1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavformat/hevc.c

1178 lines
38 KiB
C
Raw Normal View History

2014-03-03 17:53:41 +03:00
/*
* Copyright (c) 2014 Tim Walker <tdskywalker@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavcodec/get_bits.h"
#include "libavcodec/golomb.h"
#include "libavcodec/hevc.h"
#include "libavutil/intreadwrite.h"
#include "avc.h"
#include "avio.h"
#include "hevc.h"
#define MAX_SPATIAL_SEGMENTATION 4096 // max. value of u(12) field
typedef struct HVCCNALUnitArray {
uint8_t array_completeness;
uint8_t NAL_unit_type;
uint16_t numNalus;
uint16_t *nalUnitLength;
uint8_t **nalUnit;
} HVCCNALUnitArray;
typedef struct HEVCDecoderConfigurationRecord {
uint8_t configurationVersion;
uint8_t general_profile_space;
uint8_t general_tier_flag;
uint8_t general_profile_idc;
uint32_t general_profile_compatibility_flags;
uint64_t general_constraint_indicator_flags;
uint8_t general_level_idc;
uint16_t min_spatial_segmentation_idc;
uint8_t parallelismType;
uint8_t chromaFormat;
uint8_t bitDepthLumaMinus8;
uint8_t bitDepthChromaMinus8;
uint16_t avgFrameRate;
uint8_t constantFrameRate;
uint8_t numTemporalLayers;
uint8_t temporalIdNested;
uint8_t lengthSizeMinusOne;
uint8_t numOfArrays;
HVCCNALUnitArray *array;
} HEVCDecoderConfigurationRecord;
typedef struct HVCCProfileTierLevel {
uint8_t profile_space;
uint8_t tier_flag;
uint8_t profile_idc;
uint32_t profile_compatibility_flags;
uint64_t constraint_indicator_flags;
uint8_t level_idc;
} HVCCProfileTierLevel;
static void hvcc_update_ptl(HEVCDecoderConfigurationRecord *hvcc,
HVCCProfileTierLevel *ptl)
{
/*
* The value of general_profile_space in all the parameter sets must be
* identical.
*/
hvcc->general_profile_space = ptl->profile_space;
/*
* The level indication general_level_idc must indicate a level of
* capability equal to or greater than the highest level indicated for the
* highest tier in all the parameter sets.
*/
if (hvcc->general_tier_flag < ptl->tier_flag)
hvcc->general_level_idc = ptl->level_idc;
else
hvcc->general_level_idc = FFMAX(hvcc->general_level_idc, ptl->level_idc);
/*
* The tier indication general_tier_flag must indicate a tier equal to or
* greater than the highest tier indicated in all the parameter sets.
*/
hvcc->general_tier_flag = FFMAX(hvcc->general_tier_flag, ptl->tier_flag);
/*
* The profile indication general_profile_idc must indicate a profile to
* which the stream associated with this configuration record conforms.
*
* If the sequence parameter sets are marked with different profiles, then
* the stream may need examination to determine which profile, if any, the
* entire stream conforms to. If the entire stream is not examined, or the
* examination reveals that there is no profile to which the entire stream
* conforms, then the entire stream must be split into two or more
* sub-streams with separate configuration records in which these rules can
* be met.
*
* Note: set the profile to the highest value for the sake of simplicity.
*/
hvcc->general_profile_idc = FFMAX(hvcc->general_profile_idc, ptl->profile_idc);
/*
* Each bit in general_profile_compatibility_flags may only be set if all
* the parameter sets set that bit.
*/
hvcc->general_profile_compatibility_flags &= ptl->profile_compatibility_flags;
/*
* Each bit in general_constraint_indicator_flags may only be set if all
* the parameter sets set that bit.
