1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/arm/vp9lpf_neon.S

771 lines
29 KiB
ArmAsm
Raw Normal View History

arm: vp9: Add NEON loop filters This work is sponsored by, and copyright, Google. The implementation tries to have smart handling of cases where no pixels need the full filtering for the 8/16 width filters, skipping both calculation and writeback of the unmodified pixels in those cases. The actual effect of this is hard to test with checkasm though, since it tests the full filtering, and the benefit depends on how many filtered blocks use the shortcut. Examples of relative speedup compared to the C version, from checkasm: Cortex A7 A8 A9 A53 vp9_loop_filter_h_4_8_neon: 2.72 2.68 1.78 3.15 vp9_loop_filter_h_8_8_neon: 2.36 2.38 1.70 2.91 vp9_loop_filter_h_16_8_neon: 1.80 1.89 1.45 2.01 vp9_loop_filter_h_16_16_neon: 2.81 2.78 2.18 3.16 vp9_loop_filter_mix2_h_44_16_neon: 2.65 2.67 1.93 3.05 vp9_loop_filter_mix2_h_48_16_neon: 2.46 2.38 1.81 2.85 vp9_loop_filter_mix2_h_84_16_neon: 2.50 2.41 1.73 2.85 vp9_loop_filter_mix2_h_88_16_neon: 2.77 2.66 1.96 3.23 vp9_loop_filter_mix2_v_44_16_neon: 4.28 4.46 3.22 5.70 vp9_loop_filter_mix2_v_48_16_neon: 3.92 4.00 3.03 5.19 vp9_loop_filter_mix2_v_84_16_neon: 3.97 4.31 2.98 5.33 vp9_loop_filter_mix2_v_88_16_neon: 3.91 4.19 3.06 5.18 vp9_loop_filter_v_4_8_neon: 4.53 4.47 3.31 6.05 vp9_loop_filter_v_8_8_neon: 3.58 3.99 2.92 5.17 vp9_loop_filter_v_16_8_neon: 3.40 3.50 2.81 4.68 vp9_loop_filter_v_16_16_neon: 4.66 4.41 3.74 6.02 The speedup vs C code is around 2-6x. The numbers are quite inconclusive though, since the checkasm test runs multiple filterings on top of each other, so later rounds might end up with different codepaths (different decisions on which filter to apply, based on input pixel differences). Disabling the early-exit in the asm doesn't give a fair comparison either though, since the C code only does the necessary calcuations for each row. Based on START_TIMER/STOP_TIMER wrapping around a few individual functions, the speedup vs C code is around 4-9x. This is pretty similar in runtime to the corresponding routines in libvpx. (This is comparing vpx_lpf_vertical_16_neon, vpx_lpf_horizontal_edge_8_neon and vpx_lpf_horizontal_edge_16_neon to vp9_loop_filter_h_16_8_neon, vp9_loop_filter_v_16_8_neon and vp9_loop_filter_v_16_16_neon - note that the naming of horizonal and vertical is flipped between the libraries.) In order to have stable, comparable numbers, the early exits in both asm versions were disabled, forcing the full filtering codepath. Cortex A7 A8 A9 A53 vp9_loop_filter_h_16_8_neon: 597.2 472.0 482.4 415.0 libvpx vpx_lpf_vertical_16_neon: 626.0 464.5 470.7 445.0 vp9_loop_filter_v_16_8_neon: 500.2 422.5 429.7 295.0 libvpx vpx_lpf_horizontal_edge_8_neon: 586.5 414.5 415.6 383.2 vp9_loop_filter_v_16_16_neon: 905.0 784.7 791.5 546.0 libvpx vpx_lpf_horizontal_edge_16_neon: 1060.2 751.7 743.5 685.2 Our version is consistently faster on on A7 and A53, marginally slower on A8, and sometimes faster, sometimes slower on A9 (marginally slower in all three tests in this particular test run). Signed-off-by: Martin Storsjö <martin@martin.st>
2016-10-10 08:48:03 +02:00
/*
* Copyright (c) 2016 Google Inc.
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/arm/asm.S"
#include "neon.S"
@ Do an 8x8 transpose, using q registers for the subtransposes that don't
@ need to address the indiviudal d registers.
