1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavformat/av1.c

465 lines
14 KiB
C
Raw Normal View History

/*
* AV1 helper functions for muxers
* Copyright (c) 2018 James Almer <jamrial@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
avformat/av1: Improve filtering AV1 OBUs Both ISOBMFF as well as Matroska require certain OBUs to be stripped before muxing them. There are two functions for this purpose; one writes directly into an AVIOContext, the other returns a freshly allocated buffer with the undesired units stripped away. The latter one actually relies on the former by means of a dynamic buffer. This has several drawbacks: The underlying buffer might have to be reallocated multiple times; the buffer will eventually be overallocated; the data will not be directly copied into the final buffer, but rather first in the write buffer (in chunks of 1024 byte) and then written in these chunks. Moreover, the API for dynamic buffers is defective wrt error checking and as a consequence, the earlier code would indicate a length of -AV_INPUT_BUFFER_PADDING_SIZE on allocation failure, but it would not return an error; there would also be no error in case the arbitrary limit of INT_MAX/2 that is currently imposed on dynamic buffers is hit. This commit changes this: The buffer is now parsed twice, once to get the precise length which will then be allocated; and once to actually write the data. For a 22.7mb/s file with average framesize 113 kB this improved the time for the calls to ff_av1_filter_obus_buf() when writing Matroska from 753662 decicycles to 313319 decicycles (based upon 50 runs a 2048 frames each); for another 1.5mb/s file (with average framesize of 7.3 kB) it improved from 79270 decicycles to 34539 decicycles (based upon 50 runs a 4096 frames). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com> Signed-off-by: James Almer <jamrial@gmail.com>
2020-01-23 18:08:32 +02:00
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "libavcodec/av1.h"
#include "libavcodec/av1_parse.h"
#include "libavcodec/profiles.h"
#include "libavcodec/put_bits.h"
#include "av1.h"
#include "avio.h"
#include "avio_internal.h"
static int av1_filter_obus(AVIOContext *pb, const uint8_t *buf,
int size, int *offset)
{
const uint8_t *start = buf, *end = buf + size;
int64_t obu_size;
int off, start_pos, type, temporal_id, spatial_id;
enum {
START_NOT_FOUND,
START_FOUND,
END_FOUND,
OFFSET_IMPOSSIBLE,
} state = START_NOT_FOUND;
off = size = 0;
while (buf < end) {
int len = parse_obu_header(buf, end - buf, &obu_size, &start_pos,
&type, &temporal_id, &spatial_id);
if (len < 0)
return len;
switch (type) {
case AV1_OBU_TEMPORAL_DELIMITER:
case AV1_OBU_REDUNDANT_FRAME_HEADER:
case AV1_OBU_TILE_LIST:
case AV1_OBU_PADDING:
if (state == START_FOUND)
state = END_FOUND;
break;
default:
if (state == START_NOT_FOUND) {
off = buf - start;
state = START_FOUND;
} else if (state == END_FOUND) {
state = OFFSET_IMPOSSIBLE;
}
avformat/av1: Improve filtering AV1 OBUs Both ISOBMFF as well as Matroska require certain OBUs to be stripped before muxing them. There are two functions for this purpose; one writes directly into an AVIOContext, the other returns a freshly allocated buffer with the undesired units stripped away. The latter one actually relies on the former by means of a dynamic buffer. This has several drawbacks: The underlying buffer might have to be reallocated multiple times; the buffer will eventually be overallocated; the data will not be directly copied into the final buffer, but rather first in the write buffer (in chunks of 1024 byte) and then written in these chunks. Moreover, the API for dynamic buffers is defective wrt error checking and as a consequence, the earlier code would indicate a length of -AV_INPUT_BUFFER_PADDING_SIZE on allocation failure, but it would not return an error; there would also be no