1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/faandct.c

221 lines
6.7 KiB
C
Raw Normal View History

/*
* Floating point AAN DCT
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* this implementation is based upon the IJG integer AAN DCT (see jfdctfst.c)
*/
/**
* @file faandct.c
* @brief
* Floating point AAN DCT
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include <math.h>
#include "dsputil.h"
#include "faandct.h"
#define FLOAT float
#ifdef FAAN_POSTSCALE
# define SCALE(x) postscale[x]
#else
# define SCALE(x) 1
#endif
//numbers generated by simple c code (not as accurate as they could be)
/*
for(i=0; i<8; i++){
printf("#define B%d %1.20llf\n", i, (long double)1.0/(cosl(i*acosl(-1.0)/(long double)16.0)*sqrtl(2)));
}
*/
#define B0 1.00000000000000000000
#define B1 0.72095982200694791383 // (cos(pi*1/16)sqrt(2))^-1
#define B2 0.76536686473017954350 // (cos(pi*2/16)sqrt(2))^-1
#define B3 0.85043009476725644878 // (cos(pi*3/16)sqrt(2))^-1
#define B4 1.00000000000000000000 // (cos(pi*4/16)sqrt(2))^-1
#define B5 1.27275858057283393842 // (cos(pi*5/16)sqrt(2))^-1
#define B6 1.84775906502257351242 // (cos(pi*6/16)sqrt(2))^-1
#define B7 3.62450978541155137218 // (cos(pi*7/16)sqrt(2))^-1
#define A1 0.70710678118654752438 // cos(pi*4/16)
#define A2 0.54119610014619698435 // cos(pi*6/16)sqrt(2)
#define A5 0.38268343236508977170 // cos(pi*6/16)
#define A4 1.30656296487637652774 // cos(pi*2/16)sqrt(2)
static FLOAT postscale[64]={
B0*B0, B0*B1, B0*B2, B0*B3, B0*B4, B0*B5, B0*B6, B0*B7,
B1*B0, B1*B1, B1*B2, B1*B3, B1*B4, B1*B5, B1*B6, B1*B7,
B2*B0, B2*B1, B2*B2, B2*B3, B2*B4, B2*B5, B2*B6, B2*B7,
B3*B0, B3*B1, B3*B2, B3*B3, B3*B4, B3*B5, B3*B6, B3*B7,
B4*B0, B4*B1, B4*B2, B4*B3, B4*B4, B4*B5, B4*B6, B4*B7,
B5*B0, B5*B1, B5*B2, B5*B3, B5*B4, B5*B5, B5*B6, B5*B7,
B6*B0, B6*B1, B6*B2, B6*B3, B6*B4, B6*B5, B6*B6, B6*B7,
B7*B0, B7*B1, B7*B2, B7*B3, B7*B4, B7*B5, B7*B6, B7*B7,
};
static always_inline void row_fdct(FLOAT temp[64], DCTELEM * data)
{
FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FLOAT tmp10, tmp11, tmp12, tmp13;
FLOAT z1, z2, z3, z4, z5, z11, z13;
int i;
for (i=0; i<8*8; i+=8) {
tmp0= data[0 + i] + data[7 + i];
tmp7= data[0 + i] - data[7 + i];
tmp1= data[1 + i] + data[6 + i];
tmp6= data[1 + i] - data[6 + i];
tmp2= data[2 + i] + data[5 + i];
tmp5= data[2 + i] - data[5 + i];
tmp3= data[3 + i] + data[4 + i];
tmp4= data[3 + i] - data[4 + i];
tmp10= tmp0 + tmp3;
tmp13= tmp0 - tmp3;
tmp11= tmp1 + tmp2;
tmp12= tmp1 - tmp2;
temp[0 + i]= tmp10 + tmp11;
temp[4 + i]= tmp10 - tmp11;
z1= (tmp12 + tmp13)*A1;
temp[2 + i]= tmp13 + z1;
temp[6 + i]= tmp13 - z1;
tmp10= tmp4 + tmp5;
tmp11= tmp5 + tmp6;
