1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/adpcmenc.c

656 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) 2001-2003 The ffmpeg Project
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "bytestream.h"
#include "adpcm.h"
#include "adpcm_data.h"
/**
* @file
* ADPCM encoders
* First version by Francois Revol (revol@free.fr)
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
* by Mike Melanson (melanson@pcisys.net)
*
* Reference documents:
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html
* http://www.geocities.com/SiliconValley/8682/aud3.txt
* http://openquicktime.sourceforge.net/plugins.htm
* XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
* http://www.cs.ucla.edu/~leec/mediabench/applications.html
* SoX source code http://home.sprynet.com/~cbagwell/sox.html
*/
typedef struct TrellisPath {
int nibble;
int prev;
} TrellisPath;
typedef struct TrellisNode {
uint32_t ssd;
int path;
int sample1;
int sample2;
int step;
} TrellisNode;
typedef struct ADPCMEncodeContext {
ADPCMChannelStatus status[6];
TrellisPath *paths;
TrellisNode *node_buf;
TrellisNode **nodep_buf;
uint8_t *trellis_hash;
} ADPCMEncodeContext;
#define FREEZE_INTERVAL 128
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
uint8_t *extradata;
int i;
if (avctx->channels > 2)
return -1; /* only stereo or mono =) */
if(avctx->trellis && (unsigned)avctx->trellis > 16U){
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
return -1;
}
if (avctx->trellis) {
int frontier = 1 << avctx->trellis;
int max_paths = frontier * FREEZE_INTERVAL;
FF_ALLOC_OR_GOTO(avctx, s->paths, max_paths * sizeof(*s->paths), error);
FF_ALLOC_OR_GOTO(avctx, s->node_buf, 2 * frontier * sizeof(*s->node_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error);
}
switch(avctx->codec->id) {
case CODEC_ID_ADPCM_IMA_WAV:
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
/* and we have 4 bytes per channel overhead */
avctx->block_align = BLKSIZE;
/* seems frame_size isn't taken into account... have to buffer the samples :-( */
break;
case CODEC_ID_ADPCM_IMA_QT:
avctx->frame_size = 64;
avctx->block_align = 34 * avctx->channels;
break;
case CODEC_ID_ADPCM_MS:
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
/* and we have 7 bytes per channel overhead */
avctx->block_align = BLKSIZE;
avctx->extradata_size = 32;
extradata = avctx->extradata = av_malloc(avctx->extradata_size);
if (!extradata)
return AVERROR(ENOMEM);
bytestream_put_le16(&extradata, avctx->frame_size);
bytestream_put_le16(&extradata, 7); /* wNumCoef */
for (i = 0; i < 7; i++) {
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
}
break;
case CODEC_ID_ADPCM_YAMAHA:
avctx->frame_size = BLKSIZE * avctx->channels;
avctx->block_align = BLKSIZE;
break;
case CODEC_ID_ADPCM_SWF:
if (avctx->sample_rate != 11025 &&
avctx->sample_rate != 22050 &&
avctx->sample_rate != 44100) {
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
goto error;
}
avctx->frame_size = 512 * (avctx->sample_rate / 11025);
break;
default:
goto error;
}
avctx->coded_frame= avcodec_alloc_frame();
avctx->coded_frame->key_frame= 1;
return 0;
error:
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return -1;
}
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
av_freep(&avctx->coded_frame);
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return 0;
}
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
{
int delta = sample - c->prev_sample;
int nibble = FFMIN(7, abs(delta)*4/ff_adpcm_step_table[c->step_index]) + (delta<0)*8;
c->prev_sample += ((ff_adpcm_step_table[c->step_index] * ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->prev_sample = av_clip_int16(c->prev_sample);
