1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libswscale/swscale_internal.h

720 lines
33 KiB
C
Raw Normal View History

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SWSCALE_SWSCALE_INTERNAL_H
#define SWSCALE_SWSCALE_INTERNAL_H
#include "config.h"
#if HAVE_ALTIVEC_H
#include <altivec.h>
#endif
#include "libavutil/avutil.h"
#include "libavutil/log.h"
#include "libavutil/pixfmt.h"
#define STR(s) AV_TOSTRING(s) //AV_STRINGIFY is too long
#define FAST_BGR2YV12 //use 7-bit instead of 15-bit coefficients
#define MAX_FILTER_SIZE 256
#define DITHER1XBPP
#if HAVE_BIGENDIAN
#define ALT32_CORR (-1)
#else
#define ALT32_CORR 1
#endif
#if ARCH_X86_64
# define APCK_PTR2 8
# define APCK_COEF 16
# define APCK_SIZE 24
#else
# define APCK_PTR2 4
# define APCK_COEF 8
# define APCK_SIZE 16
#endif
struct SwsContext;
typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t* src[],
int srcStride[], int srcSliceY, int srcSliceH,
uint8_t* dst[], int dstStride[]);
/**
* Write one line of horizontally scaled Y/U/V/A to planar output
* without any additional vertical scaling (or point-scaling).
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the 4 output planes (Y/U/V/A). For >8bit
* output, this is in uint16_t
* @param dstW width of dest[0], dest[3], lumSrc and alpSrc in pixels
* @param chrDstW width of dest[1], dest[2], chrUSrc and chrVSrc
*/
typedef void (*yuv2planar1_fn) (struct SwsContext *c,
const int16_t *lumSrc, const int16_t *chrUSrc,
const int16_t *chrVSrc, const int16_t *alpSrc,
uint8_t *dest[4], int dstW, int chrDstW);
/**
* Write one line of horizontally scaled Y/U/V/A to planar output
* with multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the 4 output planes (Y/U/V/A). For >8bit
* output, this is in uint16_t
* @param dstW width of dest[0], dest[3], lumSrc and alpSrc in pixels
* @param chrDstW width of dest[1], dest[2], chrUSrc and chrVSrc
*/
typedef void (*yuv2planarX_fn) (struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest[4],
int dstW, int chrDstW);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output without any additional vertical scaling (or point-scaling). Note
* that this function may do chroma scaling, see the "uvalpha" argument.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param uvalpha chroma scaling coefficient for the second line of chroma
* pixels, either 2048 or 0. If 0, one chroma input is used
* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
* is set, it generates 1 output pixel). If 2048, two chroma
* input pixels should be averaged for 2 output pixels (this
* only happens if SWS_FLAG_FULL_CHR_INT is not set)
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed1_fn) (struct SwsContext *c, const int16_t *lumSrc,
const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
const int16_t *alpSrc, uint8_t *dest,
int dstW, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing bilinear scaling between two input lines.
*
* @param c SWS scaling context
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param yalpha luma/alpha scaling coefficients for the second input line.
* The first line's coefficients can be calculated by using
* 4096 - yalpha
* @param uvalpha chroma scaling coefficient for the second input line. The
* first line's coefficients can be calculated by using
* 4096 - uvalpha
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* for some output formats.
*/
typedef void (*yuv2packed2_fn) (struct SwsContext *c, const int16_t *lumSrc[2],
const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
const int16_t *alpSrc[2], uint8_t *dest,
int dstW, int yalpha, int uvalpha, int y);
/**
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
* output by doing multi-point vertical scaling between input pixels.
*
* @param c SWS scaling context
* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param lumFilterSize number of vertical luma/alpha input lines to scale
* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param chrFilterSize number of vertical chroma input lines to scale
* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
* 19-bit for 16bit output (in int32_t)
* @param dest pointer to the output plane. For 16bit output, this is
* uint16_t
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels
* to write into dest[]
* @param y vertical line number for this output. This does not need
* to be used to calculate the offset in the destination,
* but can be used to generate comfort noise using dithering
* or some output formats.
