1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_paletteuse.c

1179 lines
43 KiB
C
Raw Normal View History

2015-01-24 22:38:15 +02:00
/*
* Copyright (c) 2015 Stupeflix
*
2015-01-24 22:38:15 +02:00
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Use a palette to downsample an input video stream.
*/
#include "libavutil/bprint.h"
#include "libavutil/internal.h"
2015-01-24 22:38:15 +02:00
#include "libavutil/opt.h"
#include "libavutil/qsort.h"
2015-01-24 22:38:15 +02:00
#include "avfilter.h"
2017-08-31 19:47:37 +02:00
#include "framesync.h"
#include "internal.h"
2015-01-24 22:38:15 +02:00
enum dithering_mode {
DITHERING_NONE,
DITHERING_BAYER,
DITHERING_HECKBERT,
DITHERING_FLOYD_STEINBERG,
DITHERING_SIERRA2,
DITHERING_SIERRA2_4A,
NB_DITHERING
};
enum color_search_method {
COLOR_SEARCH_NNS_ITERATIVE,
COLOR_SEARCH_NNS_RECURSIVE,
COLOR_SEARCH_BRUTEFORCE,
NB_COLOR_SEARCHES
};
2015-02-16 18:40:55 +02:00
enum diff_mode {
DIFF_MODE_NONE,
DIFF_MODE_RECTANGLE,
NB_DIFF_MODE
};
2015-01-24 22:38:15 +02:00
struct color_node {
uint8_t val[4];
2015-01-24 22:38:15 +02:00
uint8_t palette_id;
int split;
int left_id, right_id;
};
#define NBITS 5
#define CACHE_SIZE (1<<(4*NBITS))
2015-01-24 22:38:15 +02:00
struct cached_color {
uint32_t color;
uint8_t pal_entry;
};
struct cache_node {
struct cached_color *entries;
int nb_entries;
};
struct PaletteUseContext;
2015-02-16 18:40:55 +02:00
typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in,
int x_start, int y_start, int width, int height);
2015-01-24 22:38:15 +02:00
typedef struct PaletteUseContext {
const AVClass *class;
FFFrameSync fs;
2015-01-24 22:38:15 +02:00
struct cache_node cache[CACHE_SIZE]; /* lookup cache */
struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
uint32_t palette[AVPALETTE_COUNT];
int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
int trans_thresh;
int use_alpha;
2015-01-24 22:38:15 +02:00
int palette_loaded;
int dither;
int new;
2015-01-24 22:38:15 +02:00
set_frame_func set_frame;
int bayer_scale;
int ordered_dither[8*8];
2015-02-16 18:40:55 +02:00
int diff_mode;
AVFrame *last_in;
AVFrame *last_out;
2015-01-24 22:38:15 +02:00
/* debug options */
char *dot_filename;
int color_search_method;
int calc_mean_err;
uint64_t total_mean_err;
int debug_accuracy;
} PaletteUseContext;
#define OFFSET(x) offsetof(PaletteUseContext, x)
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
2015-01-24 22:38:15 +02:00
static const AVOption paletteuse_options[] = {
{ "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
{ "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
{ "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
{ "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
{ "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
{ "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
{ "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
2015-02-16 18:40:55 +02:00
{ "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
{ "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
{ "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS },
{ "use_alpha", "use alpha channel for mapping", OFFSET(use_alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
2015-01-24 22:38:15 +02:00
/* following are the debug options, not part of the official API */
{ "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
2015-01-24 22:38:15 +02:00
{ "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
{ "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
{ "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
{ "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" },
{ "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
2015-01-24 22:38:15 +02:00
{ NULL }
};
AVFILTER_DEFINE_CLASS(paletteuse);
static int load_apply_palette(FFFrameSync *fs);
2015-01-24 22:38:15 +02:00
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
int ret;
if ((ret = ff_formats_ref(ff_make_format_list(in_fmts),
&ctx->inputs[0]->outcfg.formats)) < 0 ||
(ret = ff_formats_ref(ff_make_format_list(inpal_fmts),
&ctx->inputs[1]->outcfg.formats)) < 0 ||
(ret = ff_formats_ref(ff_make_format_list(out_fmts),
&ctx->outputs[0]->incfg.formats)) < 0)
return ret;
2015-01-24 22:38:15 +02:00
return 0;
}
static av_always_inline uint32_t dither_color(uint32_t px, int er, int eg,
int eb, int scale, int shift)
2015-01-24 22:38:15 +02:00
{
return px >> 24 << 24
| av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
| av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
| av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
2015-01-24 22:38:15 +02:00
}
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const PaletteUseContext *s)
2015-01-24 22:38:15 +02:00
{
// XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
const int da = c1[0] - c2[0];
const int dr = c1[1] - c2[1];
const int dg = c1[2] - c2[2];
const int db = c1[3] - c2[3];
if (s->use_alpha)
