1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/vp9.c

1280 lines
51 KiB
C
Raw Normal View History

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"
#include "videodsp.h"
#include "vp56.h"
#include "vp9.h"
#include "vp9data.h"
#define VP9_SYNCCODE 0x498342
#define MAX_PROB 255
static void vp9_decode_flush(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++)
av_frame_unref(s->refs[i]);
}
static int update_size(AVCodecContext *avctx, int w, int h)
{
VP9Context *s = avctx->priv_data;
uint8_t *p;
if (s->above_partition_ctx && w == avctx->width && h == avctx->height)
return 0;
vp9_decode_flush(avctx);
if (w <= 0 || h <= 0)
return AVERROR_INVALIDDATA;
avctx->width = w;
avctx->height = h;
s->sb_cols = (w + 63) >> 6;
s->sb_rows = (h + 63) >> 6;
s->cols = (w + 7) >> 3;
s->rows = (h + 7) >> 3;
#define assign(var, type, n) var = (type)p; p += s->sb_cols * n * sizeof(*var)
av_free(s->above_partition_ctx);
p = av_malloc(s->sb_cols *
(240 + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx) +
64 * s->sb_rows * (1 + sizeof(*s->mv[0]) * 2)));
if (!p)
return AVERROR(ENOMEM);
assign(s->above_partition_ctx, uint8_t *, 8);
assign(s->above_skip_ctx, uint8_t *, 8);
assign(s->above_txfm_ctx, uint8_t *, 8);
assign(s->above_mode_ctx, uint8_t *, 16);
assign(s->above_y_nnz_ctx, uint8_t *, 16);
assign(s->above_uv_nnz_ctx[0], uint8_t *, 8);
assign(s->above_uv_nnz_ctx[1], uint8_t *, 8);
assign(s->intra_pred_data[0], uint8_t *, 64);
assign(s->intra_pred_data[1], uint8_t *, 32);
assign(s->intra_pred_data[2], uint8_t *, 32);
assign(s->above_segpred_ctx, uint8_t *, 8);
assign(s->above_intra_ctx, uint8_t *, 8);
assign(s->above_comp_ctx, uint8_t *, 8);
assign(s->above_ref_ctx, uint8_t *, 8);
assign(s->above_filter_ctx, uint8_t *, 8);
assign(s->lflvl, VP9Filter *, 1);
assign(s->above_mv_ctx, VP56mv(*)[2], 16);
assign(s->segmentation_map, uint8_t *, 64 * s->sb_rows);
assign(s->mv[0], VP9MVRefPair *, 64 * s->sb_rows);
assign(s->mv[1], VP9MVRefPair *, 64 * s->sb_rows);
#undef assign
return 0;
}
// The sign bit is at the end, not the start, of a bit sequence
static av_always_inline int get_bits_with_sign(GetBitContext *gb, int n)
{
int v = get_bits(gb, n);
return get_bits1(gb) ? -v : v;
}
static av_always_inline int inv_recenter_nonneg(int v, int m)
{
if (v > 2 * m)
return v;
if (v & 1)
return m - ((v + 1) >> 1);
return m + (v >> 1);
}
// differential forward probability updates
static int update_prob(VP56RangeCoder *c, int p)
{
static const int inv_map_table[MAX_PROB - 1] = {
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253,
};
int d;
/* This code is trying to do a differential probability update. For a
* current probability A in the range [1, 255], the difference to a new
* probability of any value can be expressed differentially as 1-A, 255-A
* where some part of this (absolute range) exists both in positive as
* well as the negative part, whereas another part only exists in one
* half. We're trying to code this shared part differentially, i.e.