tmp12= tmp6 + tmp7;
z5= (tmp10 - tmp12) * A5;
z2= tmp10*A2 + z5;
z4= tmp12*A4 + z5;
z3= tmp11*A1;
z11= tmp7 + z3;
z13= tmp7 - z3;
temp[5 + i]= z13 + z2;
temp[3 + i]= z13 - z2;
temp[1 + i]= z11 + z4;
temp[7 + i]= z11 - z4;
}
}
void ff_faandct(DCTELEM * data)
{
FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FLOAT tmp10, tmp11, tmp12, tmp13;
FLOAT z1, z2, z3, z4, z5, z11, z13;
FLOAT temp[64];
int i;
emms_c();
row_fdct(temp, data);
for (i=0; i<8; i++) {
tmp0= temp[8*0 + i] + temp[8*7 + i];
tmp7= temp[8*0 + i] - temp[8*7 + i];
tmp1= temp[8*1 + i] + temp[8*6 + i];
tmp6= temp[8*1 + i] - temp[8*6 + i];
tmp2= temp[8*2 + i] + temp[8*5 + i];
tmp5= temp[8*2 + i] - temp[8*5 + i];
tmp3= temp[8*3 + i] + temp[8*4 + i];
tmp4= temp[8*3 + i] - temp[8*4 + i];
tmp10= tmp0 + tmp3;
tmp13= tmp0 - tmp3;
tmp11= tmp1 + tmp2;
tmp12= tmp1 - tmp2;
data[8*0 + i]= lrintf(SCALE(8*0 + i) * (tmp10 + tmp11));
data[8*4 + i]= lrintf(SCALE(8*4 + i) * (tmp10 - tmp11));
z1= (tmp12 + tmp13)* A1;
data[8*2 + i]= lrintf(SCALE(8*2 + i) * (tmp13 + z1));
data[8*6 + i]= lrintf(SCALE(8*6 + i) * (tmp13 - z1));
tmp10= tmp4 + tmp5;
tmp11= tmp5 + tmp6;
tmp12= tmp6 + tmp7;
z5= (tmp10 - tmp12) * A5;
z2= tmp10*A2 + z5;
z4= tmp12*A4 + z5;
z3= tmp11*A1;
z11= tmp7 + z3;
z13= tmp7 - z3;
data[8*5 + i]= lrintf(SCALE(8*5 + i) * (z13 + z2));
data[8*3 + i]= lrintf(SCALE(8*3 + i) * (z13 - z2));
data[8*1 + i]= lrintf(SCALE(8*1 + i) * (z11 + z4));
data[8*7 + i]= lrintf(SCALE(8*7 + i) * (z11 - z4));
}
}
void ff_faandct248(DCTELEM * data)
{
FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FLOAT tmp10, tmp11, tmp12, tmp13;
FLOAT z1;
FLOAT temp[64];
int i;
emms_c();
row_fdct(temp, data);
for (i=0; i<8; i++) {
tmp0 = temp[8*0 + i] + temp[8*1 + i];
tmp1 = temp[8*2 + i] + temp[8*3 + i];
tmp2 = temp[8*4 + i] + temp[8*5 + i];
tmp3 = temp[8*6 + i] + temp[8*7 + i];
tmp4 = temp[8*0 + i] - temp[8*1 + i];
tmp5 = temp[8*2 + i] - temp[8*3 + i];
tmp6 = temp[8*4 + i] - temp[8*5 + i];
tmp7 = temp[8*6 + i] - temp[8*7 + i];
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
tmp13 = tmp0 - tmp3;
data[8*0 + i] = lrintf(SCALE(8*0 + i) * (tmp10 + tmp11));
data[8*4 + i] = lrintf(SCALE(8*4 + i) * (tmp10 - tmp11));
z1 = (tmp12 + tmp13)* A1;
data[8*2 + i] = lrintf(SCALE(8*2 + i) * (tmp13 + z1));
data[8*6 + i] = lrintf(SCALE(8*6 + i) * (tmp13 - z1));
tmp10 = tmp4 + tmp7;
tmp11 = tmp5 + tmp6;
tmp12 = tmp5 - tmp6;
tmp13 = tmp4 - tmp7;
data[8*1 + i] = lrintf(SCALE(8*0 + i) * (tmp10 + tmp11));
data[8*5 + i] = lrintf(SCALE(8*4 + i) * (tmp10 - tmp11));
z1 = (tmp12 + tmp13)* A1;
data[8*3 + i] = lrintf(SCALE(8*2 + i) * (tmp13 + z1));
data[8*7 + i] = lrintf(SCALE(8*6 + i) * (tmp13 - z1));
}
}