0, INPUT_SIZE, lum_alpha, chr_alpha, 0);
call_new(c, luma, chru, chrv, alpha, dst1, INPUT_SIZE, lum_alpha, chr_alpha, 0);
if (memcmp(dst0, dst1, line_size))
fail();
bench_new(c, luma, chru, chrv, alpha, dst1, INPUT_SIZE, lum_alpha, chr_alpha, 0);
}
}
sws_freeContext(sws);
}
}
static void check_yuv2packedX(void)
{
#define LARGEST_FILTER 16
static const int filter_sizes[] = {2, 16};
declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT,
void, SwsInternal *c, const int16_t *lumFilter,
const int16_t **lumSrcx, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrUSrcx,
const int16_t **chrVSrcx, int chrFilterSize,
const int16_t **alpSrcx, uint8_t *dest,
int dstW, int y);
const int16_t *luma[LARGEST_FILTER];
const int16_t *chru[LARGEST_FILTER];
const int16_t *chrv[LARGEST_FILTER];
const int16_t *alpha[LARGEST_FILTER];
LOCAL_ALIGNED_8(int16_t, luma_filter, [LARGEST_FILTER]);
LOCAL_ALIGNED_8(int16_t, chr_filter, [LARGEST_FILTER]);
LOCAL_ALIGNED_8(int32_t, src_y, [LARGEST_FILTER * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_u, [LARGEST_FILTER * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_v, [LARGEST_FILTER * INPUT_SIZE]);
LOCAL_ALIGNED_8(int32_t, src_a, [LARGEST_FILTER * INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dst0, [INPUT_SIZE * sizeof(int32_t[4])]);
LOCAL_ALIGNED_8(uint8_t, dst1, [INPUT_SIZE * sizeof(int32_t[4])]);
randomize_buffers((uint8_t*)src_y, LARGEST_FILTER * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_u, LARGEST_FILTER * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_v, LARGEST_FILTER * INPUT_SIZE * sizeof(int32_t));
randomize_buffers((uint8_t*)src_a, LARGEST_FILTER * INPUT_SIZE * sizeof(int32_t));
/* Limit to 14 bit input range */
for (int i = 0; i < LARGEST_FILTER * INPUT_SIZE; i++) {
src_y[i] &= 0x3FFF3FFF;
src_u[i] &= 0x3FFF3FFF;
src_v[i] &= 0x3FFF3FFF;
src_a[i] &= 0x3FFF3FFF;
}
for (int i = 0; i < LARGEST_FILTER; i++) {
luma[i] = (int16_t *)(src_y + i*INPUT_SIZE);
chru[i] = (int16_t *)(src_u + i*INPUT_SIZE);
chrv[i] = (int16_t *)(src_v + i*INPUT_SIZE);
alpha[i] = (int16_t *)(src_a + i*INPUT_SIZE);
}
for (int fmi = 0; fmi < FF_ARRAY_ELEMS(packed_rgb_fmts); fmi++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(packed_rgb_fmts[fmi]);
int line_size = INPUT_SIZE * desc->comp[0].step;
SwsContext *sws;
SwsInternal *c;
if (desc->flags & AV_PIX_FMT_FLAG_BITSTREAM)
line_size = AV_CEIL_RSHIFT(line_size, 3);
sws = sws_getContext(MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_YUV420P,
MAX_LINE_SIZE, MAX_LINE_SIZE, packed_rgb_fmts[fmi],
SWS_ACCURATE_RND | SWS_BITEXACT, NULL, NULL, NULL);
if (!sws)
fail();
c = sws_internal(sws);
for (int fsi = 0; fsi < FF_ARRAY_ELEMS(filter_sizes); fsi++) {
const int luma_filter_size = filter_sizes[fsi];
const int chr_filter_size = filter_sizes[fsi];
for (int i = 0; i < luma_filter_size; i++)