*/
typedef void (*yuv2packedX_fn) (struct SwsContext *c, const int16_t *lumFilter,
const int16_t **lumSrc, int lumFilterSize,
const int16_t *chrFilter, const int16_t **chrUSrc,
const int16_t **chrVSrc, int chrFilterSize,
const int16_t **alpSrc, uint8_t *dest,
int dstW, int y);
/* This struct should be aligned on at least a 32-byte boundary. */
typedef struct SwsContext {
/**
* info on struct for av_log
*/
const AVClass *av_class;
/**
* Note that src, dst, srcStride, dstStride will be copied in the
* sws_scale() wrapper so they can be freely modified here.
*/
SwsFunc swScale;
int srcW; ///< Width of source luma/alpha planes.
int srcH; ///< Height of source luma/alpha planes.
int dstH; ///< Height of destination luma/alpha planes.
int chrSrcW; ///< Width of source chroma planes.
int chrSrcH; ///< Height of source chroma planes.
int chrDstW; ///< Width of destination chroma planes.
int chrDstH; ///< Height of destination chroma planes.
int lumXInc, chrXInc;
int lumYInc, chrYInc;
enum PixelFormat dstFormat; ///< Destination pixel format.
enum PixelFormat srcFormat; ///< Source pixel format.
int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
int dstBpc, srcBpc;
int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
double param[2]; ///< Input parameters for scaling algorithms that need them.
uint32_t pal_yuv[256];
uint32_t pal_rgb[256];
/**
* @name Scaled horizontal lines ring buffer.
* The horizontal scaler keeps just enough scaled lines in a ring buffer
* so they may be passed to the vertical scaler. The pointers to the
* allocated buffers for each line are duplicated in sequence in the ring
* buffer to simplify indexing and avoid wrapping around between lines
* inside the vertical scaler code. The wrapping is done before the
* vertical scaler is called.
*/
//@{
int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
//@}
uint8_t *formatConvBuffer;
/**
* @name Horizontal and vertical filters.
* To better understand the following fields, here is a pseudo-code of
* their usage in filtering a horizontal line:
* @code
* for (i = 0; i < width; i++) {
* dst[i] = 0;
* for (j = 0; j < filterSize; j++)
* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
* }
* @endcode
*/
//@{
int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
int16_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
int16_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
int16_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
int16_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
int vChrFilterSize; ///< Vertical filter size for chroma pixels.
//@}
int lumMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for luma/alpha planes.
int chrMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for chroma planes.
uint8_t *lumMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for luma/alpha planes.
uint8_t *chrMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for chroma planes.
int canMMX2BeUsed;
int dstY; ///< Last destination vertical line output from last slice.
int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
void * yuvTable; // pointer to the yuv->rgb table start so it can be freed()
uint8_t * table_rV[256];
uint8_t * table_gU[256];
int table_gV[256];
uint8_t * table_bU[256];
//Colorspace stuff
int contrast, brightness, saturation; // for sws_getColorspaceDetails
int srcColorspaceTable[4];
int dstColorspaceTable[4];
int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
int yuv2rgb_y_offset;
int yuv2rgb_y_coeff;
int yuv2rgb_v2r_coeff;
int yuv2rgb_v2g_coeff;
int yuv2rgb_u2g_coeff;
int yuv2rgb_u2b_coeff;