return da*da + dr*dr + dg*dg + db*db;
if (c1[0] < s->trans_thresh && c2[0] < s->trans_thresh) {
return 0;
} else if (c1[0] >= s->trans_thresh && c2[0] >= s->trans_thresh) {
return dr*dr + dg*dg + db*db;
} else {
return 255*255 + 255*255 + 255*255;
}
2015-01-24 22:38:15 +02:00
}
static av_always_inline uint8_t colormap_nearest_bruteforce(const PaletteUseContext *s, const uint8_t *argb)
2015-01-24 22:38:15 +02:00
{
int i, pal_id = -1, min_dist = INT_MAX;
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = s->palette[i];
2015-01-24 22:38:15 +02:00
if (s->use_alpha || c >> 24 >= s->trans_thresh) { // ignore transparent entry
const uint8_t palargb[] = {
s->palette[i]>>24 & 0xff,
s->palette[i]>>16 & 0xff,
s->palette[i]>> 8 & 0xff,
s->palette[i] & 0xff,
2015-01-24 22:38:15 +02:00
};
const int d = diff(palargb, argb, s);
2015-01-24 22:38:15 +02:00
if (d < min_dist) {
pal_id = i;
min_dist = d;
}
}
}
return pal_id;
}
/* Recursive form, simpler but a bit slower. Kept for reference. */
struct nearest_color {
int node_pos;
int dist_sqd;
};
static void colormap_nearest_node(const PaletteUseContext *s,
const struct color_node *map,
2015-01-24 22:38:15 +02:00
const int node_pos,
const uint8_t *target,
struct nearest_color *nearest)
{
const struct color_node *kd = map + node_pos;
const int split = kd->split;
2015-01-24 22:38:15 +02:00
int dx, nearer_kd_id, further_kd_id;
const uint8_t *current = kd->val;
const int current_to_target = diff(target, current, s);
2015-01-24 22:38:15 +02:00
if (current_to_target < nearest->dist_sqd) {
nearest->node_pos = node_pos;
nearest->dist_sqd = current_to_target;
}
if (kd->left_id != -1 || kd->right_id != -1) {
dx = target[split] - current[split];
2015-01-24 22:38:15 +02:00
if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
if (nearer_kd_id != -1)
colormap_nearest_node(s, map, nearer_kd_id, target, nearest);
2015-01-24 22:38:15 +02:00
if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
colormap_nearest_node(s, map, further_kd_id, target, nearest);
2015-01-24 22:38:15 +02:00
}
}
static av_always_inline uint8_t colormap_nearest_recursive(const PaletteUseContext *s, const struct color_node *node, const uint8_t *rgb)
2015-01-24 22:38:15 +02:00
{
struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
colormap_nearest_node(s, node, 0, rgb, &res);
2015-01-24 22:38:15 +02:00
return node[res.node_pos].palette_id;
}
struct stack_node {
int color_id;
int dx2;
};
static av_always_inline uint8_t colormap_nearest_iterative(const PaletteUseContext *s, const struct color_node *root, const uint8_t *target)
2015-01-24 22:38:15 +02:00
{
int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
struct stack_node nodes[16];
struct stack_node *node = &nodes[0];
for (;;) {
const struct color_node *kd = &root[cur_color_id];
const uint8_t *current = kd->val;
const int current_to_target = diff(target, current, s);
2015-01-24 22:38:15 +02:00
/* Compare current color node to the target and update our best node if
* it's actually better. */
if (current_to_target < best_dist) {
best_node_id = cur_color_id;
if (!current_to_target)
goto end; // exact match, we can return immediately
best_dist = current_to_target;
}
/* Check if it's not a leaf */
if (kd->left_id != -1 || kd->right_id != -1) {
const int split = kd->split;
const int dx = target[split] - current[split];
int nearer_kd_id, further_kd_id;
/* Define which side is the most interesting. */
if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
if (nearer_kd_id != -1) {
if (further_kd_id != -1) {
/* Here, both paths are defined, so we push a state for
* when we are going back. */
node->color_id = further_kd_id;
node->dx2 = dx*dx;
pos++;
node++;
}
/* We can now update current color with the most probable path
* (no need to create a state since there is nothing to save
* anymore). */
cur_color_id = nearer_kd_id;
continue;
} else if (dx*dx < best_dist) {
/* The nearest path isn't available, so there is only one path
* possible and it's the least probable. We enter it only if the
* distance from the current point to the hyper rectangle is
* less than our best distance. */
cur_color_id = further_kd_id;
continue;
}
}
/* Unstack as much as we can, typically as long as the least probable
* branch aren't actually probable. */
do {
if (--pos < 0)
goto end;
node--;
} while (node->dx2 >= best_dist);
/* We got a node where the least probable branch might actually contain
* a relevant color. */
cur_color_id = node->color_id;
}
end:
return root[best_node_id].palette_id;
}
#define COLORMAP_NEAREST(s, search, root, target) \
search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(s, root, target) : \
search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(s, root, target) : \
colormap_nearest_bruteforce(s, target)
2015-01-24 22:38:15 +02:00
/**
* Check if the requested color is in the cache already. If not, find it in the
* color tree and cache it.