@ r0,r1 == rq0, r2,r3 == rq1, etc
.macro transpose_q_8x8 rq0, rq1, rq2, rq3, r0, r1, r2, r3, r4, r5, r6, r7
vtrn.32 \rq0, \rq2
vtrn.32 \rq1, \rq3
vtrn.16 \rq0, \rq1
vtrn.16 \rq2, \rq3
vtrn.8 \r0, \r1
vtrn.8 \r2, \r3
vtrn.8 \r4, \r5
vtrn.8 \r6, \r7
.endm
@ Do a 4x4 transpose, using q registers for the subtransposes that don't
@ need to address the indiviudal d registers.
@ r0,r1 == rq0, r2,r3 == rq1
.macro transpose_q_4x4 rq0, rq1, r0, r1, r2, r3
vtrn.16 \rq0, \rq1
vtrn.8 \r0, \r1
vtrn.8 \r2, \r3
.endm
@ The input to and output from this macro is in the registers d16-d31,
@ and d0-d7 are used as scratch registers.
@ p7 = d16 .. p3 = d20, p0 = d23, q0 = d24, q3 = d27, q7 = d31
@ Depending on the width of the loop filter, we either use d16-d19
@ and d28-d31 as temp registers, or d8-d15.
@ tmp1,tmp2 = tmpq1, tmp3,tmp4 = tmpq2, tmp5,tmp6 = tmpq3, tmp7,tmp8 = tmpq4
.macro loop_filter wd, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmpq1, tmpq2, tmpq3, tmpq4
vdup.u16 q0, r2 @ E
vdup.u8 d2, r3 @ I
ldr r3, [sp]
vabd.u8 d4, d20, d21 @ abs(p3 - p2)
vabd.u8 d5, d21, d22 @ abs(p2 - p1)
vabd.u8 d6, d22, d23 @ abs(p1 - p0)
vabd.u8 d7, d24, d25 @ abs(q0 - q1)
vabd.u8 \tmp1, d25, d26 @ abs(q1 - q2)
vabd.u8 \tmp2, d26, d27 @ abs(q2 - q3)
vmax.u8 d4, d4, d5
vmax.u8 d5, d6, d7
vmax.u8 \tmp1, \tmp1, \tmp2
vabdl.u8 q3, d23, d24 @ abs(p0 - q0)
vmax.u8 d4, d4, d5
vadd.u16 q3, q3, q3 @ abs(p0 - q0) * 2
vabd.u8 d5, d22, d25 @ abs(p1 - q1)
vmax.u8 d4, d4, \tmp1 @ max(abs(p3 - p2), ..., abs(q2 - q3))
vshr.u8 d5, d5, #1
vcle.u8 d4, d4, d2 @ max(abs()) <= I
vaddw.u8 q3, q3, d5 @ abs(p0 - q0) * 2 + abs(p1 - q1) >> 1
vcle.u16 q3, q3, q0
vmovn.u16 d5, q3
vand d4, d4, d5 @ fm
vdup.u8 d3, r3 @ H
vmov r2, r3, d4
orr r2, r2, r3
cmp r2, #0
@ If no pixels need filtering, just exit as soon as possible
beq 9f
.if \wd >= 8
vmov.u8 d0, #1
vabd.u8 d6, d20, d23 @ abs(p3 - p0)
vabd.u8 d2, d21, d23 @ abs(p2 - p0)
vabd.u8 d1, d22, d23 @ abs(p1 - p0)
vabd.u8 \tmp1, d25, d24 @ abs(q1 - q0)
vabd.u8 \tmp2, d26, d24 @ abs(q2 - q0)
vabd.u8 \tmp3, d27, d24 @ abs(q3 - q0)
vmax.u8 d6, d6, d2
vmax.u8 d1, d1, \tmp1
vmax.u8 \tmp2, \tmp2, \tmp3
.if \wd == 16
vabd.u8 d7, d16, d23 @ abs(p7 - p0)
vmax.u8 d6, d6, d1
vabd.u8 d2, d17, d23 @ abs(p6 - p0)
vmax.u8 d6, d6, \tmp2
vabd.u8 d1, d18, d23 @ abs(p5 - p0)
vcle.u8 d6, d6, d0 @ flat8in
vabd.u8 d8, d19, d23 @ abs(p4 - p0)
vand d6, d6, d4 @ flat8in && fm
vabd.u8 d9, d28, d24 @ abs(q4 - q0)
vbic d4, d4, d6 @ fm && !flat8in
vabd.u8 d10, d29, d24 @ abs(q5 - q0)