#define RED_DITHER "0*8"
#define GREEN_DITHER "1*8"
#define BLUE_DITHER "2*8"
#define Y_COEFF "3*8"
#define VR_COEFF "4*8"
#define UB_COEFF "5*8"
#define VG_COEFF "6*8"
#define UG_COEFF "7*8"
#define Y_OFFSET "8*8"
#define U_OFFSET "9*8"
#define V_OFFSET "10*8"
#define LUM_MMX_FILTER_OFFSET "11*8"
#define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
#define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
#define ESP_OFFSET "11*8+4*4*256*2+8"
#define VROUNDER_OFFSET "11*8+4*4*256*2+16"
#define U_TEMP "11*8+4*4*256*2+24"
#define V_TEMP "11*8+4*4*256*2+32"
#define Y_TEMP "11*8+4*4*256*2+40"
#define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
#define UV_OFF "11*8+4*4*256*3+48"
#define UV_OFFx2 "11*8+4*4*256*3+56"
#define DITHER16 "11*8+4*4*256*3+64"
#define DITHER32 "11*8+4*4*256*3+80"
DECLARE_ALIGNED(8, uint64_t, redDither);
DECLARE_ALIGNED(8, uint64_t, greenDither);
DECLARE_ALIGNED(8, uint64_t, blueDither);
DECLARE_ALIGNED(8, uint64_t, yCoeff);
DECLARE_ALIGNED(8, uint64_t, vrCoeff);
DECLARE_ALIGNED(8, uint64_t, ubCoeff);
DECLARE_ALIGNED(8, uint64_t, vgCoeff);
DECLARE_ALIGNED(8, uint64_t, ugCoeff);
DECLARE_ALIGNED(8, uint64_t, yOffset);
DECLARE_ALIGNED(8, uint64_t, uOffset);
DECLARE_ALIGNED(8, uint64_t, vOffset);
int32_t lumMmxFilter[4*MAX_FILTER_SIZE];
int32_t chrMmxFilter[4*MAX_FILTER_SIZE];
int dstW; ///< Width of destination luma/alpha planes.
DECLARE_ALIGNED(8, uint64_t, esp);
DECLARE_ALIGNED(8, uint64_t, vRounder);
DECLARE_ALIGNED(8, uint64_t, u_temp);
DECLARE_ALIGNED(8, uint64_t, v_temp);
DECLARE_ALIGNED(8, uint64_t, y_temp);
int32_t alpMmxFilter[4*MAX_FILTER_SIZE];
// alignment of these values is not necessary, but merely here
// to maintain the same offset across x8632 and x86-64. Once we
// use proper offset macros in the asm, they can be removed.
DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
DECLARE_ALIGNED(8, uint16_t, dither16)[8];
DECLARE_ALIGNED(8, uint32_t, dither32)[8];
const uint8_t *chrDither8, *lumDither8;
#if HAVE_ALTIVEC
vector signed short CY;
vector signed short CRV;
vector signed short CBU;
vector signed short CGU;
vector signed short CGV;
vector signed short OY;
vector unsigned short CSHIFT;
vector signed short *vYCoeffsBank, *vCCoeffsBank;
#endif
#if ARCH_BFIN
DECLARE_ALIGNED(4, uint32_t, oy);
DECLARE_ALIGNED(4, uint32_t, oc);
DECLARE_ALIGNED(4, uint32_t, zero);
DECLARE_ALIGNED(4, uint32_t, cy);
DECLARE_ALIGNED(4, uint32_t, crv);
DECLARE_ALIGNED(4, uint32_t, rmask);
DECLARE_ALIGNED(4, uint32_t, cbu);
DECLARE_ALIGNED(4, uint32_t, bmask);
DECLARE_ALIGNED(4, uint32_t, cgu);
DECLARE_ALIGNED(4, uint32_t, cgv);
DECLARE_ALIGNED(4, uint32_t, gmask);
#endif
#if HAVE_VIS
DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
#endif
/* function pointers for swScale() */
yuv2planar1_fn yuv2yuv1;
yuv2planarX_fn yuv2yuvX;
yuv2packed1_fn yuv2packed1;
yuv2packed2_fn yuv2packed2;
yuv2packedX_fn yuv2packedX;
void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal); ///< Unscaled conversion of luma plane to YV12 for horizontal scaler.
void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal); ///< Unscaled conversion of alpha plane to YV12 for horizontal scaler.
void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
int width, uint32_t *pal); ///< Unscaled conversion of chroma planes to YV12 for horizontal scaler.
/**
* Scale one horizontal line of input data using a bilinear filter
* to produce one line of output data. Compared to SwsContext->hScale(),
* please take note of the following caveats when using these:
* - Scaling is done using only 7bit instead of 14bit coefficients.