* times two where the value of the lowest bit specifies the sign, and
* the single part is then coded on top of this. This absolute difference
* then again has a value of [0, 254], but a bigger value in this range
* indicates that we're further away from the original value A, so we
* can code this as a VLC code, since higher values are increasingly
* unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
* updates vs. the 'fine, exact' updates further down the range, which
* adds one extra dimension to this differential update model. */
if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 0;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 16;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 5) + 32;
} else {
d = vp8_rac_get_uint(c, 7);
if (d >= 65) {
d = (d << 1) - 65 + vp8_rac_get(c);
d = av_clip(d, 0, MAX_PROB - 65 - 1);
}
d += 64;
}
return p <= 128
? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1)
: 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
}
static int decode_frame_header(AVCodecContext *avctx,
const uint8_t *data, int size, int *ref)
{
VP9Context *s = avctx->priv_data;
int c, i, j, k, l, m, n, w, h, max, size2, ret, sharp;
int last_invisible;
const uint8_t *data2;
/* general header */
if ((ret = init_get_bits8(&s->gb, data, size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
return ret;
}
if (get_bits(&s->gb, 2) != 0x2) { // frame marker
av_log(avctx, AV_LOG_ERROR, "Invalid frame marker\n");
return AVERROR_INVALIDDATA;
}
s->profile = get_bits1(&s->gb);
if (get_bits1(&s->gb)) { // reserved bit
av_log(avctx, AV_LOG_ERROR, "Reserved bit should be zero\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
*ref = get_bits(&s->gb, 3);
return 0;
}
s->last_keyframe = s->keyframe;
s->keyframe = !get_bits1(&s->gb);
last_invisible = s->invisible;
s->invisible = !get_bits1(&s->gb);
s->errorres = get_bits1(&s->gb);
// FIXME disable this upon resolution change
s->use_last_frame_mvs = !s->errorres && !last_invisible;
if (s->keyframe) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
s->colorspace = get_bits(&s->gb, 3);
if (s->colorspace == 7) { // RGB = profile 1
av_log(avctx, AV_LOG_ERROR, "RGB not supported in profile 0\n");
return AVERROR_INVALIDDATA;
}
s->fullrange = get_bits1(&s->gb);
// for profile 1, here follows the subsampling bits
s->refreshrefmask = 0xff;
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
if (s->intraonly) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
s->refreshrefmask = get_bits(&s->gb, 8);
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->refreshrefmask = get_bits(&s->gb, 8);
s->refidx[0] = get_bits(&s->gb, 3);
s->signbias[0] = get_bits1(&s->gb);
s->refidx[1] = get_bits(&s->gb, 3);
s->signbias[1] = get_bits1(&s->gb);
s->refidx[2] = get_bits(&s->gb, 3);
s->signbias[2] = get_bits1(&s->gb);
if (!s->refs[s->refidx[0]]->buf[0] ||
!s->refs[s->refidx[1]]->buf[0] ||
!s->refs[s->refidx[2]]->buf[0]) {
av_log(avctx, AV_LOG_ERROR,
"Not all references are available\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[0]]->width;
h = s->refs[s->refidx[0]]->height;
} else if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[1]]->width;
h = s->refs[s->refidx[1]]->height;
} else if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[2]]->width;
h = s->refs[s->refidx[2]]->height;
} else {
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
}
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
s->highprecisionmvs = get_bits1(&s->gb);
s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
get_bits(&s->gb, 2);
s->allowcompinter = s->signbias[0] != s->signbias[1] ||
s->signbias[0] != s->signbias[2];
if (s->allowcompinter) {
if (s->signbias[0] == s->signbias[1]) {
s->fixcompref = 2;
s->varcompref[0] = 0;
s->varcompref[1] = 1;
} else if (s->signbias[0] == s->signbias[2]) {
s->fixcompref = 1;
s->varcompref[0] = 0;
s->varcompref[1] = 2;