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
return nibble;
}
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
{
int predictor, nibble, bias;
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
nibble= sample - predictor;
if(nibble>=0) bias= c->idelta/2;
else bias=-c->idelta/2;
nibble= (nibble + bias) / c->idelta;
nibble= av_clip(nibble, -8, 7)&0x0F;
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
c->sample2 = c->sample1;
c->sample1 = av_clip_int16(predictor);
c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
if (c->idelta < 16) c->idelta = 16;
return nibble;
}
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
{
int nibble, delta;
if(!c->step) {
c->predictor = 0;
c->step = 127;
}
delta = sample - c->predictor;
nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->predictor = av_clip_int16(c->predictor);
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
c->step = av_clip(c->step, 127, 24567);
return nibble;
}
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
uint8_t *dst, ADPCMChannelStatus *c, int n)
{
//FIXME 6% faster if frontier is a compile-time constant
ADPCMEncodeContext *s = avctx->priv_data;
const int frontier = 1 << avctx->trellis;
const int stride = avctx->channels;
const int version = avctx->codec->id;
TrellisPath *paths = s->paths, *p;
TrellisNode *node_buf = s->node_buf;
TrellisNode **nodep_buf = s->nodep_buf;
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
TrellisNode **nodes_next = nodep_buf + frontier;
int pathn = 0, froze = -1, i, j, k, generation = 0;
uint8_t *hash = s->trellis_hash;
memset(hash, 0xff, 65536 * sizeof(*hash));
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
nodes[0] = node_buf + frontier;
nodes[0]->ssd = 0;
nodes[0]->path = 0;
nodes[0]->step = c->step_index;
nodes[0]->sample1 = c->sample1;
nodes[0]->sample2 = c->sample2;
if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
nodes[0]->sample1 = c->prev_sample;
if(version == CODEC_ID_ADPCM_MS)
nodes[0]->step = c->idelta;
if(version == CODEC_ID_ADPCM_YAMAHA) {
if(c->step == 0) {
nodes[0]->step = 127;
nodes[0]->sample1 = 0;
} else {
nodes[0]->step = c->step;
nodes[0]->sample1 = c->predictor;
}
}
for(i=0; i<n; i++) {
TrellisNode *t = node_buf + frontier*(i&1);
TrellisNode **u;
int sample = samples[i*stride];
int heap_pos = 0;
memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
for(j=0; j<frontier && nodes[j]; j++) {
// higher j have higher ssd already, so they're likely to yield a suboptimal next sample too
const int range = (j < frontier/2) ? 1 : 0;
const int step = nodes[j]->step;
int nidx;
if(version == CODEC_ID_ADPCM_MS) {
const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
const int div = (sample - predictor) / step;
const int nmin = av_clip(div-range, -8, 6);
const int nmax = av_clip(div+range, -7, 7);
for(nidx=nmin; nidx<=nmax; nidx++) {
const int nibble = nidx & 0xf;
int dec_sample = predictor + nidx * step;
#define STORE_NODE(NAME, STEP_INDEX)\
int d;\
uint32_t ssd;\
int pos;\
TrellisNode *u;\
uint8_t *h;\
dec_sample = av_clip_int16(dec_sample);\
d = sample - dec_sample;\
ssd = nodes[j]->ssd + d*d;\
/* Check for wraparound, skip such samples completely. \
* Note, changing ssd to a 64 bit variable would be \
* simpler, avoiding this check, but it's slower on \
* x86 32 bit at the moment. */\
if (ssd < nodes[j]->ssd)\
goto next_##NAME;\
/* Collapse any two states with the same previous sample value. \
* One could also distinguish states by step and by 2nd to last
* sample, but the effects of that are negligible.