* - You can use no more than 5 input pixels to produce 4 output
* pixels. Therefore, this filter should not be used for downscaling
* by more than ~20% in width (because that equals more than 5/4th
* downscaling and thus more than 5 pixels input per 4 pixels output).
* - In general, bilinear filters create artifacts during downscaling
* (even when <20%), because one output pixel will span more than one
* input pixel, and thus some pixels will need edges of both neighbor
* pixels to interpolate the output pixel. Since you can use at most
* two input pixels per output pixel in bilinear scaling, this is
* impossible and thus downscaling by any size will create artifacts.
* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
* in SwsContext->flags.
*/
/** @{ */
void (*hyscale_fast)(struct SwsContext *c,
int16_t *dst, int dstWidth,
const uint8_t *src, int srcW, int xInc);
void (*hcscale_fast)(struct SwsContext *c,
int16_t *dst1, int16_t *dst2, int dstWidth,
const uint8_t *src1, const uint8_t *src2,
int srcW, int xInc);
/** @} */
/**
* Scale one horizontal line of input data using a filter over the input
* lines, to produce one (differently sized) line of output data.
*
* @param dst pointer to destination buffer for horizontally scaled
* data. If the number of bits per component of one
* destination pixel (SwsContext->dstBpc) is <= 10, data
* will be 15bpc in 16bits (int16_t) width. Else (i.e.
* SwsContext->dstBpc == 16), data will be 19bpc in
* 32bits (int32_t) width.
* @param dstW width of destination image
* @param src pointer to source data to be scaled. If the number of
* bits per component of a source pixel (SwsContext->srcBpc)
* is 8, this is 8bpc in 8bits (uint8_t) width. Else
* (i.e. SwsContext->dstBpc > 8), this is native depth
* in 16bits (uint16_t) width. In other words, for 9-bit
* YUV input, this is 9bpc, for 10-bit YUV input, this is
* 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
* @param filter filter coefficients to be used per output pixel for
* scaling. This contains 14bpp filtering coefficients.
* Guaranteed to contain dstW * filterSize entries.
* @param filterPos position of the first input pixel to be used for
* each output pixel during scaling. Guaranteed to
* contain dstW entries.
* @param filterSize the number of input coefficients to be used (and
* thus the number of input pixels to be used) for
* creating a single output pixel. Is aligned to 4
* (and input coefficients thus padded with zeroes)
* to simplify creating SIMD code.
*/
/** @{ */
void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
const int16_t *filter, const int16_t *filterPos,
int filterSize);
void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
const int16_t *filter, const int16_t *filterPos,
int filterSize);
/** @} */
void (*lumConvertRange)(int16_t *dst, int width); ///< Color range conversion function for luma plane if needed.
void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width); ///< Color range conversion function for chroma planes if needed.
int needs_hcscale; ///< Set if there are chroma planes to be converted.
} SwsContext;
//FIXME check init (where 0)
SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
int fullRange, int brightness,
int contrast, int saturation);
void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
int brightness, int contrast, int saturation);
void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
int lastInLumBuf, int lastInChrBuf);
SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
SwsFunc ff_yuv2rgb_init_mlib(SwsContext *c);
SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
void ff_bfin_get_unscaled_swscale(SwsContext *c);
#if FF_API_SWS_FORMAT_NAME
/**
* @deprecated Use av_get_pix_fmt_name() instead.