} else {
s->fixcompref = 0;
s->varcompref[0] = 1;
s->varcompref[1] = 2;
}
}
}
}
s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
s->framectxid = c = get_bits(&s->gb, 2);
/* loopfilter header data */
s->filter.level = get_bits(&s->gb, 6);
sharp = get_bits(&s->gb, 3);
/* If sharpness changed, reinit lim/mblim LUTs. if it didn't change,
* keep the old cache values since they are still valid. */
if (s->filter.sharpness != sharp)
memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
s->filter.sharpness = sharp;
if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
if (get_bits1(&s->gb)) {
for (i = 0; i < 4; i++)
if (get_bits1(&s->gb))
s->lf_delta.ref[i] = get_bits_with_sign(&s->gb, 6);
for (i = 0; i < 2; i++)
if (get_bits1(&s->gb))
s->lf_delta.mode[i] = get_bits_with_sign(&s->gb, 6);
}
} else {
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
}
/* quantization header data */
s->yac_qi = get_bits(&s->gb, 8);
s->ydc_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0;
s->uvdc_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0;
s->uvac_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0;
s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
/* segmentation header info */
if ((s->segmentation.enabled = get_bits1(&s->gb))) {
if ((s->segmentation.update_map = get_bits1(&s->gb))) {
for (i = 0; i < 7; i++)
s->prob.seg[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
if ((s->segmentation.temporal = get_bits1(&s->gb)))
for (i = 0; i < 3; i++)
s->prob.segpred[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
}
if (get_bits1(&s->gb)) {
s->segmentation.absolute_vals = get_bits1(&s->gb);
for (i = 0; i < 8; i++) {
if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].q_val = get_bits_with_sign(&s->gb, 8);
if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].lf_val = get_bits_with_sign(&s->gb, 6);
if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
}
}
} else {
s->segmentation.feat[0].q_enabled = 0;
s->segmentation.feat[0].lf_enabled = 0;
s->segmentation.feat[0].skip_enabled = 0;
s->segmentation.feat[0].ref_enabled = 0;
}
// set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
int qyac, qydc, quvac, quvdc, lflvl, sh;
if (s->segmentation.feat[i].q_enabled) {
if (s->segmentation.absolute_vals)
qyac = s->segmentation.feat[i].q_val;
else
qyac = s->yac_qi + s->segmentation.feat[i].q_val;
} else {
qyac = s->yac_qi;
}
qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
qyac = av_clip_uintp2(qyac, 8);
s->segmentation.feat[i].qmul[0][0] = ff_vp9_dc_qlookup[qydc];
s->segmentation.feat[i].qmul[0][1] = ff_vp9_ac_qlookup[qyac];
s->segmentation.feat[i].qmul[1][0] = ff_vp9_dc_qlookup[quvdc];
s->segmentation.feat[i].qmul[1][1] = ff_vp9_ac_qlookup[quvac];
sh = s->filter.level >= 32;
if (s->segmentation.feat[i].lf_enabled) {
if (s->segmentation.absolute_vals)
lflvl = s->segmentation.feat[i].lf_val;
else
lflvl = s->filter.level + s->segmentation.feat[i].lf_val;
} else {
lflvl = s->filter.level;
}
s->segmentation.feat[i].lflvl[0][0] =
s->segmentation.feat[i].lflvl[0][1] =
av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
for (j = 1; j < 4; j++) {
s->segmentation.feat[i].lflvl[j][0] =
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
s->lf_delta.mode[0]) << sh), 6);
s->segmentation.feat[i].lflvl[j][1] =
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
s->lf_delta.mode[1]) << sh), 6);
}
}
/* tiling info */
if ((ret = update_size(avctx, w, h)) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Failed to initialize decoder for %dx%d\n", w, h);
return ret;
}
for (s->tiling.log2_tile_cols = 0;
(s->sb_cols >> s->tiling.log2_tile_cols) > 64;
s->tiling.log2_tile_cols++) ;
for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
max = FFMAX(0, max - 1);
while (max > s->tiling.log2_tile_cols) {
if (get_bits1(&s->gb))
s->tiling.log2_tile_cols++;
else
break;
}