vabd.u8 d11, d30, d24 @ abs(q6 - q0)
vabd.u8 d12, d31, d24 @ abs(q7 - q0)
vmax.u8 d7, d7, d2
vmax.u8 d1, d1, d8
vmax.u8 d9, d9, d10
vmax.u8 d11, d11, d12
@ The rest of the calculation of flat8out is interleaved below
.else
@ The rest of the calculation of flat8in is interleaved below
.endif
.endif
@ Calculate the normal inner loop filter for 2 or 4 pixels
vabd.u8 d5, d22, d23 @ abs(p1 - p0)
.if \wd == 16
vmax.u8 d7, d7, d1
vmax.u8 d9, d9, d11
.elseif \wd == 8
vmax.u8 d6, d6, d1
.endif
vabd.u8 d1, d25, d24 @ abs(q1 - q0)
.if \wd == 16
vmax.u8 d7, d7, d9
.elseif \wd == 8
vmax.u8 d6, d6, \tmp2
.endif
vsubl.u8 \tmpq1, d22, d25 @ p1 - q1
vmax.u8 d5, d5, d1 @ max(abs(p1 - p0), abs(q1 - q0))
vsubl.u8 \tmpq2, d24, d23 @ q0 - p0
vmov.s16 \tmpq3, #3
.if \wd == 8
vcle.u8 d6, d6, d0 @ flat8in
.endif
vcgt.u8 d5, d5, d3 @ hev
.if \wd == 8
vand d6, d6, d4 @ flat8in && fm
.endif
vqmovn.s16 \tmp1, \tmpq1 @ av_clip_int8(p1 - q1)
.if \wd == 16
vcle.u8 d7, d7, d0 @ flat8out
.elseif \wd == 8
vbic d4, d4, d6 @ fm && !flat8in
.endif
vmvn d5, d5 @ !hev
.if \wd == 16
vand d7, d7, d6 @ flat8out && flat8in && fm
.endif
vand d5, d5, d4 @ !hev && fm && !flat8in
vmul.s16 \tmpq2, \tmpq2, \tmpq3 @ 3 * (q0 - p0)
vbic \tmp1, \tmp1, d5 @ if (!hev) av_clip_int8 = 0
vmov.s8 d2, #4
vaddw.s8 \tmpq2, \tmpq2, \tmp1 @ 3 * (q0 - p0) [+ av_clip_int8(p1 - q1)]
vmov.s8 d3, #3
vqmovn.s16 \tmp1, \tmpq2 @ f
.if \wd == 16
vbic d6, d6, d7 @ fm && flat8in && !flat8out
.endif
vqadd.s8 \tmp3, \tmp1, d2 @ FFMIN(f + 4, 127)
vqadd.s8 \tmp4, \tmp1, d3 @ FFMIN(f + 3, 127)
vmovl.u8 q0, d23 @ p0
vshr.s8 \tmp3, \tmp3, #3 @ f1
vshr.s8 \tmp4, \tmp4, #3 @ f2
vmovl.u8 q1, d24 @ q0
vaddw.s8 q0, q0, \tmp4 @ p0 + f2
vsubw.s8 q1, q1, \tmp3 @ q0 - f1
vqmovun.s16 d0, q0 @ out p0
vqmovun.s16 d1, q1 @ out q0
vrshr.s8 \tmp3, \tmp3, #1 @ f = (f1 + 1) >> 1
vbit d23, d0, d4 @ if (fm && !flat8in)
vbit d24, d1, d4
vmovl.u8 q0, d22 @ p1
vmovl.u8 q1, d25 @ q1
vaddw.s8 q0, q0, \tmp3 @ p1 + f
vsubw.s8 q1, q1, \tmp3 @ q1 - f
vqmovun.s16 d0, q0 @ out p1
vqmovun.s16 d2, q1 @ out q1
vbit d22, d0, d5 @ if (!hev && fm && !flat8in)
vbit d25, d2, d5
.if \wd >= 8
vmov r2, r3, d6
orr r2, r2, r3
cmp r2, #0
@ If no pixels need flat8in, jump to flat8out
@ (or to a writeout of the inner 4 pixels, for wd=8)
beq 6f
@ flat8in
vaddl.u8 \tmpq1, d20, d21
vaddl.u8 \tmpq2, d22, d25
vaddl.u8 \tmpq3, d20, d22
vaddl.u8 \tmpq4, d23, d26
vadd.u16 q0, \tmpq1, \tmpq1
vaddw.u8 q0, q0, d23
vaddw.u8 q0, q0, d24
vadd.u16 q0, q0, \tmpq3
vsub.s16 \tmpq2, \tmpq2, \tmpq1