*/
attribute_deprecated
const char *sws_format_name(enum PixelFormat format);
#endif
//FIXME replace this with something faster
#define is16BPS(x) ( \
(x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_BGR48BE \
|| (x)==PIX_FMT_BGR48LE \
|| (x)==PIX_FMT_RGB48BE \
|| (x)==PIX_FMT_RGB48LE \
2011-09-23 21:26:20 +03:00
|| (x)==PIX_FMT_BGRA64BE \
|| (x)==PIX_FMT_BGRA64LE \
|| (x)==PIX_FMT_RGBA64BE \
|| (x)==PIX_FMT_RGBA64LE \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
#define isNBPS(x) ( \
(x)==PIX_FMT_YUV420P9LE \
|| (x)==PIX_FMT_YUV420P9BE \
|| (x)==PIX_FMT_YUV444P9BE \
|| (x)==PIX_FMT_YUV444P9LE \
|| (x)==PIX_FMT_YUV422P10BE \
|| (x)==PIX_FMT_YUV422P10LE \
|| (x)==PIX_FMT_YUV444P10BE \
|| (x)==PIX_FMT_YUV444P10LE \
|| (x)==PIX_FMT_YUV420P10LE \
|| (x)==PIX_FMT_YUV420P10BE \
|| (x)==PIX_FMT_YUV422P10LE \
|| (x)==PIX_FMT_YUV422P10BE \
)
Merge remote branch 'qatar/master' * qatar/master: (33 commits) rtpdec_qdm2: Don't try to parse data packet if no configuration is received ac3enc: put the counting of stereo rematrixing bits in the same place to make the code easier to understand. ac3enc: clean up count_frame_bits() and count_frame_bits_fixed() mpegvideo: make FF_DEBUG_DCT_COEFF output coeffs via av_log() instead of just via AVFrame. srtdec: make sure we don't write past the end of buffer wmaenc: improve channel count and bitrate error handling in encode_init() matroskaenc: make sure we don't produce invalid file with no codec ID matroskadec: check that pointers were initialized before accessing them lavf: fix function name in compute_pkt_fields2 av_dlog message lavf: fix av_find_best_stream when providing a wanted stream. lavf: fix av_find_best_stream when decoder_ret is given and using a related stream. ffmpeg: factorize quality calculation tiff: add support for SamplesPerPixel tag in tiff_decode_tag() tiff: Prefer enum TiffCompr over int for TiffContext.compr. mov: Support edit list atom version 1. configure: Enable libpostproc automatically if GPL code is enabled. Cosmetics: fix prototypes in oggdec oggdec: fix memleak with continuous streams. matroskaenc: add missing new line in av_log() call dnxhdenc: add AVClass in private context. ... swscale changes largely rewritten by me or replaced by baptsites due to lots of bugs in ronalds code. Above code is also just in case its not obvios to a large extended duplicates that where cherry picked from ffmpeg. Conflicts: configure ffmpeg.c libavformat/matroskaenc.c libavutil/pixfmt.h libswscale/ppc/swscale_template.c libswscale/swscale.c libswscale/swscale_template.c libswscale/utils.c libswscale/x86/swscale_template.c tests/fate/h264.mak tests/ref/lavfi/pixdesc_le tests/ref/lavfi/pixfmts_copy_le tests/ref/lavfi/pixfmts_null_le tests/ref/lavfi/pixfmts_scale_le tests/ref/lavfi/pixfmts_vflip_le Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-05-13 05:40:40 +03:00
#define is9_OR_10BPS isNBPS //for ronald
#define isBE(x) ((x)&1)
#define isPlanar8YUV(x) ( \
(x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
)
#define isPlanarYUV(x) ( \
isPlanar8YUV(x) \
|| (x)==PIX_FMT_YUV420P9LE \
|| (x)==PIX_FMT_YUV444P9LE \
|| (x)==PIX_FMT_YUV420P10LE \
|| (x)==PIX_FMT_YUV422P10LE \
|| (x)==PIX_FMT_YUV444P10LE \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P10LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P9BE \
|| (x)==PIX_FMT_YUV444P9BE \
|| (x)==PIX_FMT_YUV420P10BE \
|| (x)==PIX_FMT_YUV422P10BE \