s->tiling.log2_tile_rows = decode012(&s->gb);
s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
sizeof(VP56RangeCoder) *
s->tiling.tile_cols);
if (!s->c_b) {
av_log(avctx, AV_LOG_ERROR,
"Ran out of memory during range coder init\n");
return AVERROR(ENOMEM);
}
}
if (s->keyframe || s->errorres || s->intraonly) {
s->prob_ctx[0].p =
s->prob_ctx[1].p =
s->prob_ctx[2].p =
s->prob_ctx[3].p = ff_vp9_default_probs;
memcpy(s->prob_ctx[0].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[1].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[2].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[3].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
}
// next 16 bits is size of the rest of the header (arith-coded)
size2 = get_bits(&s->gb, 16);
data2 = align_get_bits(&s->gb);
if (size2 > size - (data2 - data)) {
av_log(avctx, AV_LOG_ERROR, "Invalid compressed header size\n");
return AVERROR_INVALIDDATA;
}
ff_vp56_init_range_decoder(&s->c, data2, size2);
if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
av_log(avctx, AV_LOG_ERROR, "Marker bit was set\n");
return AVERROR_INVALIDDATA;
}
if (s->keyframe || s->intraonly)
memset(s->counts.coef, 0,
sizeof(s->counts.coef) + sizeof(s->counts.eob));
else
memset(&s->counts, 0, sizeof(s->counts));
/* FIXME is it faster to not copy here, but do it down in the fw updates
* as explicit copies if the fw update is missing (and skip the copy upon
* fw update)? */
s->prob.p = s->prob_ctx[c].p;
// txfm updates
if (s->lossless) {
s->txfmmode = TX_4X4;
} else {
s->txfmmode = vp8_rac_get_uint(&s->c, 2);
if (s->txfmmode == 3)
s->txfmmode += vp8_rac_get(&s->c);
if (s->txfmmode == TX_SWITCHABLE) {
for (i = 0; i < 2; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx16p[i][j] =
update_prob(&s->c, s->prob.p.tx16p[i][j]);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx32p[i][j] =
update_prob(&s->c, s->prob.p.tx32p[i][j]);
}
}
// coef updates
for (i = 0; i < 4; i++) {
uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
if (vp8_rac_get(&s->c)) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m >= 3 && l == 0) // dc only has 3 pt
break;
for (n = 0; n < 3; n++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
p[n] = update_prob(&s->c, r[n]);
else
p[n] = r[n];
}
p[3] = 0;
}
} else {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m > 3 && l == 0) // dc only has 3 pt
break;
memcpy(p, r, 3);
p[3] = 0;
}
}
if (s->txfmmode == i)
break;
}
// mode updates
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
if (!s->keyframe && !s->intraonly) {
for (i = 0; i < 7; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_mode[i][j] =
update_prob(&s->c, s->prob.p.mv_mode[i][j]);
if (s->filtermode == FILTER_SWITCHABLE)
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.filter[i][j] =
update_prob(&s->c, s->prob.p.filter[i][j]);
for (i = 0; i < 4; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
if (s->allowcompinter) {
s->comppredmode = vp8_rac_get(&s->c);
if (s->comppredmode)
s->comppredmode += vp8_rac_get(&s->c);
if (s->comppredmode == PRED_SWITCHABLE)
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp[i] =
update_prob(&s->c, s->prob.p.comp[i]);
} else {
s->comppredmode = PRED_SINGLEREF;
}
if (s->comppredmode != PRED_COMPREF) {
for (i = 0; i < 5; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][0] =
update_prob(&s->c, s->prob.p.single_ref[i][0]);
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][1] =
update_prob(&s->c, s->prob.p.single_ref[i][1]);
}
}
if (s->comppredmode != PRED_SINGLEREF) {
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp_ref[i] =
update_prob(&s->c, s->prob.p.comp_ref[i]);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 9; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.y_mode[i][j] =
update_prob(&s->c, s->prob.p.y_mode[i][j]);
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.partition[3 - i][j][k] =