* Note: a, r, g, and b are the components of color, but are passed as well to avoid
2015-01-24 22:38:15 +02:00
* recomputing them (they are generally computed by the caller for other uses).
*/
static av_always_inline int color_get(PaletteUseContext *s, uint32_t color,
uint8_t a, uint8_t r, uint8_t g, uint8_t b,
const enum color_search_method search_method)
2015-01-24 22:38:15 +02:00
{
int i;
const uint8_t argb_elts[] = {a, r, g, b};
2015-01-24 22:38:15 +02:00
const uint8_t rhash = r & ((1<<NBITS)-1);
const uint8_t ghash = g & ((1<<NBITS)-1);
const uint8_t bhash = b & ((1<<NBITS)-1);
const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
struct cache_node *node = &s->cache[hash];
2015-01-24 22:38:15 +02:00
struct cached_color *e;
// first, check for transparency
if (a < s->trans_thresh && s->transparency_index >= 0) {
return s->transparency_index;
}
2015-01-24 22:38:15 +02:00
for (i = 0; i < node->nb_entries; i++) {
e = &node->entries[i];
if (e->color == color)
return e->pal_entry;
}
e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
sizeof(*node->entries), NULL);
if (!e)
return AVERROR(ENOMEM);
e->color = color;
e->pal_entry = COLORMAP_NEAREST(s, search_method, s->map, argb_elts);
2015-01-24 22:38:15 +02:00
return e->pal_entry;
}
static av_always_inline int get_dst_color_err(PaletteUseContext *s,
uint32_t c, int *ea, int *er, int *eg, int *eb,
const enum color_search_method search_method)
2015-01-24 22:38:15 +02:00
{
const uint8_t a = c >> 24 & 0xff;
2015-01-24 22:38:15 +02:00
const uint8_t r = c >> 16 & 0xff;
const uint8_t g = c >> 8 & 0xff;
const uint8_t b = c & 0xff;
uint32_t dstc;
const int dstx = color_get(s, c, a, r, g, b, search_method);
if (dstx < 0)
return dstx;
dstc = s->palette[dstx];
if (dstx == s->transparency_index) {
*ea =*er = *eg = *eb = 0;
} else {
*ea = (int)a - (int)(dstc >> 24 & 0xff);
*er = (int)r - (int)(dstc >> 16 & 0xff);
*eg = (int)g - (int)(dstc >> 8 & 0xff);
*eb = (int)b - (int)(dstc & 0xff);
}
2015-01-24 22:38:15 +02:00
return dstx;
}
static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in,
2015-02-16 18:40:55 +02:00
int x_start, int y_start, int w, int h,
2015-01-24 22:38:15 +02:00
enum dithering_mode dither,
const enum color_search_method search_method)
{
int x, y;
const int src_linesize = in ->linesize[0] >> 2;
const int dst_linesize = out->linesize[0];
2015-02-16 18:40:55 +02:00
uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
uint8_t *dst = out->data[0] + y_start*dst_linesize;
2015-01-24 22:38:15 +02:00
2015-02-16 18:40:55 +02:00
w += x_start;
h += y_start;
for (y = y_start; y < h; y++) {
for (x = x_start; x < w; x++) {
int ea, er, eg, eb;
2015-01-24 22:38:15 +02:00
if (dither == DITHERING_BAYER) {
const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
const uint8_t a8 = src[x] >> 24 & 0xff;
2015-01-24 22:38:15 +02:00
const uint8_t r8 = src[x] >> 16 & 0xff;
const uint8_t g8 = src[x] >> 8 & 0xff;
const uint8_t b8 = src[x] & 0xff;
const uint8_t r = av_clip_uint8(r8 + d);
const uint8_t g = av_clip_uint8(g8 + d);
const uint8_t b = av_clip_uint8(b8 + d);
const uint32_t color_new = (unsigned)(a8) << 24 | r << 16 | g << 8 | b;
const int color = color_get(s, color_new, a8, r, g, b, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
} else if (dither == DITHERING_HECKBERT) {
2015-02-16 18:40:55 +02:00
const int right = x < w - 1, down = y < h - 1;
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
} else if (dither == DITHERING_FLOYD_STEINBERG) {
2015-02-16 18:40:55 +02:00
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
} else if (dither == DITHERING_SIERRA2) {
2015-02-16 18:40:55 +02:00
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int right2 = x < w - 2, left2 = x > x_start + 1;
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
if (down) {
if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
2015-01-24 22:38:15 +02:00