error in case the arbitrary limit of INT_MAX/2 that is currently imposed on dynamic buffers is hit. This commit changes this: The buffer is now parsed twice, once to get the precise length which will then be allocated; and once to actually write the data. For a 22.7mb/s file with average framesize 113 kB this improved the time for the calls to ff_av1_filter_obus_buf() when writing Matroska from 753662 decicycles to 313319 decicycles (based upon 50 runs a 2048 frames each); for another 1.5mb/s file (with average framesize of 7.3 kB) it improved from 79270 decicycles to 34539 decicycles (based upon 50 runs a 4096 frames). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com> Signed-off-by: James Almer <jamrial@gmail.com>
2020-01-23 18:08:32 +02:00
if (pb)
avio_write(pb, buf, len);
size += len;
break;
}
buf += len;
}
if (offset)
*offset = state != OFFSET_IMPOSSIBLE ? off : -1;
return size;
}
int ff_av1_filter_obus(AVIOContext *pb, const uint8_t *buf, int size)
{
return av1_filter_obus(pb, buf, size, NULL);
}
int ff_av1_filter_obus_buf(const uint8_t *in, uint8_t **out,
int *size, int *offset)
{
FFIOContext pb;
avformat/av1: Improve filtering AV1 OBUs Both ISOBMFF as well as Matroska require certain OBUs to be stripped before muxing them. There are two functions for this purpose; one writes directly into an AVIOContext, the other returns a freshly allocated buffer with the undesired units stripped away. The latter one actually relies on the former by means of a dynamic buffer. This has several drawbacks: The underlying buffer might have to be reallocated multiple times; the buffer will eventually be overallocated; the data will not be directly copied into the final buffer, but rather first in the write buffer (in chunks of 1024 byte) and then written in these chunks. Moreover, the API for dynamic buffers is defective wrt error checking and as a consequence, the earlier code would indicate a length of -AV_INPUT_BUFFER_PADDING_SIZE on allocation failure, but it would not return an error; there would also be no error in case the arbitrary limit of INT_MAX/2 that is currently imposed on dynamic buffers is hit. This commit changes this: The buffer is now parsed twice, once to get the precise length which will then be allocated; and once to actually write the data. For a 22.7mb/s file with average framesize 113 kB this improved the time for the calls to ff_av1_filter_obus_buf() when writing Matroska from 753662 decicycles to 313319 decicycles (based upon 50 runs a 2048 frames each); for another 1.5mb/s file (with average framesize of 7.3 kB) it improved from 79270 decicycles to 34539 decicycles (based upon 50 runs a 4096 frames). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com> Signed-off-by: James Almer <jamrial@gmail.com>
2020-01-23 18:08:32 +02:00
uint8_t *buf;
int len, off, ret;
len = ret = av1_filter_obus(NULL, in, *size, &off);
if (ret < 0) {
return ret;
}
if (off >= 0) {
*out = (uint8_t *)in;
*size = len;
*offset = off;
return 0;
}
avformat/av1: Improve filtering AV1 OBUs Both ISOBMFF as well as Matroska require certain OBUs to be stripped before muxing them. There are two functions for this purpose; one writes directly into an AVIOContext, the other returns a freshly allocated buffer with the undesired units stripped away. The latter one actually relies on the former by means of a dynamic buffer. This has several drawbacks: The underlying buffer might have to be reallocated multiple times; the buffer will eventually be overallocated; the data will not be directly copied into the final buffer, but rather first in the write buffer (in chunks of 1024 byte) and then written in these chunks. Moreover, the API for dynamic buffers is defective wrt error checking and as a consequence, the earlier code would indicate a length of -AV_INPUT_BUFFER_PADDING_SIZE on allocation failure, but it would