update_prob(&s->c,
s->prob.p.partition[3 - i][j][k]);
// mv fields don't use the update_prob subexp model for some reason
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].sign =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].classes[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0 =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].bits[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_fp[j][k] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].fp[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
if (s->highprecisionmvs) {
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
}
}
return (data2 - data) + size2;
}
static int decode_subblock(AVCodecContext *avctx, int row, int col,
VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
VP9Context *s = avctx->priv_data;
int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
(((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
int ret;
const uint8_t *p = s->keyframe ? ff_vp9_default_kf_partition_probs[bl][c]
: s->prob.p.partition[bl][c];
enum BlockPartition bp;
ptrdiff_t hbs = 4 >> bl;
if (bl == BL_8X8) {
bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p);
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp);
} else if (col + hbs < s->cols) {
if (row + hbs < s->rows) {
bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p);
switch (bp) {
case PARTITION_NONE:
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff,
bl, bp);
break;
case PARTITION_H:
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff,
bl, bp);
if (!ret) {
yoff += hbs * 8 * s->cur_frame->linesize[0];
uvoff += hbs * 4 * s->cur_frame->linesize[1];
ret = ff_vp9_decode_block(avctx, row + hbs, col, lflvl,
yoff, uvoff, bl, bp);
}
break;
case PARTITION_V:
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff,
bl, bp);
if (!ret) {
yoff += hbs * 8;
uvoff += hbs * 4;
ret = ff_vp9_decode_block(avctx, row, col + hbs, lflvl,
yoff, uvoff, bl, bp);
}
break;
case PARTITION_SPLIT:
ret = decode_subblock(avctx, row, col, lflvl,
yoff, uvoff, bl + 1);
if (!ret) {
ret = decode_subblock(avctx, row, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs,
bl + 1);
if (!ret) {
yoff += hbs * 8 * s->cur_frame->linesize[0];
uvoff += hbs * 4 * s->cur_frame->linesize[1];
ret = decode_subblock(avctx, row + hbs, col, lflvl,
yoff, uvoff, bl + 1);
if (!ret) {
ret = decode_subblock(avctx, row + hbs, col + hbs,
lflvl, yoff + 8 * hbs,
uvoff + 4 * hbs, bl + 1);
}
}
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unexpected partition %d.", bp);
return AVERROR_INVALIDDATA;
}
} else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
bp = PARTITION_SPLIT;
ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1);
if (!ret)
ret = decode_subblock(avctx, row, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
} else {
bp = PARTITION_H;
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff,
bl, bp);
}
} else if (row + hbs < s->rows) {
if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
bp = PARTITION_SPLIT;
ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1);
if (!ret) {
yoff += hbs * 8 * s->cur_frame->linesize[0];
uvoff += hbs * 4 * s->cur_frame->linesize[1];
ret = decode_subblock(avctx, row + hbs, col, lflvl,
yoff, uvoff, bl + 1);
}
} else {
bp = PARTITION_V;
ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff,
bl, bp);
}
} else {
bp = PARTITION_SPLIT;
ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1);
}
s->counts.partition[bl][c][bp]++;
return ret;
}
static void loopfilter_subblock(AVCodecContext *avctx, VP9Filter *lflvl,
int row, int col,
ptrdiff_t yoff, ptrdiff_t uvoff)
{
VP9Context *s = avctx->priv_data;
uint8_t *dst = s->cur_frame->data[0] + yoff, *lvl = lflvl->level;
ptrdiff_t ls_y = s->cur_frame->linesize[0], ls_uv = s->cur_frame->linesize[1];
int y, x, p;
/* FIXME: In how far can we interleave the v/h loopfilter calls? E.g.