*/
hvcc->general_constraint_indicator_flags &= ptl->constraint_indicator_flags;
}
static void hvcc_parse_ptl(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc,
unsigned int max_sub_layers_minus1)
{
unsigned int i;
HVCCProfileTierLevel general_ptl;
uint8_t sub_layer_profile_present_flag[MAX_SUB_LAYERS];
uint8_t sub_layer_level_present_flag[MAX_SUB_LAYERS];
general_ptl.profile_space = get_bits(gb, 2);
general_ptl.tier_flag = get_bits1(gb);
general_ptl.profile_idc = get_bits(gb, 5);
general_ptl.profile_compatibility_flags = get_bits_long(gb, 32);
general_ptl.constraint_indicator_flags = get_bits64(gb, 48);
general_ptl.level_idc = get_bits(gb, 8);
hvcc_update_ptl(hvcc, &general_ptl);
for (i = 0; i < max_sub_layers_minus1; i++) {
sub_layer_profile_present_flag[i] = get_bits1(gb);
sub_layer_level_present_flag[i] = get_bits1(gb);
}
if (max_sub_layers_minus1 > 0)
for (i = max_sub_layers_minus1; i < 8; i++)
skip_bits(gb, 2); // reserved_zero_2bits[i]
for (i = 0; i < max_sub_layers_minus1; i++) {
if (sub_layer_profile_present_flag[i]) {
/*
* sub_layer_profile_space[i] u(2)
* sub_layer_tier_flag[i] u(1)
* sub_layer_profile_idc[i] u(5)
* sub_layer_profile_compatibility_flag[i][0..31] u(32)
* sub_layer_progressive_source_flag[i] u(1)
* sub_layer_interlaced_source_flag[i] u(1)
* sub_layer_non_packed_constraint_flag[i] u(1)
* sub_layer_frame_only_constraint_flag[i] u(1)
* sub_layer_reserved_zero_44bits[i] u(44)
*/
skip_bits_long(gb, 32);
skip_bits_long(gb, 32);
skip_bits (gb, 24);
}
if (sub_layer_level_present_flag[i])
skip_bits(gb, 8);
}
}
static void skip_sub_layer_hrd_parameters(GetBitContext *gb,
unsigned int cpb_cnt_minus1,
uint8_t sub_pic_hrd_params_present_flag)
{
unsigned int i;
for (i = 0; i <= cpb_cnt_minus1; i++) {
get_ue_golomb_long(gb); // bit_rate_value_minus1
get_ue_golomb_long(gb); // cpb_size_value_minus1
if (sub_pic_hrd_params_present_flag) {
get_ue_golomb_long(gb); // cpb_size_du_value_minus1
get_ue_golomb_long(gb); // bit_rate_du_value_minus1
}
skip_bits1(gb); // cbr_flag
}
}
static void skip_hrd_parameters(GetBitContext *gb, uint8_t cprms_present_flag,
unsigned int max_sub_layers_minus1)
{
unsigned int i;
uint8_t sub_pic_hrd_params_present_flag = 0;
uint8_t nal_hrd_parameters_present_flag = 0;
uint8_t vcl_hrd_parameters_present_flag = 0;
if (cprms_present_flag) {
nal_hrd_parameters_present_flag = get_bits1(gb);
vcl_hrd_parameters_present_flag = get_bits1(gb);
if (nal_hrd_parameters_present_flag ||
vcl_hrd_parameters_present_flag) {
sub_pic_hrd_params_present_flag = get_bits1(gb);
if (sub_pic_hrd_params_present_flag)
/*
* tick_divisor_minus2 u(8)
* du_cpb_removal_delay_increment_length_minus1 u(5)
* sub_pic_cpb_params_in_pic_timing_sei_flag u(1)
* dpb_output_delay_du_length_minus1 u(5)
*/
skip_bits(gb, 19);
/*
* bit_rate_scale u(4)
* cpb_size_scale u(4)
*/
skip_bits(gb, 8);
if (sub_pic_hrd_params_present_flag)
skip_bits(gb, 4); // cpb_size_du_scale
/*
* initial_cpb_removal_delay_length_minus1 u(5)
* au_cpb_removal_delay_length_minus1 u(5)