not return an error; there would also be no error in case the arbitrary limit of INT_MAX/2 that is currently imposed on dynamic buffers is hit. This commit changes this: The buffer is now parsed twice, once to get the precise length which will then be allocated; and once to actually write the data. For a 22.7mb/s file with average framesize 113 kB this improved the time for the calls to ff_av1_filter_obus_buf() when writing Matroska from 753662 decicycles to 313319 decicycles (based upon 50 runs a 2048 frames each); for another 1.5mb/s file (with average framesize of 7.3 kB) it improved from 79270 decicycles to 34539 decicycles (based upon 50 runs a 4096 frames). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com> Signed-off-by: James Almer <jamrial@gmail.com>
2020-01-23 18:08:32 +02:00
buf = av_malloc(len + AV_INPUT_BUFFER_PADDING_SIZE);
if (!buf)
return AVERROR(ENOMEM);
ffio_init_context(&pb, buf, len, 1, NULL, NULL, NULL, NULL);
ret = av1_filter_obus(&pb.pub, in, *size, NULL);
avformat/av1: Improve filtering AV1 OBUs Both ISOBMFF as well as Matroska require certain OBUs to be stripped before muxing them. There are two functions for this purpose; one writes directly into an AVIOContext, the other returns a freshly allocated buffer with the undesired units stripped away. The latter one actually relies on the former by means of a dynamic buffer. This has several drawbacks: The underlying buffer might have to be reallocated multiple times; the buffer will eventually be overallocated; the data will not be directly copied into the final buffer, but rather first in the write buffer (in chunks of 1024 byte) and then written in these chunks. Moreover, the API for dynamic buffers is defective wrt error checking and as a consequence, the earlier code would indicate a length of -AV_INPUT_BUFFER_PADDING_SIZE on allocation failure, but it would not return an error; there would also be no error in case the arbitrary limit of INT_MAX/2 that is currently imposed on dynamic buffers is hit. This commit changes this: The buffer is now parsed twice, once to get the precise length which will then be allocated; and once to actually write the data. For a 22.7mb/s file with average framesize 113 kB this improved the time for the calls to ff_av1_filter_obus_buf() when writing Matroska from 753662 decicycles to 313319 decicycles (based upon 50 runs a 2048 frames each); for another 1.5mb/s file (with average framesize of 7.3 kB) it improved from 79270 decicycles to 34539 decicycles (based upon 50 runs a 4096 frames). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com> Signed-off-by: James Almer <jamrial@gmail.com>
2020-01-23 18:08:32 +02:00
av_assert1(ret == len);
memset(buf + len, 0, AV_INPUT_BUFFER_PADDING_SIZE);
*out = buf;
*size = len;
*offset = 0;
return 0;
}
static inline void uvlc(GetBitContext *gb)
{
int leading_zeros = 0;
while (get_bits_left(gb)) {
if (get_bits1(gb))
break;
leading_zeros++;
}
if (leading_zeros >= 32)
return;
skip_bits_long(gb, leading_zeros);
}
static int parse_color_config(AV1SequenceParameters *seq_params, GetBitContext *gb)
{
int twelve_bit = 0;
int high_bitdepth = get_bits1(gb);
if (seq_params->profile == FF_PROFILE_AV1_PROFESSIONAL && high_bitdepth)
twelve_bit = get_bits1(gb);
seq_params->bitdepth = 8 + (high_bitdepth * 2) + (twelve_bit * 2);
if (seq_params->profile == FF_PROFILE_AV1_HIGH)
seq_params->monochrome = 0;
else
seq_params->monochrome = get_bits1(gb);
seq_params->color_description_present_flag = get_bits1(gb);
if (seq_params->color_description_present_flag) {
seq_params->color_primaries = get_bits(gb, 8);
seq_params->transfer_characteristics = get_bits(gb, 8);
seq_params->matrix_coefficients = get_bits(gb, 8);
} else {
seq_params->color_primaries = AVCOL_PRI_UNSPECIFIED;
seq_params->transfer_characteristics = AVCOL_TRC_UNSPECIFIED;
seq_params->matrix_coefficients = AVCOL_SPC_UNSPECIFIED;