if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
}
} else if (dither == DITHERING_SIERRA2_4A) {
2015-02-16 18:40:55 +02:00
const int right = x < w - 1, down = y < h - 1, left = x > x_start;
const int color = get_dst_color_err(s, src[x], &ea, &er, &eg, &eb, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
} else {
const uint8_t a = src[x] >> 24 & 0xff;
2015-01-24 22:38:15 +02:00
const uint8_t r = src[x] >> 16 & 0xff;
const uint8_t g = src[x] >> 8 & 0xff;
const uint8_t b = src[x] & 0xff;
const int color = color_get(s, src[x], a, r, g, b, search_method);
2015-01-24 22:38:15 +02:00
if (color < 0)
return color;
dst[x] = color;
}
}
src += src_linesize;
dst += dst_linesize;
}
return 0;
}
#define INDENT 4
static void disp_node(AVBPrint *buf,
const struct color_node *map,
int parent_id, int node_id,
int depth)
{
const struct color_node *node = &map[node_id];
const uint32_t fontcolor = node->val[1] > 0x50 &&
node->val[2] > 0x50 &&
node->val[3] > 0x50 ? 0 : 0xffffff;
const int rgb_comp = node->split - 1;
2015-01-24 22:38:15 +02:00
av_bprintf(buf, "%*cnode%d ["
"label=\"%c%02X%c%02X%c%02X%c\" "
"fillcolor=\"#%02x%02x%02x\" "
"fontcolor=\"#%06"PRIX32"\"]\n",
2015-01-24 22:38:15 +02:00
depth*INDENT, ' ', node->palette_id,
"[ "[rgb_comp], node->val[1],
"][ "[rgb_comp], node->val[2],
" ]["[rgb_comp], node->val[3],
" ]"[rgb_comp],
node->val[1], node->val[2], node->val[3],
2015-01-24 22:38:15 +02:00
fontcolor);
if (parent_id != -1)
av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
map[parent_id].palette_id, node->palette_id);
if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
}
// debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
static int disp_tree(const struct color_node *node, const char *fname)
{
AVBPrint buf;
FILE *f = avpriv_fopen_utf8(fname, "w");
2015-01-24 22:38:15 +02:00
if (!f) {
int ret = AVERROR(errno);
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
fname, av_err2str(ret));
return ret;
}
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
av_bprintf(&buf, "digraph {\n");
av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
disp_node(&buf, node, -1, 0, 0);
av_bprintf(&buf, "}\n");
fwrite(buf.str, 1, buf.len, f);
fclose(f);
av_bprint_finalize(&buf, NULL);
return 0;
}
static int debug_accuracy(const PaletteUseContext *s)
2015-01-24 22:38:15 +02:00
{
int r, g, b, ret = 0;
for (r = 0; r < 256; r++) {
for (g = 0; g < 256; g++) {
for (b = 0; b < 256; b++) {
const uint8_t argb[] = {0xff, r, g, b};
const int r1 = COLORMAP_NEAREST(s, s->color_search_method, s->map, argb);
const int r2 = colormap_nearest_bruteforce(s, argb);
2015-01-24 22:38:15 +02:00
if (r1 != r2) {
const uint32_t c1 = s->palette[r1];
const uint32_t c2 = s->palette[r2];
const uint8_t a1 = s->use_alpha ? c1>>24 & 0xff : 0xff;
const uint8_t a2 = s->use_alpha ? c2>>24 & 0xff : 0xff;
const uint8_t palargb1[] = { a1, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
const uint8_t palargb2[] = { a2, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
const int d1 = diff(palargb1, argb, s);
const int d2 = diff(palargb2, argb, s);
2015-01-24 22:38:15 +02:00
if (d1 != d2) {
if (s->use_alpha)
av_log(NULL, AV_LOG_ERROR,
"/!\\ %02X%02X%02X: %d ! %d (%08"PRIX32" ! %08"PRIX32") / dist: %d ! %d\n",
r, g, b, r1, r2, c1, c2, d1, d2);
else
av_log(NULL, AV_LOG_ERROR,
"/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
2015-01-24 22:38:15 +02:00
ret = 1;
}
}
}
}
}
return ret;
}
struct color {
uint32_t value;
uint8_t pal_id;
};
struct color_rect {
uint8_t min[4];
uint8_t max[4];
2015-01-24 22:38:15 +02:00
};
typedef int (*cmp_func)(const void *, const void *);
#define DECLARE_CMP_FUNC(name, pos) \
static int cmp_##name(const void *pa, const void *pb) \
{ \
const struct color *a = pa; \
const struct color *b = pb; \
return (int)(a->value >> (8 * (3 - (pos))) & 0xff) \
- (int)(b->value >> (8 * (3 - (pos))) & 0xff); \
2015-01-24 22:38:15 +02:00