* if you think of them as acting on a 8x8 block max, we can interleave
* each v/h within the single x loop, but that only works if we work on
* 8 pixel blocks, and we won't always do that (we want at least 16px
* to use SSE2 optimizations, perhaps 32 for AVX2). */
// filter edges between columns, Y plane (e.g. block1 | block2)
for (y = 0; y < 8; y += 2, dst += 16 * ls_y, lvl += 16) {
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[0][0][y];
uint8_t *hmask2 = lflvl->mask[0][0][y + 1];
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
unsigned hm = hm1 | hm2 | hm13 | hm23;
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8, l++) {
if (hm1 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (col || x > 1) {
if (hmask1[0] & x) {
if (hmask2[0] & x) {
av_assert2(l[8] == L);
s->dsp.loop_filter_16[0](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[2][0](ptr, ls_y, E, I, H);
}
} else if (hm2 & x) {
L = l[8];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
[!!(hmask2[1] & x)]
[0](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
[0](ptr, ls_y, E, I, H);
}
}
} else if (hm2 & x) {
int L = l[8], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (col || x > 1) {
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
[0](ptr + 8 * ls_y, ls_y, E, I, H);
}
}
if (hm13 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (hm23 & x) {
L = l[8];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[0][0][0](ptr + 4, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[0][0](ptr + 4, ls_y, E, I, H);
}
} else if (hm23 & x) {
int L = l[8], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[0][0](ptr + 8 * ls_y + 4, ls_y, E, I, H);
}
}
}
// block1
// filter edges between rows, Y plane (e.g. ------)
// block2
dst = s->cur_frame->data[0] + yoff;
lvl = lflvl->level;
for (y = 0; y < 8; y++, dst += 8 * ls_y, lvl += 8) {
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[0][1][y];
unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
for (x = 1; vm & ~(x - 1); x <<= 2, ptr += 16, l += 2) {
if (row || y) {
if (vm & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (vmask[0] & x) {
if (vmask[0] & (x << 1)) {
av_assert2(l[1] == L);
s->dsp.loop_filter_16[1](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[2][1](ptr, ls_y, E, I, H);
}
} else if (vm & (x << 1)) {
L = l[1];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
[!!(vmask[1] & (x << 1))]
[1](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[!!(vmask[1] & x)]
[1](ptr, ls_y, E, I, H);
}
} else if (vm & (x << 1)) {
int L = l[1], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(vmask[1] & (x << 1))]
[1](ptr + 8, ls_y, E, I, H);
}
}
if (vm3 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (vm3 & (x << 1)) {
L = l[1];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[0][0][1](ptr + ls_y * 4, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4, ls_y, E, I, H);
}
} else if (vm3 & (x << 1)) {
int L = l[1], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4 + 8, ls_y, E, I, H);
}
}
}
// same principle but for U/V planes
for (p = 0; p < 2; p++) {
lvl = lflvl->level;
dst = s->cur_frame->data[1 + p] + uvoff;
for (y = 0; y < 8; y += 4, dst += 16 * ls_uv, lvl += 32) {
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[1][0][y];
uint8_t *hmask2 = lflvl->mask[1][0][y + 2];
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2];
unsigned hm2 = hmask2[1] | hmask2[2], hm = hm1 | hm2;
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 4) {
if (col || x > 1) {
if (hm1 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L];
int I = s->filter.lim_lut[L];
if (hmask1[0] & x) {
if (hmask2[0] & x) {
av_assert2(l[16] == L);
s->dsp.loop_filter_16[0](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[2][0](ptr, ls_uv, E, I, H);
}
} else if (hm2 & x) {
L = l[16];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
