1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_vmafmotion.c

373 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (c) 2017 Ronald S. Bultje <rsbultje@gmail.com>
* Copyright (c) 2017 Ashish Pratap Singh <ashk43712@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Calculate VMAF Motion score.
*/
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "vmaf_motion.h"
#define BIT_SHIFT 15
static const float FILTER_5[5] = {
0.054488685,
0.244201342,
0.402619947,
0.244201342,
0.054488685
};
typedef struct VMAFMotionContext {
const AVClass *class;
VMAFMotionData data;
FILE *stats_file;
char *stats_file_str;
} VMAFMotionContext;
#define OFFSET(x) offsetof(VMAFMotionContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption vmafmotion_options[] = {
{"stats_file", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(vmafmotion);
static uint64_t image_sad(const uint16_t *img1, const uint16_t *img2, int w,
int h, ptrdiff_t _img1_stride, ptrdiff_t _img2_stride)
{
ptrdiff_t img1_stride = _img1_stride / sizeof(*img1);
ptrdiff_t img2_stride = _img2_stride / sizeof(*img2);
uint64_t sum = 0;
int i, j;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
sum += abs(img1[j] - img2[j]);
}
img1 += img1_stride;
img2 += img2_stride;
}
return sum;
}
static void convolution_x(const uint16_t *filter, int filt_w, const uint16_t *src,
uint16_t *dst, int w, int h, ptrdiff_t _src_stride,
ptrdiff_t _dst_stride)
{
ptrdiff_t src_stride = _src_stride / sizeof(*src);
ptrdiff_t dst_stride = _dst_stride / sizeof(*dst);
int radius = filt_w / 2;
int borders_left = radius;
int borders_right = w - (filt_w - radius);
int i, j, k;
int sum = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < borders_left; j++) {
sum = 0;
for (k = 0; k < filt_w; k++) {
int j_tap = FFABS(j - radius + k);
if (j_tap >= w) {
j_tap = w - (j_tap - w + 1);
}
sum += filter[k] * src[i * src_stride + j_tap];
}
dst[i * dst_stride + j] = sum >> BIT_SHIFT;
}
for (j = borders_left; j < borders_right; j++) {
int sum = 0;
for (k = 0; k < filt_w; k++) {
sum += filter[k] * src[i * src_stride + j - radius + k];
}
dst[i * dst_stride + j] = sum >> BIT_SHIFT;
}
for (j = borders_right; j < w; j++) {
sum = 0;
for (k = 0; k < filt_w; k++) {
int j_tap = FFABS(j - radius + k);
if (j_tap >= w) {
j_tap = w - (j_tap - w + 1);
}
sum += filter[k] * src[i * src_stride + j_tap];
}
dst[i * dst_stride + j] = sum >> BIT_SHIFT;
}
}
}
#define conv_y_fn(type, bits) \
static void convolution_y_##bits##bit(const uint16_t *filter, int filt_w, \
const uint8_t *_src, uint16_t *dst, \
int w, int h, ptrdiff_t _src_stride, \
ptrdiff_t _dst_stride) \
{ \
const type *src = (const type *) _src; \
ptrdiff_t src_stride = _src_stride / sizeof(*src); \
ptrdiff_t dst_stride = _dst_stride / sizeof(*dst); \
int radius = filt_w / 2; \
int borders_top = radius; \
int borders_bottom = h - (filt_w - radius); \
int i, j, k; \
int sum = 0; \
\
for (i = 0; i < borders_top; i++) { \
for (j = 0; j < w; j++) { \
sum = 0; \
for (k = 0; k < filt_w; k++) { \
int i_tap = FFABS(i - radius + k); \
if (i_tap >= h) { \
i_tap = h - (i_tap - h + 1); \
} \
sum += filter[k] * src[i_tap * src_stride + j]; \
} \
dst[i * dst_stride + j] = sum >> bits; \
} \
} \
for (i = borders_top; i < borders_bottom; i++) { \
for (j = 0; j < w; j++) { \
sum = 0; \
for (k = 0; k < filt_w; k++) { \
sum += filter[k] * src[(i - radius + k) * src_stride + j]; \
} \
dst[i * dst_stride + j] = sum >> bits; \
} \
} \
for (i = borders_bottom; i < h; i++) { \
for (j = 0; j < w; j++) { \
sum = 0; \
for (k = 0; k < filt_w; k++) { \
int i_tap = FFABS(i - radius + k); \
if (i_tap >= h) { \
i_tap = h - (i_tap - h + 1); \
} \
sum += filter[k] * src[i_tap * src_stride + j]; \
} \
dst[i * dst_stride + j] = sum >> bits; \
} \
} \
}
conv_y_fn(uint8_t, 8);
conv_y_fn(uint16_t, 10);
static void vmafmotiondsp_init(VMAFMotionDSPContext *dsp, int bpp) {
dsp->convolution_x = convolution_x;
dsp->convolution_y = bpp == 10 ? convolution_y_10bit : convolution_y_8bit;
dsp->sad = image_sad;
}
double ff_vmafmotion_process(VMAFMotionData *s, AVFrame *ref)
{
double score;
s->vmafdsp.convolution_y(s->filter, 5, ref->data[0], s->temp_data,