* dpb_output_delay_length_minus1 u(5)
*/
skip_bits(gb, 15);
}
}
for (i = 0; i <= max_sub_layers_minus1; i++) {
unsigned int cpb_cnt_minus1 = 0;
uint8_t low_delay_hrd_flag = 0;
uint8_t fixed_pic_rate_within_cvs_flag = 0;
uint8_t fixed_pic_rate_general_flag = get_bits1(gb);
if (!fixed_pic_rate_general_flag)
fixed_pic_rate_within_cvs_flag = get_bits1(gb);
if (fixed_pic_rate_within_cvs_flag)
get_ue_golomb_long(gb); // elemental_duration_in_tc_minus1
else
low_delay_hrd_flag = get_bits1(gb);
if (!low_delay_hrd_flag)
cpb_cnt_minus1 = get_ue_golomb_long(gb);
if (nal_hrd_parameters_present_flag)
skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
sub_pic_hrd_params_present_flag);
if (vcl_hrd_parameters_present_flag)
skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
sub_pic_hrd_params_present_flag);
}
}
static void skip_timing_info(GetBitContext *gb)
{
skip_bits_long(gb, 32); // num_units_in_tick
skip_bits_long(gb, 32); // time_scale
if (get_bits1(gb)) // poc_proportional_to_timing_flag
get_ue_golomb_long(gb); // num_ticks_poc_diff_one_minus1
}
static void hvcc_parse_vui(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc,
unsigned int max_sub_layers_minus1)
{
unsigned int min_spatial_segmentation_idc;
if (get_bits1(gb)) // aspect_ratio_info_present_flag
if (get_bits(gb, 8) == 255) // aspect_ratio_idc
skip_bits_long(gb, 32); // sar_width u(16), sar_height u(16)
if (get_bits1(gb)) // overscan_info_present_flag
skip_bits1(gb); // overscan_appropriate_flag
if (get_bits1(gb)) { // video_signal_type_present_flag
skip_bits(gb, 4); // video_format u(3), video_full_range_flag u(1)
if (get_bits1(gb)) // colour_description_present_flag
/*
* colour_primaries u(8)
* transfer_characteristics u(8)
* matrix_coeffs u(8)
*/
skip_bits(gb, 24);
}
if (get_bits1(gb)) { // chroma_loc_info_present_flag
get_ue_golomb_long(gb); // chroma_sample_loc_type_top_field
get_ue_golomb_long(gb); // chroma_sample_loc_type_bottom_field
}
/*
* neutral_chroma_indication_flag u(1)
* field_seq_flag u(1)
* frame_field_info_present_flag u(1)
*/
skip_bits(gb, 3);
if (get_bits1(gb)) { // default_display_window_flag
get_ue_golomb_long(gb); // def_disp_win_left_offset
get_ue_golomb_long(gb); // def_disp_win_right_offset
get_ue_golomb_long(gb); // def_disp_win_top_offset
get_ue_golomb_long(gb); // def_disp_win_bottom_offset
}
if (get_bits1(gb)) { // vui_timing_info_present_flag
skip_timing_info(gb);
if (get_bits1(gb)) // vui_hrd_parameters_present_flag
skip_hrd_parameters(gb, 1, max_sub_layers_minus1);
}
if (get_bits1(gb)) { // bitstream_restriction_flag
/*
* tiles_fixed_structure_flag u(1)
* motion_vectors_over_pic_boundaries_flag u(1)
* restricted_ref_pic_lists_flag u(1)
*/
skip_bits(gb, 3);
min_spatial_segmentation_idc = get_ue_golomb_long(gb);
/*
* unsigned int(12) min_spatial_segmentation_idc;
*
* The min_spatial_segmentation_idc indication must indicate a level of
* spatial segmentation equal to or less than the lowest level of
* spatial segmentation indicated in all the parameter sets.
