1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/vf_w3fdif.c

395 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
* Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
* Based on the process described by Martin Weston for BBC R&D
* Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct W3FDIFContext {
const AVClass *class;
int filter; ///< 0 is simple, 1 is more complex
int deint; ///< which frames to deinterlace
int linesize[4]; ///< bytes of pixel data per line for each plane
int planeheight[4]; ///< height of each plane
int field; ///< which field are we on, 0 or 1
int eof;
int nb_planes;
AVFrame *prev, *cur, *next; ///< previous, current, next frames
int32_t *work_line; ///< line we are calculating
} W3FDIFContext;
#define OFFSET(x) offsetof(W3FDIFContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
static const AVOption w3fdif_options[] = {
{ "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" },
CONST("simple", NULL, 0, "filter"),
CONST("complex", NULL, 1, "filter"),
{ "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
CONST("all", "deinterlace all frames", 0, "deint"),
CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"),
{ NULL }
};
AVFILTER_DEFINE_CLASS(w3fdif);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
return 0;
}
static int config_input(AVFilterLink *inlink)
{
W3FDIFContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int ret;
if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
return ret;
s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->work_line = av_calloc(s->linesize[0], sizeof(*s->work_line));
if (!s->work_line)
return AVERROR(ENOMEM);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterLink *inlink = outlink->src->inputs[0];
outlink->time_base.num = inlink->time_base.num;
outlink->time_base.den = inlink->time_base.den * 2;
outlink->frame_rate.num = inlink->frame_rate.num * 2;
outlink->frame_rate.den = inlink->frame_rate.den;
outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
return 0;
}
/*
* Filter coefficients from PH-2071, scaled by 256 * 256.
* Each set of coefficients has a set for low-frequencies and high-frequencies.
* n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex.
* It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd.
* coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies
* and high-frequencies for simple and more-complex mode.
*/
static const int8_t n_coef_lf[2] = { 2, 4 };
static const int32_t coef_lf[2][4] = {{ 32768, 32768, 0, 0},
{ -1704, 34472, 34472, -1704}};
static const int8_t n_coef_hf[2] = { 3, 5 };
static const int32_t coef_hf[2][5] = {{ -4096, 8192, -4096, 0, 0},
{ 2032, -7602, 11140, -7602, 2032}};
static void deinterlace_plane(AVFilterContext *ctx, AVFrame *out,
const AVFrame *cur, const AVFrame *adj,
const int filter, const int plane)
{
W3FDIFContext *s = ctx->priv;
uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5];
uint8_t *out_line, *out_pixel;
int32_t *work_line, *work_pixel;
uint8_t *cur_data = cur->data[plane];
uint8_t *adj_data = adj->data[plane];
uint8_t *dst_data = out->data[plane];
const int linesize = s->linesize[plane];
const int height = s->planeheight[plane];
const int cur_line_stride = cur->linesize[plane];
const int adj_line_stride = adj->linesize[plane];
const int dst_line_stride = out->linesize[plane];
int i, j, y_in, y_out;
/* copy unchanged the lines of the field */
y_out = s->field == cur->top_field_first;
in_line = cur_data + (y_out * cur_line_stride);
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < height) {
memcpy(out_line, in_line, linesize);
y_out += 2;
in_line += cur_line_stride * 2;
out_line += dst_line_stride * 2;
}
/* interpolate other lines of the field */
y_out = s->field != cur->top_field_first;
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < height) {
/* clear workspace */
memset(s->work_line, 0, sizeof(*s->work_line) * linesize);
/* get low vertical frequencies from current field */
for (j = 0; j < n_coef_lf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
}
work_line = s->work_line;
switch (n_coef_lf[filter]) {
case 2:
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef_lf[filter][0];