[!!(hmask2[1] & x)]
[0](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
[0](ptr, ls_uv, E, I, H);
}
} else if (hm2 & x) {
int L = l[16], H = L >> 4;
int E = s->filter.mblim_lut[L];
int I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
[0](ptr + 8 * ls_uv, ls_uv, E, I, H);
}
}
if (x & 0xAA)
l += 2;
}
}
lvl = lflvl->level;
dst = s->cur_frame->data[1 + p] + uvoff;
for (y = 0; y < 8; y++, dst += 4 * ls_uv) {
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[1][1][y];
unsigned vm = vmask[0] | vmask[1] | vmask[2];
for (x = 1; vm & ~(x - 1); x <<= 4, ptr += 16, l += 4) {
if (row || y) {
if (vm & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L];
int I = s->filter.lim_lut[L];
if (vmask[0] & x) {
if (vmask[0] & (x << 2)) {
av_assert2(l[2] == L);
s->dsp.loop_filter_16[1](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[2][1](ptr, ls_uv, E, I, H);
}
} else if (vm & (x << 2)) {
L = l[2];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
[!!(vmask[1] & (x << 2))]
[1](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[!!(vmask[1] & x)]
[1](ptr, ls_uv, E, I, H);
}
} else if (vm & (x << 2)) {
int L = l[2], H = L >> 4;
int E = s->filter.mblim_lut[L];
int I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(vmask[1] & (x << 2))]
[1](ptr + 8, ls_uv, E, I, H);
}
}
}
if (y & 1)
lvl += 16;
}
}
}
static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
{
int sb_start = (idx * n) >> log2_n;
int sb_end = ((idx + 1) * n) >> log2_n;
*start = FFMIN(sb_start, n) << 3;
*end = FFMIN(sb_end, n) << 3;
}
static int vp9_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame, const uint8_t *data, int size)
{
VP9Context *s = avctx->priv_data;
int ret, tile_row, tile_col, i, ref = -1, row, col;
ptrdiff_t yoff = 0, uvoff = 0;
ret = decode_frame_header(avctx, data, size, &ref);
if (ret < 0) {
return ret;
} else if (!ret) {
if (!s->refs[ref]->buf[0]) {
av_log(avctx, AV_LOG_ERROR,
"Requested reference %d not available\n", ref);
return AVERROR_INVALIDDATA;
}
ret = av_frame_ref(frame, s->refs[ref]);
if (ret < 0)
return ret;
*got_frame = 1;
return 0;
}
data += ret;
size -= ret;
s->cur_frame = frame;
av_frame_unref(s->cur_frame);
if ((ret = ff_get_buffer(avctx, s->cur_frame,
s->refreshrefmask ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
return ret;
s->cur_frame->key_frame = s->keyframe;
s->cur_frame->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
: AV_PICTURE_TYPE_P;
// main tile decode loop
memset(s->above_partition_ctx, 0, s->cols);
memset(s->above_skip_ctx, 0, s->cols);
if (s->keyframe || s->intraonly)
memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
else
memset(s->above_mode_ctx, NEARESTMV, s->cols);
memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 8);
memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 8);
memset(s->above_segpred_ctx, 0, s->cols);
for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
tile_row, s->tiling.log2_tile_rows, s->sb_rows);
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
int64_t tile_size;
if (tile_col == s->tiling.tile_cols - 1 &&
tile_row == s->tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size)
return AVERROR_INVALIDDATA;
ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) // marker bit
return AVERROR_INVALIDDATA;
data += tile_size;
size -= tile_size;
}
for (row = s->tiling.tile_row_start;
row < s->tiling.tile_row_end;
row += 8, yoff += s->cur_frame->linesize[0] * 64,
uvoff += s->cur_frame->linesize[1] * 32) {
VP9Filter *lflvl = s->lflvl;
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
set_tile_offset(&s->tiling.tile_col_start,
&s->tiling.tile_col_end,
tile_col, s->tiling.log2_tile_cols, s->sb_cols);
memset(s->left_partition_ctx, 0, 8);
memset(s->left_skip_ctx, 0, 8);
if (s->keyframe || s->intraonly)
memset(s->left_mode_ctx, DC_PRED, 16);
else
memset(s->left_mode_ctx, NEARESTMV, 8);