}
DECLARE_CMP_FUNC(a, 0)
DECLARE_CMP_FUNC(r, 1)
DECLARE_CMP_FUNC(g, 2)
DECLARE_CMP_FUNC(b, 3)
2015-01-24 22:38:15 +02:00
static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};
2015-01-24 22:38:15 +02:00
static int get_next_color(const uint8_t *color_used, const PaletteUseContext *s,
2015-01-24 22:38:15 +02:00
int *component, const struct color_rect *box)
{
int wa, wr, wg, wb;
2015-01-24 22:38:15 +02:00
int i, longest = 0;
unsigned nb_color = 0;
struct color_rect ranges;
struct color tmp_pal[256];
cmp_func cmpf;
2015-01-24 22:38:15 +02:00
ranges.min[0] = ranges.min[1] = ranges.min[2] = ranges.min[3]= 0xff;
ranges.max[0] = ranges.max[1] = ranges.max[2] = ranges.max[3]= 0x00;
2015-01-24 22:38:15 +02:00
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = s->palette[i];
const uint8_t a = c >> 24 & 0xff;
2015-01-24 22:38:15 +02:00
const uint8_t r = c >> 16 & 0xff;
const uint8_t g = c >> 8 & 0xff;
const uint8_t b = c & 0xff;
if (!s->use_alpha && a < s->trans_thresh) {
continue;
}
if (color_used[i] || (a != 0xff && !s->use_alpha) ||
r < box->min[1] || g < box->min[2] || b < box->min[3] ||
r > box->max[1] || g > box->max[2] || b > box->max[3])
2015-01-24 22:38:15 +02:00
continue;
if (s->use_alpha && (a < box->min[0] || a > box->max[0]))
continue;
if (a < ranges.min[0]) ranges.min[0] = a;
if (r < ranges.min[1]) ranges.min[1] = r;
if (g < ranges.min[2]) ranges.min[2] = g;
if (b < ranges.min[3]) ranges.min[3] = b;
2015-01-24 22:38:15 +02:00
if (a > ranges.max[0]) ranges.max[0] = a;
if (r > ranges.max[1]) ranges.max[1] = r;
if (g > ranges.max[2]) ranges.max[2] = g;
if (b > ranges.max[3]) ranges.max[3] = b;
2015-01-24 22:38:15 +02:00
tmp_pal[nb_color].value = c;
tmp_pal[nb_color].pal_id = i;
nb_color++;
}
if (!nb_color)
return -1;
/* define longest axis that will be the split component */
wa = ranges.max[0] - ranges.min[0];
wr = ranges.max[1] - ranges.min[1];
wg = ranges.max[2] - ranges.min[2];
wb = ranges.max[3] - ranges.min[3];
if (s->use_alpha) {
if (wa >= wr && wa >= wb && wa >= wg) longest = 0;
if (wr >= wg && wr >= wb && wr >= wa) longest = 1;
if (wg >= wr && wg >= wb && wg >= wa) longest = 2;
if (wb >= wr && wb >= wg && wb >= wa) longest = 3;
} else {
if (wr >= wg && wr >= wb) longest = 1;
if (wg >= wr && wg >= wb) longest = 2;
if (wb >= wr && wb >= wg) longest = 3;
}
cmpf = cmp_funcs[longest];
2015-01-24 22:38:15 +02:00
*component = longest;
/* sort along this axis to get median */
AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
2015-01-24 22:38:15 +02:00
return tmp_pal[nb_color >> 1].pal_id;
}
static int colormap_insert(struct color_node *map,
uint8_t *color_used,
int *nb_used,
const PaletteUseContext *s,
2015-01-24 22:38:15 +02:00
const struct color_rect *box)
{
uint32_t c;
int component, cur_id;
int node_left_id = -1, node_right_id = -1;
struct color_node *node;
struct color_rect box1, box2;
const int pal_id = get_next_color(color_used, s, &component, box);
2015-01-24 22:38:15 +02:00
if (pal_id < 0)
return -1;
/* create new node with that color */
cur_id = (*nb_used)++;
c = s->palette[pal_id];
2015-01-24 22:38:15 +02:00
node = &map[cur_id];
node->split = component;
node->palette_id = pal_id;
node->val[0] = c>>24 & 0xff;
node->val[1] = c>>16 & 0xff;
node->val[2] = c>> 8 & 0xff;
node->val[3] = c & 0xff;
2015-01-24 22:38:15 +02:00
color_used[pal_id] = 1;
/* get the two boxes this node creates */
box1 = box2 = *box;
box1.max[component] = node->val[component];
box2.min[component] = FFMIN(node->val[component] + 1, 255);
2015-01-24 22:38:15 +02:00
node_left_id = colormap_insert(map, color_used, nb_used, s, &box1);
2015-01-24 22:38:15 +02:00
if (box2.min[component] <= box2.max[component])
node_right_id = colormap_insert(map, color_used, nb_used, s, &box2);
2015-01-24 22:38:15 +02:00
node->left_id = node_left_id;
node->right_id = node_right_id;
return cur_id;
}
static int cmp_pal_entry(const void *a, const void *b)