vsub.s16 \tmpq4, \tmpq4, \tmpq3
vrshrn.u16 d2, q0, #3 @ out p2
vadd.u16 q0, q0, \tmpq2
vaddl.u8 \tmpq1, d20, d23
vaddl.u8 \tmpq2, d24, d27
vrshrn.u16 d3, q0, #3 @ out p1
vadd.u16 q0, q0, \tmpq4
vsub.s16 \tmpq2, \tmpq2, \tmpq1
vaddl.u8 \tmpq3, d21, d24
vaddl.u8 \tmpq4, d25, d27
vrshrn.u16 d4, q0, #3 @ out p0
vadd.u16 q0, q0, \tmpq2
vsub.s16 \tmpq4, \tmpq4, \tmpq3
vaddl.u8 \tmpq1, d22, d25
vaddl.u8 \tmpq2, d26, d27
vrshrn.u16 d5, q0, #3 @ out q0
vadd.u16 q0, q0, \tmpq4
vsub.s16 \tmpq2, \tmpq2, \tmpq1
vrshrn.u16 \tmp5, q0, #3 @ out q1
vadd.u16 q0, q0, \tmpq2
@ The output here is written back into the input registers. This doesn't
@ matter for the flat8out part below, since we only update those pixels
@ which won't be touched below.
vbit d21, d2, d6
vbit d22, d3, d6
vbit d23, d4, d6
vrshrn.u16 \tmp6, q0, #3 @ out q2
vbit d24, d5, d6
vbit d25, \tmp5, d6
vbit d26, \tmp6, d6
.endif
.if \wd == 16
6:
vorr d2, d6, d7
vmov r2, r3, d2
orr r2, r2, r3
cmp r2, #0
@ If no pixels needed flat8in nor flat8out, jump to a
@ writeout of the inner 4 pixels
beq 7f
vmov r2, r3, d7
orr r2, r2, r3
cmp r2, #0
@ If no pixels need flat8out, jump to a writeout of the inner 6 pixels
beq 8f
@ flat8out
@ This writes all outputs into d2-d17 (skipping d6 and d16).
@ If this part is skipped, the output is read from d21-d26 (which is the input
@ to this section).
vshll.u8 q0, d16, #3 @ 8 * d16
vsubw.u8 q0, q0, d16 @ 7 * d16
vaddw.u8 q0, q0, d17
vaddl.u8 q4, d17, d18
vaddl.u8 q5, d19, d20
vadd.s16 q0, q0, q4
vaddl.u8 q4, d16, d17
vaddl.u8 q6, d21, d22
vadd.s16 q0, q0, q5
vaddl.u8 q5, d18, d25
vaddl.u8 q7, d23, d24
vsub.s16 q5, q5, q4
vadd.s16 q0, q0, q6
vadd.s16 q0, q0, q7
vaddl.u8 q6, d16, d18
vaddl.u8 q7, d19, d26
vrshrn.u16 d2, q0, #4
vadd.s16 q0, q0, q5
vaddl.u8 q4, d16, d19
vaddl.u8 q5, d20, d27
vsub.s16 q7, q7, q6
vbif d2, d17, d7
vrshrn.u16 d3, q0, #4
vadd.s16 q0, q0, q7
vaddl.u8 q6, d16, d20
vaddl.u8 q7, d21, d28
vsub.s16 q5, q5, q4
vbif d3, d18, d7
vrshrn.u16 d4, q0, #4
vadd.s16 q0, q0, q5
vaddl.u8 q4, d16, d21
vaddl.u8 q5, d22, d29
vsub.s16 q7, q7, q6
vbif d4, d19, d7
vrshrn.u16 d5, q0, #4
vadd.s16 q0, q0, q7
vaddl.u8 q6, d16, d22
vaddl.u8 q7, d23, d30
vsub.s16 q5, q5, q4
vbif d5, d20, d7
vrshrn.u16 d6, q0, #4
vadd.s16 q0, q0, q5
vaddl.u8 q5, d16, d23
vsub.s16 q7, q7, q6
vaddl.u8 q6, d24, d31
vbif d6, d21, d7
vrshrn.u16 d8, q0, #4
vadd.s16 q0, q0, q7
vsub.s16 q5, q6, q5
vaddl.u8 q6, d17, d24
vaddl.u8 q7, d25, d31
vbif d8, d22, d7
vrshrn.u16 d9, q0, #4
vadd.s16 q0, q0, q5
