1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/vc1_pred.c

948 lines
38 KiB
C
Raw Normal View History

/*
* VC-1 and WMV3 decoder
* Copyright (c) 2011 Mashiat Sarker Shakkhar
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 block decoding routines
*/
#include "mathops.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "vc1.h"
#include "vc1_pred.h"
#include "vc1data.h"
static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
{
int scaledvalue, refdist;
int scalesame1, scalesame2;
int scalezone1_x, zone1offset_x;
int table_index = dir ^ v->second_field;
if (v->s.pict_type != AV_PICTURE_TYPE_B)
refdist = v->refdist;
else
refdist = dir ? v->brfd : v->frfd;
if (refdist > 3)
refdist = 3;
scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
if (FFABS(n) > 255)
scaledvalue = n;
else {
if (FFABS(n) < scalezone1_x)
scaledvalue = (n * scalesame1) >> 8;
else {
if (n < 0)
scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
else
scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
}
}
return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
}
static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
{
int scaledvalue, refdist;
int scalesame1, scalesame2;
int scalezone1_y, zone1offset_y;
int table_index = dir ^ v->second_field;
if (v->s.pict_type != AV_PICTURE_TYPE_B)
refdist = v->refdist;
else
refdist = dir ? v->brfd : v->frfd;
if (refdist > 3)
refdist = 3;
scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
if (FFABS(n) > 63)
scaledvalue = n;
else {
if (FFABS(n) < scalezone1_y)
scaledvalue = (n * scalesame1) >> 8;
else {
if (n < 0)
scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
else
scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
}
}
if (v->cur_field_type && !v->ref_field_type[dir])
return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
else
return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
}
static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
{
int scalezone1_x, zone1offset_x;
int scaleopp1, scaleopp2, brfd;
int scaledvalue;
brfd = FFMIN(v->brfd, 3);
scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
if (FFABS(n) > 255)
scaledvalue = n;
else {
if (FFABS(n) < scalezone1_x)
scaledvalue = (n * scaleopp1) >> 8;
else {
if (n < 0)
scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
else
scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
}
}
return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
}
static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
{
int scalezone1_y, zone1offset_y;
int scaleopp1, scaleopp2, brfd;
int scaledvalue;
brfd = FFMIN(v->brfd, 3);
scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
if (FFABS(n) > 63)
scaledvalue = n;
else {
if (FFABS(n) < scalezone1_y)
scaledvalue = (n * scaleopp1) >> 8;
else {
if (n < 0)
scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
else
scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
}
}
if (v->cur_field_type && !v->ref_field_type[dir]) {
return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
} else {
return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
}
}
static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
int dim, int dir)
{
int brfd, scalesame;
int hpel = 1 - v->s.quarter_sample;
n >>= hpel;
if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
if (dim)
n = scaleforsame_y(v, i, n, dir) * (1 << hpel);
else
n = scaleforsame_x(v, n, dir) * (1 << hpel);
return n;
}
brfd = FFMIN(v->brfd, 3);
scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
n = (n * scalesame >> 8) * (1 << hpel);
return n;
}
static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
int dim, int dir)
{
int refdist, scaleopp;
int hpel = 1 - v->s.quarter_sample;
n >>= hpel;
if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
if (dim)
n = scaleforopp_y(v, n, dir) * (1 << hpel);
else
n = scaleforopp_x(v, n) * (1 << hpel);
return n;
}
if (v->s.pict_type != AV_PICTURE_TYPE_B)
refdist = v->refdist;
else
refdist = dir ? v->brfd : v->frfd;
refdist = FFMIN(refdist, 3);
scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
n = (n * scaleopp >> 8) * (1 << hpel);
return n;
}
/** Predict and set motion vector
*/
void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
int mv1, int r_x, int r_y, uint8_t* is_intra,
int pred_flag, int dir)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
int opposite, a_f, b_f, c_f;
int16_t field_predA[2];
int16_t field_predB[2];
int16_t field_predC[2];
int a_valid, b_valid, c_valid;
int hybridmv_thresh, y_bias = 0;
if (v->mv_mode == MV_PMODE_MIXED_MV ||
((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
mixedmv_pic = 1;
else
mixedmv_pic = 0;
/* scale MV difference to be quad-pel */