luma_filter[i] = -((1 << 12) / (luma_filter_size - 1));
luma_filter[rnd() % luma_filter_size] = (1 << 13) - 1;
for (int i = 0; i < chr_filter_size; i++)
chr_filter[i] = -((1 << 12) / (chr_filter_size - 1));
chr_filter[rnd() % chr_filter_size] = (1 << 13) - 1;
if (check_func(c->yuv2packedX, "yuv2%s_X_%d_%d", desc->name, luma_filter_size, INPUT_SIZE)) {
memset(dst0, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
memset(dst1, 0xFF, INPUT_SIZE * sizeof(int32_t[4]));
call_ref(c, luma_filter, luma, luma_filter_size,
chr_filter, chru, chrv, chr_filter_size,
alpha, dst0, INPUT_SIZE, 0);
call_new(c, luma_filter, luma, luma_filter_size,
chr_filter, chru, chrv, chr_filter_size,
alpha, dst1, INPUT_SIZE, 0);
if (memcmp(dst0, dst1, line_size))
fail();
bench_new(c, luma_filter, luma, luma_filter_size,
chr_filter, chru, chrv, chr_filter_size,
alpha, dst1, INPUT_SIZE, 0);
}
}
sws_freeContext(sws);
}
}
#undef INPUT_SIZE
#undef LARGEST_FILTER
void checkasm_check_sw_rgb(void)
{
SwsContext *sws;
ff_sws_rgb2rgb_init();
check_shuffle_bytes(shuffle_bytes_2103, "shuffle_bytes_2103");
report("shuffle_bytes_2103");
check_shuffle_bytes(shuffle_bytes_0321, "shuffle_bytes_0321");
report("shuffle_bytes_0321");
check_shuffle_bytes(shuffle_bytes_1230, "shuffle_bytes_1230");
report("shuffle_bytes_1230");
check_shuffle_bytes(shuffle_bytes_3012, "shuffle_bytes_3012");
report("shuffle_bytes_3012");
check_shuffle_bytes(shuffle_bytes_3210, "shuffle_bytes_3210");
report("shuffle_bytes_3210");
swscale/aarch64/rgb2rgb: Implemented NEON shuf routines The key idea is to pass the pre-generated tables to the TBL instruction and churn through the data 16 bytes at a time. The remaining 4 elements are handled with a specialized block located at the end of the routine. The 3210 variant can be implemented using rev32, but surprisingly it is slower than the generic TBL on A78, but much faster on A72. There may be some room for improvement. Possibly instead of handling last 8 and then 4 bytes separately, we can load these 4 into {v0.s}[2] and process along with the last 8 bytes. Speeds measured with checkasm --test=sw_rgb --bench --runs=10 | grep shuf - A78 shuffle_bytes_0321_c: 75.5 ( 1.00x) shuffle_bytes_0321_neon: 26.5 ( 2.85x) shuffle_bytes_1203_c: 136.2 ( 1.00x) shuffle_bytes_1203_neon: 27.2 ( 5.00x) shuffle_bytes_1230_c: 135.5 ( 1.00x) shuffle_bytes_1230_neon: 28.0 ( 4.84x) shuffle_bytes_2013_c: 138.8 ( 1.00x) shuffle_bytes_2013_neon: 22.0 ( 6.31x) shuffle_bytes_2103_c: 76.5 ( 1.00x) shuffle_bytes_2103_neon: 20.5 ( 3.73x) shuffle_bytes_2130_c: 137.5 ( 1.00x) shuffle_bytes_2130_neon: 28.0 ( 4.91x) shuffle_bytes_3012_c: 138.2 ( 1.00x) shuffle_bytes_3012_neon: 21.5 ( 6.43x) shuffle_bytes_3102_c: 138.2 ( 1.00x) shuffle_bytes_3102_neon: 27.2 ( 5.07x) shuffle_bytes_3210_c: 138.0 ( 1.00x) shuffle_bytes_3210_neon: 22.0 ( 6.27x) shuf3210 using rev32 