}
if (seq_params->monochrome) {
seq_params->color_range = get_bits1(gb);
seq_params->chroma_subsampling_x = 1;
seq_params->chroma_subsampling_y = 1;
seq_params->chroma_sample_position = 0;
return 0;
} else if (seq_params->color_primaries == AVCOL_PRI_BT709 &&
seq_params->transfer_characteristics == AVCOL_TRC_IEC61966_2_1 &&
seq_params->matrix_coefficients == AVCOL_SPC_RGB) {
seq_params->chroma_subsampling_x = 0;
seq_params->chroma_subsampling_y = 0;
} else {
seq_params->color_range = get_bits1(gb);
if (seq_params->profile == FF_PROFILE_AV1_MAIN) {
seq_params->chroma_subsampling_x = 1;
seq_params->chroma_subsampling_y = 1;
} else if (seq_params->profile == FF_PROFILE_AV1_HIGH) {
seq_params->chroma_subsampling_x = 0;
seq_params->chroma_subsampling_y = 0;
} else {
if (twelve_bit) {
seq_params->chroma_subsampling_x = get_bits1(gb);
if (seq_params->chroma_subsampling_x)
seq_params->chroma_subsampling_y = get_bits1(gb);
else
seq_params->chroma_subsampling_y = 0;
} else {
seq_params->chroma_subsampling_x = 1;
seq_params->chroma_subsampling_y = 0;
}
}
if (seq_params->chroma_subsampling_x && seq_params->chroma_subsampling_y)
seq_params->chroma_sample_position = get_bits(gb, 2);
}
skip_bits1(gb); // separate_uv_delta_q
return 0;
}
static int parse_sequence_header(AV1SequenceParameters *seq_params, const uint8_t *buf, int size)
{
GetBitContext gb;
int reduced_still_picture_header;
int frame_width_bits_minus_1, frame_height_bits_minus_1;
int size_bits, ret;
size_bits = get_obu_bit_length(buf, size, AV1_OBU_SEQUENCE_HEADER);
if (size_bits < 0)
return size_bits;
ret = init_get_bits(&gb, buf, size_bits);
if (ret < 0)
return ret;
memset(seq_params, 0, sizeof(*seq_params));
seq_params->profile = get_bits(&gb, 3);
skip_bits1(&gb); // still_picture
reduced_still_picture_header = get_bits1(&gb);
if (reduced_still_picture_header) {
seq_params->level = get_bits(&gb, 5);
seq_params->tier = 0;
} else {
int initial_display_delay_present_flag, operating_points_cnt_minus_1;
int decoder_model_info_present_flag, buffer_delay_length_minus_1;
if (get_bits1(&gb)) { // timing_info_present_flag
skip_bits_long(&gb, 32); // num_units_in_display_tick
skip_bits_long(&gb, 32); // time_scale
if (get_bits1(&gb)) // equal_picture_interval
uvlc(&gb); // num_ticks_per_picture_minus_1
decoder_model_info_present_flag = get_bits1(&gb);
if (decoder_model_info_present_flag) {
buffer_delay_length_minus_1 = get_bits(&gb, 5);
skip_bits_long(&gb, 32); // num_units_in_decoding_tick
skip_bits(&gb, 10); // buffer_removal_time_length_minus_1 (5)
// frame_presentation_time_length_minus_1 (5)
}
} else
decoder_model_info_present_flag = 0;
initial_display_delay_present_flag = get_bits1(&gb);
operating_points_cnt_minus_1 = get_bits(&gb, 5);
for (int i = 0; i <= operating_points_cnt_minus_1; i++) {
int seq_level_idx, seq_tier;
skip_bits(&gb, 12); // operating_point_idc
seq_level_idx = get_bits(&gb, 5);
if (seq_level_idx > 7)
seq_tier = get_bits1(&gb);
else
seq_tier = 0;
if (decoder_model_info_present_flag) {
if (get_bits1(&gb)) { // decoder_model_present_for_this_op
skip_bits_long(&gb, buffer_delay_length_minus_1 + 1); // decoder_buffer_delay
skip_bits_long(&gb, buffer_delay_length_minus_1 + 1); // encoder_buffer_delay
skip_bits1(&gb); // low_delay_mode_flag
}
}
if (initial_display_delay_present_flag) {
if (get_bits1(&gb)) // initial_display_delay_present_for_this_op
skip_bits(&gb, 4); // initial_display_delay_minus_1
}
if (i == 0) {
seq_params->level = seq_level_idx;
seq_params->tier = seq_tier;
}
}
}
frame_width_bits_minus_1 = get_bits(&gb, 4);
frame_height_bits_minus_1 = get_bits(&gb, 4);
skip_bits(&gb, frame_width_bits_minus_1 + 1); // max_frame_width_minus_1
skip_bits(&gb, frame_height_bits_minus_1 + 1); // max_frame_height_minus_1
if (!reduced_still_picture_header) {
if (get_bits1(&gb)) // frame_id_numbers_present_flag