if (!s->quarter_sample) {
dmv_x *= 2;
dmv_y *= 2;
}
wrap = s->b8_stride;
xy = s->block_index[n];
if (s->mb_intra) {
s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
if (mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
s->current_picture.motion_val[1][xy + wrap + v->blocks_off][0] = 0;
s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
}
return;
}
a_valid = !s->first_slice_line || (n == 2 || n == 3);
b_valid = a_valid;
c_valid = s->mb_x || (n == 1 || n == 3);
if (mv1) {
if (v->field_mode && mixedmv_pic)
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
else
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
b_valid = b_valid && s->mb_width > 1;
} else {
//in 4-MV mode different blocks have different B predictor position
switch (n) {
case 0:
if (v->res_rtm_flag)
off = s->mb_x ? -1 : 1;
else
off = s->mb_x ? -1 : 2 * s->mb_width - wrap - 1;
break;
case 1:
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
break;
case 2:
off = 1;
break;
case 3:
off = -1;
}
if (v->field_mode && s->mb_width == 1)
b_valid = b_valid && c_valid;
}
if (v->field_mode) {
a_valid = a_valid && !is_intra[xy - wrap];
b_valid = b_valid && !is_intra[xy - wrap + off];
c_valid = c_valid && !is_intra[xy - 1];
}
if (a_valid) {
A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
num_oppfield += a_f;
num_samefield += 1 - a_f;
field_predA[0] = A[0];
field_predA[1] = A[1];
} else {
field_predA[0] = field_predA[1] = 0;
a_f = 0;
}
if (b_valid) {
B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
num_oppfield += b_f;
num_samefield += 1 - b_f;
field_predB[0] = B[0];
field_predB[1] = B[1];
} else {
field_predB[0] = field_predB[1] = 0;
b_f = 0;
}
if (c_valid) {
C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
num_oppfield += c_f;
num_samefield += 1 - c_f;
field_predC[0] = C[0];
field_predC[1] = C[1];
} else {
field_predC[0] = field_predC[1] = 0;
c_f = 0;
}
if (v->field_mode) {
if (!v->numref)
// REFFIELD determines if the last field or the second-last field is
// to be used as reference
opposite = 1 - v->reffield;
else {
if (num_samefield <= num_oppfield)
opposite = 1 - pred_flag;
else
opposite = pred_flag;
}
} else
opposite = 0;
if (opposite) {
v->mv_f[dir][xy + v->blocks_off] = 1;
v->ref_field_type[dir] = !v->cur_field_type;
if (a_valid && !a_f) {
field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
}
if (b_valid && !b_f) {
field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
}
if (c_valid && !c_f) {
field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
}
} else {
v->mv_f[dir][xy + v->blocks_off] = 0;
v->ref_field_type[dir] = v->cur_field_type;
if (a_valid && a_f) {
field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
}
if (b_valid && b_f) {
field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
}
if (c_valid && c_f) {
field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
}
}
if (a_valid) {
px = field_predA[0];
py = field_predA[1];
} else if (c_valid) {
px = field_predC[0];
py = field_predC[1];
} else if (b_valid) {
px = field_predB[0];
py = field_predB[1];
} else {
px = 0;
py = 0;
}
if (num_samefield + num_oppfield > 1) {
px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
}
/* Pullback MV as specified in 8.3.5.3.4 */
if (!v->field_mode) {
int qx, qy, X, Y;
int MV = mv1 ? -60 : -28;
qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if (qx + px < MV) px = MV - qx;
if (qy + py < MV) py = MV - qy;
if (qx + px > X) px = X - qx;
if (qy + py > Y) py = Y - qy;
}
if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
/* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
hybridmv_thresh = 32;
if (a_valid && c_valid) {
if (is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
if (sum > hybridmv_thresh) {
if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
px = field_predA[0];
py = field_predA[1];
} else {
px = field_predC[0];
py = field_predC[1];
}
} else {
if (is_intra[xy - 1])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
if (sum > hybridmv_thresh) {
if (get_bits1(&s->gb)) {
px = field_predA[0];
py = field_predA[1];
} else {
px = field_predC[0];
py = field_predC[1];
}
}
}
}
}
if (v->field_mode && v->numref)
r_y >>= 1;
if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
y_bias = 1;
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
if (mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
}
}
/** Predict and set motion vector for interlaced frame picture MBs
*/
void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
int mvn, int r_x, int r_y, int dir)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int A[2], B[2], C[2];
int px = 0, py = 0;
int a_valid = 0, b_valid = 0, c_valid = 0;
int field_a, field_b, field_c; // 0: same, 1: opposite