vsub.s16 q7, q7, q6
vaddl.u8 q6, d26, d31
vbif d9, d23, d7
vrshrn.u16 d10, q0, #4
vadd.s16 q0, q0, q7
vaddl.u8 q7, d18, d25
vaddl.u8 q9, d19, d26
vsub.s16 q6, q6, q7
vaddl.u8 q7, d27, d31
vbif d10, d24, d7
vrshrn.u16 d11, q0, #4
vadd.s16 q0, q0, q6
vaddl.u8 q6, d20, d27
vsub.s16 q7, q7, q9
vaddl.u8 q9, d28, d31
vbif d11, d25, d7
vsub.s16 q9, q9, q6
vrshrn.u16 d12, q0, #4
vadd.s16 q0, q0, q7
vaddl.u8 q7, d21, d28
vaddl.u8 q10, d29, d31
vbif d12, d26, d7
vrshrn.u16 d13, q0, #4
vadd.s16 q0, q0, q9
vsub.s16 q10, q10, q7
vaddl.u8 q9, d22, d29
vaddl.u8 q11, d30, d31
vbif d13, d27, d7
vrshrn.u16 d14, q0, #4
vadd.s16 q0, q0, q10
vsub.s16 q11, q11, q9
vbif d14, d28, d7
vrshrn.u16 d15, q0, #4
vadd.s16 q0, q0, q11
vbif d15, d29, d7
vrshrn.u16 d17, q0, #4
vbif d17, d30, d7
.endif
.endm
@ For wd <= 8, we use d16-d19 and d28-d31 for temp registers,
@ while we need those for inputs/outputs in wd=16 and use d8-d15
@ for temp registers there instead.
.macro loop_filter_4
loop_filter 4, d16, d17, d18, d19, d28, d29, d30, d31, q8, q9, q14, q15
.endm
.macro loop_filter_8
loop_filter 8, d16, d17, d18, d19, d28, d29, d30, d31, q8, q9, q14, q15
.endm
.macro loop_filter_16
loop_filter 16, d8, d9, d10, d11, d12, d13, d14, d15, q4, q5, q6, q7
.endm
@ The public functions in this file have got the following signature:
@ void loop_filter(uint8_t *dst, ptrdiff_t stride, int mb_lim, int lim, int hev_thr);
function ff_vp9_loop_filter_v_4_8_neon, export=1
sub r12, r0, r1, lsl #2
vld1.8 {d20}, [r12,:64], r1 @ p3
vld1.8 {d24}, [r0, :64], r1 @ q0
vld1.8 {d21}, [r12,:64], r1 @ p2
vld1.8 {d25}, [r0, :64], r1 @ q1
vld1.8 {d22}, [r12,:64], r1 @ p1
vld1.8 {d26}, [r0, :64], r1 @ q2
vld1.8 {d23}, [r12,:64], r1 @ p0
vld1.8 {d27}, [r0, :64], r1 @ q3
sub r0, r0, r1, lsl #2
sub r12, r12, r1, lsl #1
loop_filter_4
vst1.8 {d22}, [r12,:64], r1
vst1.8 {d24}, [r0, :64], r1
vst1.8 {d23}, [r12,:64], r1
vst1.8 {d25}, [r0, :64], r1
9:
bx lr
endfunc
function ff_vp9_loop_filter_h_4_8_neon, export=1
sub r12, r0, #4
add r0, r12, r1, lsl #2
vld1.8 {d20}, [r12], r1
vld1.8 {d24}, [r0], r1
vld1.8 {d21}, [r12], r1
vld1.8 {d25}, [r0], r1
vld1.8 {d22}, [r12], r1
vld1.8 {d26}, [r0], r1
vld1.8 {d23}, [r12], r1
vld1.8 {d27}, [r0], r1
sub r12, r12, r1, lsl #2
sub r0, r0, r1, lsl #2
@ Move r0/r12 forward by 2 pixels; we don't need to rewrite the
@ outermost 2 pixels since they aren't changed.
add r12, r12, #2
add r0, r0, #2
@ Transpose the 8x8 pixels, taking advantage of q registers, to get
@ one register per column.