s->width, s->height, ref->linesize[0], s->stride);
s->vmafdsp.convolution_x(s->filter, 5, s->temp_data, s->blur_data[0],
s->width, s->height, s->stride, s->stride);
if (!s->nb_frames) {
score = 0.0;
} else {
uint64_t sad = s->vmafdsp.sad(s->blur_data[1], s->blur_data[0],
s->width, s->height, s->stride, s->stride);
// the output score is always normalized to 8 bits
score = (double) (sad * 1.0 / (s->width * s->height << (BIT_SHIFT - 8)));
}
FFSWAP(uint16_t *, s->blur_data[0], s->blur_data[1]);
s->nb_frames++;
s->motion_sum += score;
return score;
}
static void set_meta(AVDictionary **metadata, const char *key, float d)
{
char value[128];
snprintf(value, sizeof(value), "%0.2f", d);
av_dict_set(metadata, key, value, 0);
}
static void do_vmafmotion(AVFilterContext *ctx, AVFrame *ref)
{
VMAFMotionContext *s = ctx->priv;
double score;
score = ff_vmafmotion_process(&s->data, ref);
set_meta(&ref->metadata, "lavfi.vmafmotion.score", score);
if (s->stats_file) {
fprintf(s->stats_file,
"n:%"PRId64" motion:%0.2lf\n", s->data.nb_frames, score);
}
}
int ff_vmafmotion_init(VMAFMotionData *s,
int w, int h, enum AVPixelFormat fmt)
{
size_t data_sz;
int i;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt);
if (w < 3 || h < 3)
return AVERROR(EINVAL);
s->width = w;
s->height = h;
s->stride = FFALIGN(w * sizeof(uint16_t), 32);
data_sz = (size_t) s->stride * h;
if (!(s->blur_data[0] = av_malloc(data_sz)) ||
!(s->blur_data[1] = av_malloc(data_sz)) ||
!(s->temp_data = av_malloc(data_sz))) {
return AVERROR(ENOMEM);
}
for (i = 0; i < 5; i++) {
s->filter[i] = lrint(FILTER_5[i] * (1 << BIT_SHIFT));
}
vmafmotiondsp_init(&s->vmafdsp, desc->comp[0].depth);
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
2017-09-30 21:39:08 +02:00
AVFilterFormats *fmts_list = NULL;
int format, ret;
for (format = 0; av_pix_fmt_desc_get(format); format++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
if (!(desc->flags & (AV_PIX_FMT_FLAG_RGB | AV_PIX_FMT_FLAG_HWACCEL | AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_PAL)) &&
(desc->flags & AV_PIX_FMT_FLAG_PLANAR || desc->nb_components == 1) &&
(!(desc->flags & AV_PIX_FMT_FLAG_BE) == !HAVE_BIGENDIAN || desc->comp[0].depth == 8) &&
(desc->comp[0].depth == 8 || desc->comp[0].depth == 10) &&
(ret = ff_add_format(&fmts_list, format)) < 0)
return ret;
}
return ff_set_common_formats(ctx, fmts_list);
}
static int config_input_ref(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
VMAFMotionContext *s = ctx->priv;
return ff_vmafmotion_init(&s->data, ctx->inputs[0]->w,
ctx->inputs[0]->h, ctx->inputs[0]->format);
}
double ff_vmafmotion_uninit(VMAFMotionData *s)
{
av_free(s->blur_data[0]);
av_free(s->blur_data[1]);
av_free(s->temp_data);
return s->nb_frames > 0 ? s->motion_sum / s->nb_frames : 0.0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *ref)
{
AVFilterContext *ctx = inlink->dst;
do_vmafmotion(ctx, ref);
return ff_filter_frame(ctx->outputs[0], ref);
}
static av_cold int init(AVFilterContext *ctx)
{
VMAFMotionContext *s = ctx->priv;
if (s->stats_file_str) {
if (!strcmp(s->stats_file_str, "-")) {
s->stats_file = stdout;
} else {
s->stats_file = fopen(s->stats_file_str, "w");
if (!s->stats_file) {
int err = AVERROR(errno);
char buf[128];
av_strerror(err, buf, sizeof(buf));
av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n",
s->stats_file_str, buf);
return err;
}
}
}
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
VMAFMotionContext *s = ctx->priv;
double avg_motion = ff_vmafmotion_uninit(&s->data);
if (s->data.nb_frames > 0) {
av_log(ctx, AV_LOG_INFO, "VMAF Motion avg: %.3f\n", avg_motion);
}
if (s->stats_file && s->stats_file != stdout)
fclose(s->stats_file);
}
static const AVFilterPad vmafmotion_inputs[] = {
{
.name = "reference",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input_ref,
},
{ NULL }
};
static const AVFilterPad vmafmotion_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_vmafmotion = {
.name = "vmafmotion",
.description = NULL_IF_CONFIG_SMALL("Calculate the VMAF Motion score."),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(VMAFMotionContext),
.priv_class = &vmafmotion_class,
.inputs = vmafmotion_inputs,
.outputs = vmafmotion_outputs,
};