int total_valid, num_samefield, num_oppfield;
int pos_c, pos_b, n_adj;
wrap = s->b8_stride;
xy = s->block_index[n];
if (s->mb_intra) {
s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
s->current_picture.motion_val[1][xy][0] = 0;
s->current_picture.motion_val[1][xy][1] = 0;
if (mvn == 1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1][0] = 0;
s->current_picture.motion_val[0][xy + 1][1] = 0;
s->current_picture.motion_val[0][xy + wrap][0] = 0;
s->current_picture.motion_val[0][xy + wrap][1] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
s->current_picture.motion_val[1][xy + 1][0] = 0;
s->current_picture.motion_val[1][xy + 1][1] = 0;
s->current_picture.motion_val[1][xy + wrap][0] = 0;
s->current_picture.motion_val[1][xy + wrap][1] = 0;
s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
}
return;
}
off = ((n == 0) || (n == 1)) ? 1 : -1;
/* predict A */
if (s->mb_x || (n == 1) || (n == 3)) {
if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
|| (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
A[0] = s->current_picture.motion_val[dir][xy - 1][0];
A[1] = s->current_picture.motion_val[dir][xy - 1][1];
a_valid = 1;
} else { // current block has frame mv and cand. has field MV (so average)
A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
+ s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
+ s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
a_valid = 1;
}
if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
a_valid = 0;
A[0] = A[1] = 0;
}
} else
A[0] = A[1] = 0;
/* Predict B and C */
B[0] = B[1] = C[0] = C[1] = 0;
if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
if (!s->first_slice_line) {
if (!v->is_intra[s->mb_x - s->mb_stride]) {
b_valid = 1;
n_adj = n | 2;
pos_b = s->block_index[n_adj] - 2 * wrap;
if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
n_adj = (n & 2) | (n & 1);
}
B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
}
}
if (s->mb_width > 1) {
if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
c_valid = 1;
n_adj = 2;
pos_c = s->block_index[2] - 2 * wrap + 2;
if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
n_adj = n & 2;
}
C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
}
if (s->mb_x == s->mb_width - 1) {
if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
c_valid = 1;
n_adj = 3;
pos_c = s->block_index[3] - 2 * wrap - 2;
if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
n_adj = n | 1;
}
C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
}
} else
c_valid = 0;
}
}
}
}
} else {
pos_b = s->block_index[1];
b_valid = 1;
B[0] = s->current_picture.motion_val[dir][pos_b][0];
B[1] = s->current_picture.motion_val[dir][pos_b][1];
pos_c = s->block_index[0];
c_valid = 1;
C[0] = s->current_picture.motion_val[dir][pos_c][0];
C[1] = s->current_picture.motion_val[dir][pos_c][1];
}
total_valid = a_valid + b_valid + c_valid;
// check if predictor A is out of bounds
if (!s->mb_x && !(n == 1 || n == 3)) {
A[0] = A[1] = 0;
}
// check if predictor B is out of bounds
if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
B[0] = B[1] = C[0] = C[1] = 0;
}
if (!v->blk_mv_type[xy]) {
if (s->mb_width == 1) {
px = B[0];
py = B[1];
} else {
if (total_valid >= 2) {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
} else if (total_valid) {
if (a_valid) { px = A[0]; py = A[1]; }
else if (b_valid) { px = B[0]; py = B[1]; }
else { px = C[0]; py = C[1]; }
}
}
} else {
if (a_valid)
field_a = (A[1] & 4) ? 1 : 0;
else
field_a = 0;
if (b_valid)
field_b = (B[1] & 4) ? 1 : 0;
else
field_b = 0;
if (c_valid)
field_c = (C[1] & 4) ? 1 : 0;
else
field_c = 0;
num_oppfield = field_a + field_b + field_c;
num_samefield = total_valid - num_oppfield;
if (total_valid == 3) {
if ((num_samefield == 3) || (num_oppfield == 3)) {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
} else if (num_samefield >= num_oppfield) {
/* take one MV from same field set depending on priority
the check for B may not be necessary */
px = !field_a ? A[0] : B[0];
py = !field_a ? A[1] : B[1];
} else {
px = field_a ? A[0] : B[0];
py = field_a ? A[1] : B[1];
}
} else if (total_valid == 2) {
if (num_samefield >= num_oppfield) {
if (!field_a && a_valid) {
px = A[0];
py = A[1];
} else if (!field_b && b_valid) {
px = B[0];
py = B[1];
} else /*if (c_valid)*/ {
av_assert1(c_valid);
px = C[0];
py = C[1];
}
} else {
if (field_a && a_valid) {
px = A[0];
py = A[1];
} else /*if (field_b && b_valid)*/ {
av_assert1(field_b && b_valid);
px = B[0];
py = B[1];
}
}
} else if (total_valid == 1) {
px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
if (mvn == 1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
} else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