transpose_q_8x8 q10, q11, q12, q13, d20, d21, d22, d23, d24, d25, d26, d27
loop_filter_4
@ We only will write the mid 4 pixels back; after the loop filter,
@ these are in d22, d23, d24, d25 (q11, q12), ordered as rows
@ (8x4 pixels). We need to transpose them to columns, done with a
@ 4x4 transpose (which in practice is two 4x4 transposes of the two
@ 4x4 halves of the 8x4 pixels; into 4x8 pixels).
transpose_q_4x4 q11, q12, d22, d23, d24, d25
vst1.32 {d22[0]}, [r12], r1
vst1.32 {d22[1]}, [r0], r1
vst1.32 {d23[0]}, [r12], r1
vst1.32 {d23[1]}, [r0], r1
vst1.32 {d24[0]}, [r12], r1
vst1.32 {d24[1]}, [r0], r1
vst1.32 {d25[0]}, [r12], r1
vst1.32 {d25[1]}, [r0], r1
9:
bx lr
endfunc
function ff_vp9_loop_filter_v_8_8_neon, export=1
sub r12, r0, r1, lsl #2
vld1.8 {d20}, [r12,:64], r1 @ p3
vld1.8 {d24}, [r0, :64], r1 @ q0
vld1.8 {d21}, [r12,:64], r1 @ p2
vld1.8 {d25}, [r0, :64], r1 @ q1
vld1.8 {d22}, [r12,:64], r1 @ p1
vld1.8 {d26}, [r0, :64], r1 @ q2
vld1.8 {d23}, [r12,:64], r1 @ p0
vld1.8 {d27}, [r0, :64], r1 @ q3
sub r12, r12, r1, lsl #2
sub r0, r0, r1, lsl #2
add r12, r12, r1
loop_filter_8
vst1.8 {d21}, [r12,:64], r1
vst1.8 {d24}, [r0, :64], r1
vst1.8 {d22}, [r12,:64], r1
vst1.8 {d25}, [r0, :64], r1
vst1.8 {d23}, [r12,:64], r1
vst1.8 {d26}, [r0, :64], r1
9:
bx lr
6:
sub r12, r0, r1, lsl #1
vst1.8 {d22}, [r12,:64], r1
vst1.8 {d24}, [r0, :64], r1
vst1.8 {d23}, [r12,:64], r1
vst1.8 {d25}, [r0, :64], r1
bx lr
endfunc
function ff_vp9_loop_filter_h_8_8_neon, export=1
sub r12, r0, #4
add r0, r12, r1, lsl #2
vld1.8 {d20}, [r12], r1
vld1.8 {d24}, [r0], r1
vld1.8 {d21}, [r12], r1
vld1.8 {d25}, [r0], r1
vld1.8 {d22}, [r12], r1
vld1.8 {d26}, [r0], r1
vld1.8 {d23}, [r12], r1
vld1.8 {d27}, [r0], r1
sub r12, r12, r1, lsl #2
sub r0, r0, r1, lsl #2
transpose_q_8x8 q10, q11, q12, q13, d20, d21, d22, d23, d24, d25, d26, d27
loop_filter_8
@ Even though only 6 pixels per row have been changed, we write the
@ full 8 pixel registers.
transpose_q_8x8 q10, q11, q12, q13, d20, d21, d22, d23, d24, d25, d26, d27
vst1.8 {d20}, [r12], r1
vst1.8 {d24}, [r0], r1
vst1.8 {d21}, [r12], r1
vst1.8 {d25}, [r0], r1
vst1.8 {d22}, [r12], r1
vst1.8 {d26}, [r0], r1
vst1.8 {d23}, [r12], r1
vst1.8 {d27}, [r0], r1
9:
bx lr
6:
@ If we didn't need to do the flat8in part, we use the same writeback
@ as in loop_filter_h_4_8.