{
const int c1 = *(const uint32_t *)a & 0xffffff;
const int c2 = *(const uint32_t *)b & 0xffffff;
return c1 - c2;
}
static int cmp_pal_entry_alpha(const void *a, const void *b)
{
const int c1 = *(const uint32_t *)a;
const int c2 = *(const uint32_t *)b;
return c1 - c2;
}
2015-01-24 22:38:15 +02:00
static void load_colormap(PaletteUseContext *s)
{
int i, nb_used = 0;
uint8_t color_used[AVPALETTE_COUNT] = {0};
uint32_t last_color = 0;
struct color_rect box;
if (!s->use_alpha && s->transparency_index >= 0) {
FFSWAP(uint32_t, s->palette[s->transparency_index], s->palette[255]);
}
/* disable transparent colors and dups */
qsort(s->palette, AVPALETTE_COUNT-(s->transparency_index >= 0), sizeof(*s->palette),
s->use_alpha ? cmp_pal_entry_alpha : cmp_pal_entry);
2015-01-24 22:38:15 +02:00
for (i = 0; i < AVPALETTE_COUNT; i++) {
const uint32_t c = s->palette[i];
if (i != 0 && c == last_color) {
color_used[i] = 1;
continue;
}
last_color = c;
if (!s->use_alpha && c >> 24 < s->trans_thresh) {
2015-01-24 22:38:15 +02:00
color_used[i] = 1; // ignore transparent color(s)
continue;
}
}
box.min[0] = box.min[1] = box.min[2] = box.min[3] = 0x00;
box.max[0] = box.max[1] = box.max[2] = box.max[3] = 0xff;
2015-01-24 22:38:15 +02:00
colormap_insert(s->map, color_used, &nb_used, s, &box);
2015-01-24 22:38:15 +02:00
if (s->dot_filename)
disp_tree(s->map, s->dot_filename);
if (s->debug_accuracy) {
if (!debug_accuracy(s))
2015-01-24 22:38:15 +02:00
av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
}
}
static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
const AVFrame *in2, int frame_count)
{
int x, y;
const uint32_t *palette = s->palette;
uint32_t *src1 = (uint32_t *)in1->data[0];
uint8_t *src2 = in2->data[0];
const int src1_linesize = in1->linesize[0] >> 2;
const int src2_linesize = in2->linesize[0];
const float div = in1->width * in1->height * (s->use_alpha ? 4 : 3);
2015-01-24 22:38:15 +02:00
unsigned mean_err = 0;
for (y = 0; y < in1->height; y++) {
for (x = 0; x < in1->width; x++) {
const uint32_t c1 = src1[x];
const uint32_t c2 = palette[src2[x]];
const uint8_t a1 = s->use_alpha ? c1>>24 & 0xff : 0xff;
const uint8_t a2 = s->use_alpha ? c2>>24 & 0xff : 0xff;
const uint8_t argb1[] = {a1, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
const uint8_t argb2[] = {a2, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
mean_err += diff(argb1, argb2, s);
2015-01-24 22:38:15 +02:00
}
src1 += src1_linesize;
src2 += src2_linesize;
}
s->total_mean_err += mean_err;
av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
mean_err / div, s->total_mean_err / (div * frame_count));
}
2015-02-16 18:40:55 +02:00
static void set_processing_window(enum diff_mode diff_mode,
const AVFrame *prv_src, const AVFrame *cur_src,
const AVFrame *prv_dst, AVFrame *cur_dst,
int *xp, int *yp, int *wp, int *hp)
{
int x_start = 0, y_start = 0;
int width = cur_src->width;
int height = cur_src->height;
if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) {
2015-02-16 18:40:55 +02:00
int y;
int x_end = cur_src->width - 1,
y_end = cur_src->height - 1;
const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
const uint8_t *prv_dstp = prv_dst->data[0];
uint8_t *cur_dstp = cur_dst->data[0];
const int prv_src_linesize = prv_src->linesize[0] >> 2;
const int cur_src_linesize = cur_src->linesize[0] >> 2;
const int prv_dst_linesize = prv_dst->linesize[0];
const int cur_dst_linesize = cur_dst->linesize[0];
/* skip common lines */
while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
cur_srcp + y_start*cur_src_linesize,
cur_src->width * 4)) {
memcpy(cur_dstp + y_start*cur_dst_linesize,
prv_dstp + y_start*prv_dst_linesize,
cur_dst->width);
y_start++;
}
while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
cur_srcp + y_end*cur_src_linesize,
cur_src->width * 4)) {
memcpy(cur_dstp + y_end*cur_dst_linesize,
prv_dstp + y_end*prv_dst_linesize,