shuffle_bytes_3210_c: 139.0 ( 1.00x) shuffle_bytes_3210_neon: 28.5 ( 4.88x) - A72 shuffle_bytes_0321_c: 120.0 ( 1.00x) shuffle_bytes_0321_neon: 36.0 ( 3.33x) shuffle_bytes_1203_c: 188.2 ( 1.00x) shuffle_bytes_1203_neon: 37.8 ( 4.99x) shuffle_bytes_1230_c: 195.0 ( 1.00x) shuffle_bytes_1230_neon: 36.0 ( 5.42x) shuffle_bytes_2013_c: 195.8 ( 1.00x) shuffle_bytes_2013_neon: 43.5 ( 4.50x) shuffle_bytes_2103_c: 117.2 ( 1.00x) shuffle_bytes_2103_neon: 53.5 ( 2.19x) shuffle_bytes_2130_c: 203.2 ( 1.00x) shuffle_bytes_2130_neon: 37.8 ( 5.38x) shuffle_bytes_3012_c: 183.8 ( 1.00x) shuffle_bytes_3012_neon: 46.8 ( 3.93x) shuffle_bytes_3102_c: 180.8 ( 1.00x) shuffle_bytes_3102_neon: 37.8 ( 4.79x) shuffle_bytes_3210_c: 195.8 ( 1.00x) shuffle_bytes_3210_neon: 37.8 ( 5.19x) shuf3210 using rev32 shuffle_bytes_3210_c: 194.8 ( 1.00x) shuffle_bytes_3210_neon: 30.8 ( 6.33x) - x13s: shuffle_bytes_0321_c: 49.4 ( 1.00x) shuffle_bytes_0321_neon: 18.1 ( 2.72x) shuffle_bytes_1203_c: 98.4 ( 1.00x) shuffle_bytes_1203_neon: 18.4 ( 5.35x) shuffle_bytes_1230_c: 97.4 ( 1.00x) shuffle_bytes_1230_neon: 19.1 ( 5.09x) shuffle_bytes_2013_c: 101.4 ( 1.00x) shuffle_bytes_2013_neon: 16.9 ( 6.01x) shuffle_bytes_2103_c: 53.9 ( 1.00x) shuffle_bytes_2103_neon: 13.9 ( 3.88x) shuffle_bytes_2130_c: 100.9 ( 1.00x) shuffle_bytes_2130_neon: 19.1 ( 5.27x) shuffle_bytes_3012_c: 97.4 ( 1.00x) shuffle_bytes_3012_neon: 17.1 ( 5.69x) shuffle_bytes_3102_c: 100.9 ( 1.00x) shuffle_bytes_3102_neon: 19.1 ( 5.27x) shuffle_bytes_3210_c: 100.6 ( 1.00x) shuffle_bytes_3210_neon: 16.9 ( 5.96x) shuf3210 using rev32 shuffle_bytes_3210_c: 100.6 ( 1.00x) shuffle_bytes_3210_neon: 18.6 ( 5.40x) Signed-off-by: Martin Storsjö <martin@martin.st>
2025-01-28 19:01:33 +01:00
check_shuffle_bytes(shuffle_bytes_3102, "shuffle_bytes_3102");
report("shuffle_bytes_3102");
check_shuffle_bytes(shuffle_bytes_2013, "shuffle_bytes_2013");
report("shuffle_bytes_2013");
check_shuffle_bytes(shuffle_bytes_1203, "shuffle_bytes_1203");
report("shuffle_bytes_1203");
check_shuffle_bytes(shuffle_bytes_2130, "shuffle_bytes_2130");
report("shuffle_bytes_2130");
check_uyvy_to_422p();
report("uyvytoyuv422");
check_interleave_bytes();
report("interleave_bytes");
2024-09-01 15:01:32 +02:00
check_deinterleave_bytes();
report("deinterleave_bytes");
sws = sws_getContext(MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_RGB24,
MAX_LINE_SIZE, MAX_LINE_SIZE, AV_PIX_FMT_YUV420P,
SWS_ACCURATE_RND | SWS_BITEXACT, NULL, NULL, NULL);
if (!sws)
fail();
check_rgb_to_y(sws);
report("rgb_to_y");
check_rgb_to_uv(sws);
report("rgb_to_uv");
check_rgba_to_a(sws);
report("rgba_to_a");
check_rgb24toyv12(sws);
2024-08-28 20:27:41 +02:00
report("rgb24toyv12");
sws_freeContext(sws);
check_yuv2packed1();
report("yuv2packed1");
check_yuv2packed2();
report("yuv2packed2");
check_yuv2packedX();
report("yuv2packedX");
}