add r12, r12, #2
add r0, r0, #2
transpose_q_4x4 q11, q12, d22, d23, d24, d25
vst1.32 {d22[0]}, [r12], r1
vst1.32 {d22[1]}, [r0], r1
vst1.32 {d23[0]}, [r12], r1
vst1.32 {d23[1]}, [r0], r1
vst1.32 {d24[0]}, [r12], r1
vst1.32 {d24[1]}, [r0], r1
vst1.32 {d25[0]}, [r12], r1
vst1.32 {d25[1]}, [r0], r1
bx lr
endfunc
function vp9_loop_filter_v_16_neon
sub r12, r0, r1, lsl #3
@ Read p7-p0 using r12 and q0-q7 using r0
vld1.8 {d16}, [r12,:64], r1 @ p7
vld1.8 {d24}, [r0, :64], r1 @ q0
vld1.8 {d17}, [r12,:64], r1 @ p6
vld1.8 {d25}, [r0, :64], r1 @ q1
vld1.8 {d18}, [r12,:64], r1 @ p5
vld1.8 {d26}, [r0, :64], r1 @ q2
vld1.8 {d19}, [r12,:64], r1 @ p4
vld1.8 {d27}, [r0, :64], r1 @ q3
vld1.8 {d20}, [r12,:64], r1 @ p3
vld1.8 {d28}, [r0, :64], r1 @ q4
vld1.8 {d21}, [r12,:64], r1 @ p2
vld1.8 {d29}, [r0, :64], r1 @ q5
vld1.8 {d22}, [r12,:64], r1 @ p1
vld1.8 {d30}, [r0, :64], r1 @ q6
vld1.8 {d23}, [r12,:64], r1 @ p0
vld1.8 {d31}, [r0, :64], r1 @ q7
sub r12, r12, r1, lsl #3
sub r0, r0, r1, lsl #3
add r12, r12, r1
loop_filter_16
@ If we did the flat8out part, we get the output in
@ d2-d17 (skipping d7 and d16). r12 points to r0 - 7 * stride,
@ store d2-d9 there, and d10-d17 into r0.
vst1.8 {d2}, [r12,:64], r1
vst1.8 {d10}, [r0, :64], r1
vst1.8 {d3}, [r12,:64], r1
vst1.8 {d11}, [r0, :64], r1
vst1.8 {d4}, [r12,:64], r1
vst1.8 {d12}, [r0, :64], r1
vst1.8 {d5}, [r12,:64], r1
vst1.8 {d13}, [r0, :64], r1
vst1.8 {d6}, [r12,:64], r1
vst1.8 {d14}, [r0, :64], r1
vst1.8 {d8}, [r12,:64], r1
vst1.8 {d15}, [r0, :64], r1
vst1.8 {d9}, [r12,:64], r1
vst1.8 {d17}, [r0, :64], r1
sub r0, r0, r1, lsl #3
add r0, r0, r1
9:
bx lr
8:
add r12, r12, r1, lsl #2
@ If we didn't do the flat8out part, the output is left in the
@ input registers.
vst1.8 {d21}, [r12,:64], r1
vst1.8 {d24}, [r0, :64], r1
vst1.8 {d22}, [r12,:64], r1
vst1.8 {d25}, [r0, :64], r1
vst1.8 {d23}, [r12,:64], r1
vst1.8 {d26}, [r0, :64], r1
sub r0, r0, r1, lsl #1
sub r0, r0, r1
bx lr
7:
sub r12, r0, r1, lsl #1
vst1.8 {d22}, [r12,:64], r1
vst1.8 {d24}, [r0, :64], r1
vst1.8 {d23}, [r12,:64], r1
vst1.8 {d25}, [r0, :64], r1
sub r0, r0, r1, lsl #1
bx lr
endfunc
function ff_vp9_loop_filter_v_16_8_neon, export=1
ldr r12, [sp]
push {lr}
vpush {q4-q7}
push {r12}
bl vp9_loop_filter_v_16_neon
add sp, sp, #4
vpop {q4-q7}
pop {pc}
endfunc
function ff_vp9_loop_filter_v_16_16_neon, export=1
ldr r12, [sp]
// The filter clobbers r2 and r3, but we need to keep them for the second round
push {r2, r3, lr}
vpush {q4-q7}
push {r12}
bl vp9_loop_filter_v_16_neon
add r0, #8
ldr r2, [sp, #68]
ldr r3, [sp, #72]
bl vp9_loop_filter_v_16_neon
add sp, sp, #4
vpop {q4-q7}
pop {r2, r3, pc}
endfunc
function vp9_loop_filter_h_16_neon
sub r12, r0, #8
vld1.8 {d16}, [r12,:64], r1
vld1.8 {d24}, [r0, :64], r1
vld1.8 {d17}, [r12,:64], r1
vld1.8 {d25}, [r0, :64], r1
vld1.8 {d18}, [r12,:64], r1
vld1.8 {d26}, [r0, :64], r1
vld1.8 {d19}, [r12,:64], r1
vld1.8 {d27}, [r0, :64], r1
vld1.8 {d20}, [r12,:64], r1
vld1.8 {d28}, [r0, :64], r1
vld1.8 {d21}, [r12,:64], r1
vld1.8 {d29}, [r0, :64], r1
vld1.8 {d22}, [r12,:64], r1
vld1.8 {d30}, [r0, :64], r1
vld1.8 {d23}, [r12,:64], r1
vld1.8 {d31}, [r0, :64], r1
sub r0, r0, r1, lsl #3
sub r12, r12, r1, lsl #3
@ The 16x8 pixels read above is in two 8x8 blocks; the left
@ half in d16-d23, and the right half in d24-d31. Do two 8x8 transposes
@ of this, to get one column per register. This could be done with two
@ transpose_8x8 as below, but this takes advantage of the q registers.