*work_line++ += *in_lines_cur[1]++ * coef_lf[filter][1];
}
break;
case 4:
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef_lf[filter][0];
*work_line += *in_lines_cur[1]++ * coef_lf[filter][1];
*work_line += *in_lines_cur[2]++ * coef_lf[filter][2];
*work_line++ += *in_lines_cur[3]++ * coef_lf[filter][3];
}
}
/* get high vertical frequencies from adjacent fields */
for (j = 0; j < n_coef_hf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
in_lines_adj[j] = adj_data + (y_in * adj_line_stride);
}
work_line = s->work_line;
switch (n_coef_hf[filter]) {
case 3:
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef_hf[filter][0];
*work_line += *in_lines_adj[0]++ * coef_hf[filter][0];
*work_line += *in_lines_cur[1]++ * coef_hf[filter][1];
*work_line += *in_lines_adj[1]++ * coef_hf[filter][1];
*work_line += *in_lines_cur[2]++ * coef_hf[filter][2];
*work_line++ += *in_lines_adj[2]++ * coef_hf[filter][2];
}
break;
case 5:
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef_hf[filter][0];
*work_line += *in_lines_adj[0]++ * coef_hf[filter][0];
*work_line += *in_lines_cur[1]++ * coef_hf[filter][1];
*work_line += *in_lines_adj[1]++ * coef_hf[filter][1];
*work_line += *in_lines_cur[2]++ * coef_hf[filter][2];
*work_line += *in_lines_adj[2]++ * coef_hf[filter][2];
*work_line += *in_lines_cur[3]++ * coef_hf[filter][3];
*work_line += *in_lines_adj[3]++ * coef_hf[filter][3];
*work_line += *in_lines_cur[4]++ * coef_hf[filter][4];
*work_line++ += *in_lines_adj[4]++ * coef_hf[filter][4];
}
}
/* save scaled result to the output frame, scaling down by 256 * 256 */
work_pixel = s->work_line;
out_pixel = out_line;
for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
*out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 256) >> 16;
/* move on to next line */
y_out += 2;
out_line += dst_line_stride * 2;
}
}
static int filter(AVFilterContext *ctx, int is_second)
{
W3FDIFContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out, *adj;
int plane;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
out->interlaced_frame = 0;
if (!is_second) {
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
} else {
int64_t cur_pts = s->cur->pts;
int64_t next_pts = s->next->pts;
if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
out->pts = cur_pts + next_pts;
} else {
out->pts = AV_NOPTS_VALUE;
}
}
adj = s->field ? s->next : s->prev;
for (plane = 0; plane < s->nb_planes; plane++)
deinterlace_plane(ctx, out, s->cur, adj, s->filter, plane);
s->field = !s->field;
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
W3FDIFContext *s = ctx->priv;
int ret;
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = frame;
if (!s->cur) {
s->cur = av_frame_clone(s->next);
if (!s->cur)
return AVERROR(ENOMEM);
}
if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) {
AVFrame *out = av_frame_clone(s->cur);
if (!out)
return AVERROR(ENOMEM);
av_frame_free(&s->prev);
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
return ff_filter_frame(ctx->outputs[0], out);
}
if (!s->prev)
return 0;
ret = filter(ctx, 0);
if (ret < 0)
return ret;
return filter(ctx, 1);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
W3FDIFContext *s = ctx->priv;
do {
int ret;
if (s->eof)
return AVERROR_EOF;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && s->cur) {
AVFrame *next = av_frame_clone(s->next);
if (!next)
return AVERROR(ENOMEM);
next->pts = s->next->pts * 2 - s->cur->pts;
filter_frame(ctx->inputs[0], next);
s->eof = 1;
} else if (ret < 0) {
return ret;
}
} while (!s->cur);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
W3FDIFContext *s = ctx->priv;
av_frame_free(&s->prev);
av_frame_free(&s->cur );
av_frame_free(&s->next);
av_freep(&s->work_line);
}
static const AVFilterPad w3fdif_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad w3fdif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
.request_frame = request_frame,
},
{ NULL }
};
AVFilter ff_vf_w3fdif = {
.name = "w3fdif",
.description = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."),
.priv_size = sizeof(W3FDIFContext),
.priv_class = &w3fdif_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = w3fdif_inputs,
.outputs = w3fdif_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};