memset(s->left_y_nnz_ctx, 0, 16);
memset(s->left_uv_nnz_ctx, 0, 16);
memset(s->left_segpred_ctx, 0, 8);
memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
for (col = s->tiling.tile_col_start;
col < s->tiling.tile_col_end;
col += 8, yoff2 += 64, uvoff2 += 32, lflvl++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
memset(lflvl->mask, 0, sizeof(lflvl->mask));
if ((ret = decode_subblock(avctx, row, col, lflvl,
yoff2, uvoff2, BL_64X64)) < 0)
return ret;
}
memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
}
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0],
s->cur_frame->data[0] + yoff +
63 * s->cur_frame->linesize[0],
8 * s->cols);
memcpy(s->intra_pred_data[1],
s->cur_frame->data[1] + uvoff +
31 * s->cur_frame->linesize[1],
4 * s->cols);
memcpy(s->intra_pred_data[2],
s->cur_frame->data[2] + uvoff +
31 * s->cur_frame->linesize[2],
4 * s->cols);
}
// loopfilter one row
if (s->filter.level) {
yoff2 = yoff;
uvoff2 = uvoff;
lflvl = s->lflvl;
for (col = 0; col < s->cols;
col += 8, yoff2 += 64, uvoff2 += 32, lflvl++)
loopfilter_subblock(avctx, lflvl, row, col, yoff2, uvoff2);
}
}
}
// bw adaptivity (or in case of parallel decoding mode, fw adaptivity
// probability maintenance between frames)
if (s->refreshctx) {
if (s->parallelmode) {
int j, k, l, m;
for (i = 0; i < 4; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++)
memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
s->prob.coef[i][j][k][l][m], 3);
if (s->txfmmode == i)
break;
}
s->prob_ctx[s->framectxid].p = s->prob.p;
} else {
ff_vp9_adapt_probs(s);
}
}
FFSWAP(VP9MVRefPair *, s->mv[0], s->mv[1]);
// ref frame setup
for (i = 0; i < 8; i++)
if (s->refreshrefmask & (1 << i)) {
av_frame_unref(s->refs[i]);
ret = av_frame_ref(s->refs[i], s->cur_frame);
if (ret < 0)
return ret;
}
if (s->invisible)
av_frame_unref(s->cur_frame);
else
*got_frame = 1;
return 0;
}
static int vp9_decode_packet(AVCodecContext *avctx, void *frame,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *data = avpkt->data;
int size = avpkt->size;
int marker, ret;
/* Read superframe index - this is a collection of individual frames
* that together lead to one visible frame */
marker = data[size - 1];
if ((marker & 0xe0) == 0xc0) {
int nbytes = 1 + ((marker >> 3) & 0x3);
int n_frames = 1 + (marker & 0x7);
int idx_sz = 2 + n_frames * nbytes;
if (size >= idx_sz && data[size - idx_sz] == marker) {
const uint8_t *idx = data + size + 1 - idx_sz;
while (n_frames--) {
int sz = AV_RL32(idx);
if (nbytes < 4)
sz &= (1 << (8 * nbytes)) - 1;
idx += nbytes;
if (sz > size) {
av_log(avctx, AV_LOG_ERROR,
"Superframe packet size too big: %d > %d\n",
sz, size);
return AVERROR_INVALIDDATA;
}
ret = vp9_decode_frame(avctx, frame, got_frame, data, sz);
if (ret < 0)
return ret;
data += sz;
size -= sz;
}
return size;
}
}
/* If we get here, there was no valid superframe index, i.e. this is just
* one whole single frame. Decode it as such from the complete input buf. */
if ((ret = vp9_decode_frame(avctx, frame, got_frame, data, size)) < 0)
return ret;
return size;
}
static av_cold int vp9_decode_free(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++)
av_frame_free(&s->refs[i]);
av_freep(&s->c_b);
av_freep(&s->above_partition_ctx);
return 0;
}
static av_cold int vp9_decode_init(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
ff_vp9dsp_init(&s->dsp);
ff_videodsp_init(&s->vdsp, 8);
for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) {
s->refs[i] = av_frame_alloc();
if (!s->refs[i]) {
vp9_decode_free(avctx);
return AVERROR(ENOMEM);
}
}
s->filter.sharpness = -1;
return 0;
}
AVCodec ff_vp9_decoder = {
.name = "vp9",
.long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP9,
.priv_data_size = sizeof(VP9Context),
.init = vp9_decode_init,
.decode = vp9_decode_packet,
.flush = vp9_decode_flush,
.close = vp9_decode_free,
.capabilities = CODEC_CAP_DR1,
};