skip_bits(&gb, 7); // delta_frame_id_length_minus_2 (4), additional_frame_id_length_minus_1 (3)
}
skip_bits(&gb, 3); // use_128x128_superblock (1), enable_filter_intra (1), enable_intra_edge_filter (1)
if (!reduced_still_picture_header) {
int enable_order_hint, seq_force_screen_content_tools;
skip_bits(&gb, 4); // enable_interintra_compound (1), enable_masked_compound (1)
// enable_warped_motion (1), enable_dual_filter (1)
enable_order_hint = get_bits1(&gb);
if (enable_order_hint)
skip_bits(&gb, 2); // enable_jnt_comp (1), enable_ref_frame_mvs (1)
if (get_bits1(&gb)) // seq_choose_screen_content_tools
seq_force_screen_content_tools = 2;
else
seq_force_screen_content_tools = get_bits1(&gb);
if (seq_force_screen_content_tools) {
if (!get_bits1(&gb)) // seq_choose_integer_mv
skip_bits1(&gb); // seq_force_integer_mv
}
if (enable_order_hint)
skip_bits(&gb, 3); // order_hint_bits_minus_1
}
skip_bits(&gb, 3); // enable_superres (1), enable_cdef (1), enable_restoration (1)
parse_color_config(seq_params, &gb);
skip_bits1(&gb); // film_grain_params_present
if (get_bits_left(&gb))
return AVERROR_INVALIDDATA;
return 0;
}
int ff_av1_parse_seq_header(AV1SequenceParameters *seq, const uint8_t *buf, int size)
{
int64_t obu_size;
int start_pos, type, temporal_id, spatial_id;
if (size <= 0)
return AVERROR_INVALIDDATA;
while (size > 0) {
int len = parse_obu_header(buf, size, &obu_size, &start_pos,
&type, &temporal_id, &spatial_id);
if (len < 0)
return len;
switch (type) {
case AV1_OBU_SEQUENCE_HEADER:
if (!obu_size)
return AVERROR_INVALIDDATA;
return parse_sequence_header(seq, buf + start_pos, obu_size);
default:
break;
}
size -= len;
buf += len;
}
return AVERROR_INVALIDDATA;
}
int ff_isom_write_av1c(AVIOContext *pb, const uint8_t *buf, int size)
{
AVIOContext *meta_pb;
AV1SequenceParameters seq_params;
PutBitContext pbc;
uint8_t header[4], *meta;
const uint8_t *seq;
int64_t obu_size;
int start_pos, type, temporal_id, spatial_id;
int ret, nb_seq = 0, seq_size, meta_size;
if (size <= 0)
return AVERROR_INVALIDDATA;
if (buf[0] & 0x80) {
// first bit is nonzero, the passed data does not consist purely of
// OBUs. Expect that the data is already in AV1CodecConfigurationRecord
// format.
int config_record_version = buf[0] & 0x7f;
if (config_record_version != 1 || size < 4) {
return AVERROR_INVALIDDATA;
}
avio_write(pb, buf, size);
return 0;
}
ret = avio_open_dyn_buf(&meta_pb);
if (ret < 0)
return ret;
while (size > 0) {
int len = parse_obu_header(buf, size, &obu_size, &start_pos,
&type, &temporal_id, &spatial_id);
if (len < 0) {
ret = len;
goto fail;
}
switch (type) {
case AV1_OBU_SEQUENCE_HEADER:
nb_seq++;
if (!obu_size || nb_seq > 1) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
ret = parse_sequence_header(&seq_params, buf + start_pos, obu_size);
if (ret < 0)
goto fail;
seq = buf;
seq_size = len;
break;
case AV1_OBU_METADATA:
if (!obu_size) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
avio_write(meta_pb, buf, len);
break;
default:
break;
}
size -= len;
buf += len;
}
if (!nb_seq) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
init_put_bits(&pbc, header, sizeof(header));
put_bits(&pbc, 1, 1); // marker
put_bits(&pbc, 7, 1); // version
put_bits(&pbc, 3, seq_params.profile);
put_bits(&pbc, 5, seq_params.level);
put_bits(&pbc, 1, seq_params.tier);
put_bits(&pbc, 1, seq_params.bitdepth > 8);
put_bits(&pbc, 1, seq_params.bitdepth == 12);
put_bits(&pbc, 1, seq_params.monochrome);
put_bits(&pbc, 1, seq_params.chroma_subsampling_x);
put_bits(&pbc, 1, seq_params.chroma_subsampling_y);
put_bits(&pbc, 2, seq_params.chroma_sample_position);
put_bits(&pbc, 8, 0); // padding
flush_put_bits(&pbc);
avio_write(pb, header, sizeof(header));
avio_write(pb, seq, seq_size);
meta_size = avio_get_dyn_buf(meta_pb, &meta);
if (meta_size)
avio_write(pb, meta, meta_size);
fail:
ffio_free_dyn_buf(&meta_pb);
return ret;
}