* Since nodes in the previous generation are iterated
* through a heap, they're roughly ordered from better to
* worse, but not strictly ordered. Therefore, an earlier
* node with the same sample value is better in most cases
* (and thus the current is skipped), but not strictly
* in all cases. Only skipping samples where ssd >=
* ssd of the earlier node with the same sample gives
* slightly worse quality, though, for some reason. */ \
h = &hash[(uint16_t) dec_sample];\
if (*h == generation)\
goto next_##NAME;\
if (heap_pos < frontier) {\
pos = heap_pos++;\
} else {\
/* Try to replace one of the leaf nodes with the new \
* one, but try a different slot each time. */\
pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\
if (ssd > nodes_next[pos]->ssd)\
goto next_##NAME;\
heap_pos++;\
}\
*h = generation;\
u = nodes_next[pos];\
if(!u) {\
assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
u = t++;\
nodes_next[pos] = u;\
u->path = pathn++;\
}\
u->ssd = ssd;\
u->step = STEP_INDEX;\
u->sample2 = nodes[j]->sample1;\
u->sample1 = dec_sample;\
paths[u->path].nibble = nibble;\
paths[u->path].prev = nodes[j]->path;\
/* Sift the newly inserted node up in the heap to \
* restore the heap property. */\
while (pos > 0) {\
int parent = (pos - 1) >> 1;\
if (nodes_next[parent]->ssd <= ssd)\
break;\
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
pos = parent;\
}\
next_##NAME:;
STORE_NODE(ms, FFMAX(16, (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
}
} else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
const int predictor = nodes[j]->sample1;\
const int div = (sample - predictor) * 4 / STEP_TABLE;\
int nmin = av_clip(div-range, -7, 6);\
int nmax = av_clip(div+range, -6, 7);\
if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
if(nmax<0) nmax--;\
for(nidx=nmin; nidx<=nmax; nidx++) {\
const int nibble = nidx<0 ? 7-nidx : nidx;\
int dec_sample = predictor + (STEP_TABLE * ff_adpcm_yamaha_difflookup[nibble]) / 8;\
STORE_NODE(NAME, STEP_INDEX);\
}
LOOP_NODES(ima, ff_adpcm_step_table[step], av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
} else { //CODEC_ID_ADPCM_YAMAHA
LOOP_NODES(yamaha, step, av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8, 127, 24567));
#undef LOOP_NODES
#undef STORE_NODE
}
}
u = nodes;
nodes = nodes_next;
nodes_next = u;
generation++;
if (generation == 255) {
memset(hash, 0xff, 65536 * sizeof(*hash));
generation = 0;
}
// prevent overflow
if(nodes[0]->ssd > (1<<28)) {
for(j=1; j<frontier && nodes[j]; j++)
nodes[j]->ssd -= nodes[0]->ssd;
nodes[0]->ssd = 0;
}
// merge old paths to save memory
if(i == froze + FREEZE_INTERVAL) {
p = &paths[nodes[0]->path];
for(k=i; k>froze; k--) {
dst[k] = p->nibble;
p = &paths[p->prev];
}
froze = i;
pathn = 0;
// other nodes might use paths that don't coincide with the frozen one.
// checking which nodes do so is too slow, so just kill them all.
// this also slightly improves quality, but I don't know why.
memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
}
}
p = &paths[nodes[0]->path];
for(i=n-1; i>froze; i--) {
dst[i] = p->nibble;
p = &paths[p->prev];
}
c->predictor = nodes[0]->sample1;
c->sample1 = nodes[0]->sample1;
c->sample2 = nodes[0]->sample2;
c->step_index = nodes[0]->step;
c->step = nodes[0]->step;
c->idelta = nodes[0]->step;
}
static int adpcm_encode_frame(AVCodecContext *avctx,
unsigned char *frame, int buf_size, void *data)
{
int n, i, st;
short *samples;
unsigned char *dst;
ADPCMEncodeContext *c = avctx->priv_data;
uint8_t *buf;
dst = frame;
samples = (short *)data;
st= avctx->channels == 2;
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
switch(avctx->codec->id) {
case CODEC_ID_ADPCM_IMA_WAV:
n = avctx->frame_size / 8;
c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
bytestream_put_le16(&dst, c->status[0].prev_sample);
*dst++ = (unsigned char)c->status[0].step_index;
*dst++ = 0; /* unknown */
samples++;
if (avctx->channels == 2) {
c->status[1].prev_sample = (signed short)samples[0];
/* c->status[1].step_index = 0; */
bytestream_put_le16(&dst, c->status[1].prev_sample);
*dst++ = (unsigned char)c->status[1].step_index;
*dst++ = 0;
samples++;
}
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
if(avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
if(avctx->channels == 2)
adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
for(i=0; i<n; i++) {
*dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
*dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
*dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
*dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
if (avctx->channels == 2) {
uint8_t *buf1 = buf + n*8;
*dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
*dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
*dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
*dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
}
}
av_free(buf);
} else
for (; n>0; n--) {
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
dst++;
/* right channel */
if (avctx->channels == 2) {
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
dst++;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
dst++;
}
samples += 8 * avctx->channels;
}
break;
case CODEC_ID_ADPCM_IMA_QT:
{
int ch, i;
PutBitContext pb;
init_put_bits(&pb, dst, buf_size*8);
for(ch=0; ch<avctx->channels; ch++){
put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
put_bits(&pb, 7, c->status[ch].step_index);
if(avctx->trellis > 0) {
uint8_t buf[64];
adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
for(i=0; i<64; i++)
put_bits(&pb, 4, buf[i^1]);
c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
} else {
for (i=0; i<64; i+=2){
int t1, t2;
t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
put_bits(&pb, 4, t2);
put_bits(&pb, 4, t1);
}
c->status[ch].prev_sample &= ~0x7F;
}
}
flush_put_bits(&pb);
dst += put_bits_count(&pb)>>3;
break;
}
case CODEC_ID_ADPCM_SWF:
{
int i;
PutBitContext pb;
init_put_bits(&pb, dst, buf_size*8);
n = avctx->frame_size-1;
//Store AdpcmCodeSize
put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
//Init the encoder state
for(i=0; i<avctx->channels; i++){
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
put_sbits(&pb, 16, samples[i]);
put_bits(&pb, 6, c->status[i].step_index);
c->status[i].prev_sample = (signed short)samples[i];
}
if(avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
if (avctx->channels == 2)
adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
for(i=0; i<n; i++) {
put_bits(&pb, 4, buf[i]);
if (avctx->channels == 2)
put_bits(&pb, 4, buf[n+i]);
}
av_free(buf);
} else {
for (i=1; i<avctx->frame_size; i++) {
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
if (avctx->channels == 2)
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
}
}
flush_put_bits(&pb);
dst += put_bits_count(&pb)>>3;
break;
}
case CODEC_ID_ADPCM_MS:
for(i=0; i<avctx->channels; i++){
int predictor=0;
*dst++ = predictor;
c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
}
for(i=0; i<avctx->channels; i++){
if (c->status[i].idelta < 16)
c->status[i].idelta = 16;
bytestream_put_le16(&dst, c->status[i].idelta);
}
for(i=0; i<avctx->channels; i++){
c->status[i].sample2= *samples++;
}
for(i=0; i<avctx->channels; i++){
c->status[i].sample1= *samples++;
bytestream_put_le16(&dst, c->status[i].sample1);
}
for(i=0; i<avctx->channels; i++)
bytestream_put_le16(&dst, c->status[i].sample2);
if(avctx->trellis > 0) {
int n = avctx->block_align - 7*avctx->channels;
FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
if(avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for(i=0; i<n; i+=2)
*dst++ = (buf[i] << 4) | buf[i+1];
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
for(i=0; i<n; i++)
*dst++ = (buf[i] << 4) | buf[n+i];
}
av_free(buf);
} else
for(i=7*avctx->channels; i<avctx->block_align; i++) {
int nibble;
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
*dst++ = nibble;
}
break;
case CODEC_ID_ADPCM_YAMAHA:
n = avctx->frame_size / 2;
if(avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
n *= 2;
if(avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for(i=0; i<n; i+=2)
*dst++ = buf[i] | (buf[i+1] << 4);
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
for(i=0; i<n; i++)
*dst++ = buf[i] | (buf[n+i] << 4);
}
av_free(buf);
} else
for (n *= avctx->channels; n>0; n--) {
int nibble;
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
*dst++ = nibble;
}
break;
default:
error:
return -1;
}
return dst - frame;
}
#define ADPCM_ENCODER(id,name,long_name_) \
AVCodec ff_ ## name ## _encoder = { \
#name, \
AVMEDIA_TYPE_AUDIO, \
id, \
sizeof(ADPCMEncodeContext), \
adpcm_encode_init, \
adpcm_encode_frame, \
adpcm_encode_close, \
NULL, \
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \
}
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
ADPCM_ENCODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
ADPCM_ENCODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
ADPCM_ENCODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");