|| (x)==PIX_FMT_YUV444P10BE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P10BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
#define isYUV(x) ( \
(x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_YUYV422 \
|| isPlanarYUV(x) \
)
#define isGray(x) ( \
(x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_GRAY8A \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
)
#define isGray16(x) ( \
(x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
)
#define isRGBinInt(x) ( \
(x)==PIX_FMT_RGB48BE \
|| (x)==PIX_FMT_RGB48LE \
2011-09-23 21:26:20 +03:00
|| (x)==PIX_FMT_RGBA64BE \
|| (x)==PIX_FMT_RGBA64LE \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_RGB32_1 \
|| (x)==PIX_FMT_RGB24 \
|| (x)==PIX_FMT_RGB565BE \
|| (x)==PIX_FMT_RGB565LE \
|| (x)==PIX_FMT_RGB555BE \
|| (x)==PIX_FMT_RGB555LE \
|| (x)==PIX_FMT_RGB444BE \
|| (x)==PIX_FMT_RGB444LE \
|| (x)==PIX_FMT_RGB8 \
|| (x)==PIX_FMT_RGB4 \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_MONOBLACK \
|| (x)==PIX_FMT_MONOWHITE \
)
#define isBGRinInt(x) ( \
(x)==PIX_FMT_BGR48BE \
|| (x)==PIX_FMT_BGR48LE \
2011-09-23 21:26:20 +03:00
|| (x)==PIX_FMT_BGRA64BE \
|| (x)==PIX_FMT_BGRA64LE \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_BGR32_1 \
|| (x)==PIX_FMT_BGR24 \
|| (x)==PIX_FMT_BGR565BE \
|| (x)==PIX_FMT_BGR565LE \
|| (x)==PIX_FMT_BGR555BE \
|| (x)==PIX_FMT_BGR555LE \
|| (x)==PIX_FMT_BGR444BE \
|| (x)==PIX_FMT_BGR444LE \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_BGR4 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_MONOBLACK \
|| (x)==PIX_FMT_MONOWHITE \
)
#define isRGBinBytes(x) ( \
(x)==PIX_FMT_RGB48BE \
|| (x)==PIX_FMT_RGB48LE \
2011-09-23 21:26:20 +03:00
|| (x)==PIX_FMT_RGBA64BE \
|| (x)==PIX_FMT_RGBA64LE \
|| (x)==PIX_FMT_RGBA \
|| (x)==PIX_FMT_ARGB \
|| (x)==PIX_FMT_RGB24 \
)
#define isBGRinBytes(x) ( \
(x)==PIX_FMT_BGR48BE \
|| (x)==PIX_FMT_BGR48LE \
2011-09-23 21:26:20 +03:00
|| (x)==PIX_FMT_BGRA64BE \
|| (x)==PIX_FMT_BGRA64LE \
|| (x)==PIX_FMT_BGRA \
|| (x)==PIX_FMT_ABGR \
|| (x)==PIX_FMT_BGR24 \
)
#define isAnyRGB(x) ( \
isRGBinInt(x) \
|| isBGRinInt(x) \
)
#define isALPHA(x) ( \
2011-09-23 21:26:20 +03:00
(x)==PIX_FMT_BGRA64BE \
|| (x)==PIX_FMT_BGRA64LE \
|| (x)==PIX_FMT_RGBA64BE \
|| (x)==PIX_FMT_RGBA64LE \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_BGR32_1 \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_RGB32_1 \
|| (x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_GRAY8A \
|| (x)==PIX_FMT_YUVA420P \
)
#define isPacked(x) ( \
(x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_Y400A \
|| isAnyRGB(x) \
)
#define usePal(x) ((av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) || (x) == PIX_FMT_GRAY8A)
extern const uint64_t ff_dither4[2];
extern const uint64_t ff_dither8[2];
extern const uint8_t dithers[8][8][8];
extern const uint16_t dither_scale[15][16];
extern const AVClass sws_context_class;
/**
* Sets c->swScale to an unscaled converter if one exists for the specific
* source and destination formats, bit depths, flags, etc.
*/
void ff_get_unscaled_swscale(SwsContext *c);
void ff_swscale_get_unscaled_altivec(SwsContext *c);
/**
* Returns function pointer to fastest main scaler path function depending
* on architecture and available optimizations.
*/
SwsFunc ff_getSwsFunc(SwsContext *c);
void ff_sws_init_swScale_altivec(SwsContext *c);
void ff_sws_init_swScale_mmx(SwsContext *c);
#endif /* SWSCALE_SWSCALE_INTERNAL_H */