cur_dst->width);
y_end--;
}
height = y_end + 1 - y_start;
/* skip common columns */
while (x_start < x_end) {
int same_column = 1;
for (y = y_start; y <= y_end; y++) {
if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
same_column = 0;
break;
}
}
if (!same_column)
break;
x_start++;
}
while (x_end > x_start) {
int same_column = 1;
for (y = y_start; y <= y_end; y++) {
if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
same_column = 0;
break;
}
}
if (!same_column)
break;
x_end--;
}
width = x_end + 1 - x_start;
if (x_start) {
for (y = y_start; y <= y_end; y++)
memcpy(cur_dstp + y*cur_dst_linesize,
prv_dstp + y*prv_dst_linesize, x_start);
}
if (x_end != cur_src->width - 1) {
const int copy_len = cur_src->width - 1 - x_end;
for (y = y_start; y <= y_end; y++)
memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
prv_dstp + y*prv_dst_linesize + x_end + 1,
copy_len);
}
}
*xp = x_start;
*yp = y_start;
*wp = width;
*hp = height;
}
static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
2015-01-24 22:38:15 +02:00
{
int x, y, w, h, ret;
2015-01-24 22:38:15 +02:00
AVFilterContext *ctx = inlink->dst;
PaletteUseContext *s = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
*outf = NULL;
return AVERROR(ENOMEM);
2015-01-24 22:38:15 +02:00
}
av_frame_copy_props(out, in);
2015-02-16 18:40:55 +02:00
set_processing_window(s->diff_mode, s->last_in, in,
s->last_out, out, &x, &y, &w, &h);
av_frame_unref(s->last_in);
av_frame_unref(s->last_out);
if ((ret = av_frame_ref(s->last_in, in)) < 0 ||
(ret = av_frame_ref(s->last_out, out)) < 0 ||
(ret = av_frame_make_writable(s->last_in)) < 0) {
2015-01-24 22:38:15 +02:00
av_frame_free(&out);
*outf = NULL;
return ret;
2015-01-24 22:38:15 +02:00
}
2015-02-16 18:40:55 +02:00
ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
2015-02-16 18:40:55 +02:00
w, h, x, y, x+w, y+h, in->width, in->height);
ret = s->set_frame(s, out, in, x, y, w, h);
if (ret < 0) {
2015-02-16 18:40:55 +02:00
av_frame_free(&out);
*outf = NULL;
return ret;
2015-02-16 18:40:55 +02:00
}
2015-01-24 22:38:15 +02:00
memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
if (s->calc_mean_err)
debug_mean_error(s, in, out, inlink->frame_count_out);
*outf = out;
return 0;
2015-01-24 22:38:15 +02:00
}
static int config_output(AVFilterLink *outlink)
{
int ret;
AVFilterContext *ctx = outlink->src;
PaletteUseContext *s = ctx->priv;
2017-08-31 19:47:37 +02:00
ret = ff_framesync_init_dualinput(&s->fs, ctx);
if (ret < 0)
return ret;
s->fs.opt_repeatlast = 1; // only 1 frame in the palette
s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY;
s->fs.on_event = load_apply_palette;
2015-01-24 22:38:15 +02:00
outlink->w = ctx->inputs[0]->w;
outlink->h = ctx->inputs[0]->h;
outlink->time_base = ctx->inputs[0]->time_base;
2017-08-31 19:47:37 +02:00
if ((ret = ff_framesync_configure(&s->fs)) < 0)
2015-01-24 22:38:15 +02:00
return ret;
return 0;
}
static int config_input_palette(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
if (inlink->w * inlink->h != AVPALETTE_COUNT) {
av_log(ctx, AV_LOG_ERROR,
"Palette input must contain exactly %d pixels. "
"Specified input has %dx%d=%d pixels\n",
AVPALETTE_COUNT, inlink->w, inlink->h,
inlink->w * inlink->h);
return AVERROR(EINVAL);
}
return 0;
}
static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
{
int i, x, y;
const uint32_t *p = (const uint32_t *)palette_frame->data[0];
const int p_linesize = palette_frame->linesize[0] >> 2;
s->transparency_index = -1;
if (s->new) {
memset(s->palette, 0, sizeof(s->palette));
memset(s->map, 0, sizeof(s->map));
for (i = 0; i < CACHE_SIZE; i++)
av_freep(&s->cache[i].entries);
memset(s->cache, 0, sizeof(s->cache));
}
2015-01-24 22:38:15 +02:00
i = 0;
for (y = 0; y < palette_frame->height; y++) {
for (x = 0; x < palette_frame->width; x++) {
s->palette[i] = p[x];
if (!s->use_alpha && p[x]>>24 < s->trans_thresh) {