s->mv[dir][n + 1][0] = s->mv[dir][n][0];
s->mv[dir][n + 1][1] = s->mv[dir][n][1];
}
}
void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
int direct, int mvtype)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
int r_x, r_y;
const uint8_t *is_intra = v->mb_type[0];
av_assert0(!v->field_mode);
r_x = v->range_x;
r_y = v->range_y;
/* scale MV difference to be quad-pel */
if (!s->quarter_sample) {
dmv_x[0] *= 2;
dmv_y[0] *= 2;
dmv_x[1] *= 2;
dmv_y[1] *= 2;
}
wrap = s->b8_stride;
xy = s->block_index[0];
if (s->mb_intra) {
s->current_picture.motion_val[0][xy][0] =
s->current_picture.motion_val[0][xy][1] =
s->current_picture.motion_val[1][xy][0] =
s->current_picture.motion_val[1][xy][1] = 0;
return;
}
if (direct && s->next_picture_ptr->field_picture)
av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
/* Pullback predicted motion vectors as specified in 8.4.5.4 */
s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
if (direct) {
s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
return;
}
if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.motion_val[0][xy - 2];
A = s->current_picture.motion_val[0][xy - wrap * 2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
if (!s->mb_x) C[0] = C[1] = 0;
if (!s->first_slice_line) { // predictor A is not out of bounds
if (s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if (s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
int MV = 4 - (1 << sh);
qx = (s->mb_x << sh);
qy = (s->mb_y << sh);
X = (s->mb_width << sh) - 4;
Y = (s->mb_height << sh) - 4;
if (qx + px < MV) px = MV - qx;
if (qy + py < MV) py = MV - qy;
if (qx + px > X) px = X - qx;
if (qy + py > Y) py = Y - qy;
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if (0 && !s->first_slice_line && s->mb_x) {
if (is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if (sum > 32) {
if (get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if (is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if (sum > 32) {
if (get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
}
if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.motion_val[1][xy - 2];
A = s->current_picture.motion_val[1][xy - wrap * 2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
if (!s->mb_x)
C[0] = C[1] = 0;
if (!s->first_slice_line) { // predictor A is not out of bounds
if (s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if (s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
int MV = 4 - (1 << sh);
qx = (s->mb_x << sh);
qy = (s->mb_y << sh);
X = (s->mb_width << sh) - 4;
Y = (s->mb_height << sh) - 4;
if (qx + px < MV) px = MV - qx;
if (qy + py < MV) py = MV - qy;
if (qx + px > X) px = X - qx;
if (qy + py > Y) py = Y - qy;
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if (0 && !s->first_slice_line && s->mb_x) {
if (is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if (sum > 32) {
if (get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if (is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if (sum > 32) {
if (get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
}
s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
}
void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y,
int mv1, int *pred_flag)
{
int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
MpegEncContext *s = &v->s;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
if (v->bmvtype == BMV_TYPE_DIRECT) {
int total_opp, k, f;
if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
v->bfraction, 0, s->quarter_sample);
s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
v->bfraction, 0, s->quarter_sample);
s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
v->bfraction, 1, s->quarter_sample);
s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
v->bfraction, 1, s->quarter_sample);
total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
+ v->mv_f_next[0][s->block_index[1] + v->blocks_off]
+ v->mv_f_next[0][s->block_index[2] + v->blocks_off]
+ v->mv_f_next[0][s->block_index[3] + v->blocks_off];
f = (total_opp > 2) ? 1 : 0;
} else {
s->mv[0][0][0] = s->mv[0][0][1] = 0;
s->mv[1][0][0] = s->mv[1][0][1] = 0;
f = 0;
}
v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
for (k = 0; k < 4; k++) {
s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
}
return;
}
if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
return;
}
if (dir) { // backward
ff_vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
if (n == 3 || mv1) {
ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
}
} else { // forward
ff_vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
if (n == 3 || mv1) {
ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
}
}
}