transpose16_4x4 q8, q9, q10, q11, q12, q13, q14, q15
vtrn.8 d16, d17
vtrn.8 d18, d19
vtrn.8 d20, d21
vtrn.8 d22, d23
vtrn.8 d24, d25
vtrn.8 d26, d27
vtrn.8 d28, d29
vtrn.8 d30, d31
loop_filter_16
@ Transpose back; this is the same transpose as above, but
@ we can't take advantage of q registers for the transpose, since
@ all d registers in the transpose aren't consecutive.
transpose_8x8 d16, d2, d3, d4, d5, d6, d8, d9
transpose_8x8 d10, d11, d12, d13, d14, d15, d17, d31
vst1.8 {d16}, [r12,:64], r1
vst1.8 {d10}, [r0, :64], r1
vst1.8 {d2}, [r12,:64], r1
vst1.8 {d11}, [r0, :64], r1
vst1.8 {d3}, [r12,:64], r1
vst1.8 {d12}, [r0, :64], r1
vst1.8 {d4}, [r12,:64], r1
vst1.8 {d13}, [r0, :64], r1
vst1.8 {d5}, [r12,:64], r1
vst1.8 {d14}, [r0, :64], r1
vst1.8 {d6}, [r12,:64], r1
vst1.8 {d15}, [r0, :64], r1
vst1.8 {d8}, [r12,:64], r1
vst1.8 {d17}, [r0, :64], r1
vst1.8 {d9}, [r12,:64], r1
vst1.8 {d31}, [r0, :64], r1
sub r0, r0, r1, lsl #3
9:
bx lr
8:
@ The same writeback as in loop_filter_h_8_8
sub r12, r0, #4
add r0, r12, r1, lsl #2
transpose_q_8x8 q10, q11, q12, q13, d20, d21, d22, d23, d24, d25, d26, d27
vst1.8 {d20}, [r12], r1
vst1.8 {d24}, [r0], r1
vst1.8 {d21}, [r12], r1
vst1.8 {d25}, [r0], r1
vst1.8 {d22}, [r12], r1
vst1.8 {d26}, [r0], r1
vst1.8 {d23}, [r12], r1
vst1.8 {d27}, [r0], r1
sub r0, r0, r1, lsl #3
add r0, r0, #4
bx lr
7:
@ The same writeback as in loop_filter_h_4_8
sub r12, r0, #2
add r0, r12, r1, lsl #2
transpose_q_4x4 q11, q12, d22, d23, d24, d25
vst1.32 {d22[0]}, [r12], r1
vst1.32 {d22[1]}, [r0], r1
vst1.32 {d23[0]}, [r12], r1
vst1.32 {d23[1]}, [r0], r1
vst1.32 {d24[0]}, [r12], r1
vst1.32 {d24[1]}, [r0], r1
vst1.32 {d25[0]}, [r12], r1
vst1.32 {d25[1]}, [r0], r1
sub r0, r0, r1, lsl #3
add r0, r0, #2
bx lr
endfunc
function ff_vp9_loop_filter_h_16_8_neon, export=1
ldr r12, [sp]
push {lr}
vpush {q4-q7}
push {r12}
bl vp9_loop_filter_h_16_neon
add sp, sp, #4
vpop {q4-q7}
pop {pc}
endfunc
function ff_vp9_loop_filter_h_16_16_neon, export=1
ldr r12, [sp]
// The filter clobbers r2 and r3, but we need to keep them for the second round
push {r2, r3, lr}
vpush {q4-q7}
push {r12}
bl vp9_loop_filter_h_16_neon
add r0, r0, r1, lsl #3
ldr r2, [sp, #68]
ldr r3, [sp, #72]
bl vp9_loop_filter_h_16_neon
add sp, sp, #4
vpop {q4-q7}
pop {r2, r3, pc}
endfunc