s->transparency_index = i; // we are assuming at most one transparent color in palette
}
i++;
}
2015-01-24 22:38:15 +02:00
p += p_linesize;
}
load_colormap(s);
if (!s->new)
s->palette_loaded = 1;
2015-01-24 22:38:15 +02:00
}
static int load_apply_palette(FFFrameSync *fs)
2015-01-24 22:38:15 +02:00
{
AVFilterContext *ctx = fs->parent;
2015-01-24 22:38:15 +02:00
AVFilterLink *inlink = ctx->inputs[0];
PaletteUseContext *s = ctx->priv;
AVFrame *master, *second, *out = NULL;
int ret;
// writable for error diffusal dithering
ret = ff_framesync_dualinput_get_writable(fs, &master, &second);
if (ret < 0)
return ret;
if (!master || !second) {
av_frame_free(&master);
return AVERROR_BUG;
}
2015-01-24 22:38:15 +02:00
if (!s->palette_loaded) {
load_palette(s, second);
}
ret = apply_palette(inlink, master, &out);
av_frame_free(&master);
if (ret < 0)
return ret;
return ff_filter_frame(ctx->outputs[0], out);
2015-01-24 22:38:15 +02:00
}
#define DEFINE_SET_FRAME(color_search, name, value) \
2015-02-16 18:40:55 +02:00
static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
int x_start, int y_start, int w, int h) \
2015-01-24 22:38:15 +02:00
{ \
2015-02-16 18:40:55 +02:00
return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \
2015-01-24 22:38:15 +02:00
}
#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \
DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \
DEFINE_SET_FRAME_COLOR_SEARCH(nns_iterative, COLOR_SEARCH_NNS_ITERATIVE)
DEFINE_SET_FRAME_COLOR_SEARCH(nns_recursive, COLOR_SEARCH_NNS_RECURSIVE)
DEFINE_SET_FRAME_COLOR_SEARCH(bruteforce, COLOR_SEARCH_BRUTEFORCE)
#define DITHERING_ENTRIES(color_search) { \
set_frame_##color_search##_none, \
set_frame_##color_search##_bayer, \
set_frame_##color_search##_heckbert, \
set_frame_##color_search##_floyd_steinberg, \
set_frame_##color_search##_sierra2, \
set_frame_##color_search##_sierra2_4a, \
}
static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING] = {
DITHERING_ENTRIES(nns_iterative),
DITHERING_ENTRIES(nns_recursive),
DITHERING_ENTRIES(bruteforce),
};
static int dither_value(int p)
{
const int q = p ^ (p >> 3);
return (p & 4) >> 2 | (q & 4) >> 1 \
| (p & 2) << 1 | (q & 2) << 2 \
| (p & 1) << 4 | (q & 1) << 5;
}
static av_cold int init(AVFilterContext *ctx)
{
PaletteUseContext *s = ctx->priv;
s->last_in = av_frame_alloc();
s->last_out = av_frame_alloc();
if (!s->last_in || !s->last_out)
return AVERROR(ENOMEM);
2015-01-24 22:38:15 +02:00
s->set_frame = set_frame_lut[s->color_search_method][s->dither];
if (s->dither == DITHERING_BAYER) {
int i;
const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
}
return 0;
}
static int activate(AVFilterContext *ctx)
2015-01-24 22:38:15 +02:00
{
PaletteUseContext *s = ctx->priv;
2017-08-31 19:47:37 +02:00
return ff_framesync_activate(&s->fs);
2015-01-24 22:38:15 +02:00
}
static av_cold void uninit(AVFilterContext *ctx)
{
int i;
PaletteUseContext *s = ctx->priv;
2017-08-31 19:47:37 +02:00
ff_framesync_uninit(&s->fs);
2015-01-24 22:38:15 +02:00
for (i = 0; i < CACHE_SIZE; i++)
av_freep(&s->cache[i].entries);
2015-02-16 18:40:55 +02:00
av_frame_free(&s->last_in);
av_frame_free(&s->last_out);
2015-01-24 22:38:15 +02:00
}
static const AVFilterPad paletteuse_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},{
.name = "palette",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_palette,
},
};
static const AVFilterPad paletteuse_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_paletteuse = {
2015-01-24 22:38:15 +02:00
.name = "paletteuse",
.description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
.priv_size = sizeof(PaletteUseContext),
.init = init,
.uninit = uninit,
.activate = activate,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(paletteuse_inputs),
FILTER_OUTPUTS(paletteuse_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(query_formats),
2015-01-24 22:38:15 +02:00
.priv_class = &paletteuse_class,
};