*/
hvcc->min_spatial_segmentation_idc = FFMIN(hvcc->min_spatial_segmentation_idc,
min_spatial_segmentation_idc);
get_ue_golomb_long(gb); // max_bytes_per_pic_denom
get_ue_golomb_long(gb); // max_bits_per_min_cu_denom
get_ue_golomb_long(gb); // log2_max_mv_length_horizontal
get_ue_golomb_long(gb); // log2_max_mv_length_vertical
}
}
static void skip_sub_layer_ordering_info(GetBitContext *gb)
{
get_ue_golomb_long(gb); // max_dec_pic_buffering_minus1
get_ue_golomb_long(gb); // max_num_reorder_pics
get_ue_golomb_long(gb); // max_latency_increase_plus1
}
static int hvcc_parse_vps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
unsigned int vps_max_sub_layers_minus1;
/*
* vps_video_parameter_set_id u(4)
* vps_reserved_three_2bits u(2)
* vps_max_layers_minus1 u(6)
*/
skip_bits(gb, 12);
vps_max_sub_layers_minus1 = get_bits(gb, 3);
/*
* numTemporalLayers greater than 1 indicates that the stream to which this
* configuration record applies is temporally scalable and the contained
* number of temporal layers (also referred to as temporal sub-layer or
* sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
* indicates that the stream is not temporally scalable. Value 0 indicates
* that it is unknown whether the stream is temporally scalable.
*/
hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
vps_max_sub_layers_minus1 + 1);
/*
* vps_temporal_id_nesting_flag u(1)
* vps_reserved_0xffff_16bits u(16)
*/
skip_bits(gb, 17);
hvcc_parse_ptl(gb, hvcc, vps_max_sub_layers_minus1);
/* nothing useful for hvcC past this point */
return 0;
}
static void skip_scaling_list_data(GetBitContext *gb)
{
int i, j, k, num_coeffs;
for (i = 0; i < 4; i++)
for (j = 0; j < (i == 3 ? 2 : 6); j++)
if (!get_bits1(gb)) // scaling_list_pred_mode_flag[i][j]
get_ue_golomb_long(gb); // scaling_list_pred_matrix_id_delta[i][j]
else {
num_coeffs = FFMIN(64, 1 << (4 + (i << 1)));
if (i > 1)
get_se_golomb_long(gb); // scaling_list_dc_coef_minus8[i-2][j]
2014-03-03 17:53:41 +03:00
for (k = 0; k < num_coeffs; k++)
get_se_golomb_long(gb); // scaling_list_delta_coef
2014-03-03 17:53:41 +03:00
}
}
static int parse_rps(GetBitContext *gb, unsigned int rps_idx,
unsigned int num_rps,
unsigned int num_delta_pocs[MAX_SHORT_TERM_RPS_COUNT])
{
unsigned int i;
if (rps_idx && get_bits1(gb)) { // inter_ref_pic_set_prediction_flag
/* this should only happen for slice headers, and this isn't one */
if (rps_idx >= num_rps)
return AVERROR_INVALIDDATA;
skip_bits1 (gb); // delta_rps_sign
get_ue_golomb_long(gb); // abs_delta_rps_minus1
num_delta_pocs[rps_idx] = 0;
/*
* From libavcodec/hevc_ps.c:
*
* if (is_slice_header) {
* //foo
* } else
* rps_ridx = &sps->st_rps[rps - sps->st_rps - 1];
*
* where:
* rps: &sps->st_rps[rps_idx]
* sps->st_rps: &sps->st_rps[0]
* is_slice_header: rps_idx == num_rps
*
* thus:
* if (num_rps != rps_idx)
* rps_ridx = &sps->st_rps[rps_idx - 1];
*
* NumDeltaPocs[RefRpsIdx]: num_delta_pocs[rps_idx - 1]
*/
for (i = 0; i < num_delta_pocs[rps_idx - 1]; i++) {
uint8_t use_delta_flag = 0;
uint8_t used_by_curr_pic_flag = get_bits1(gb);
if (!used_by_curr_pic_flag)
use_delta_flag = get_bits1(gb);
if (used_by_curr_pic_flag || use_delta_flag)
num_delta_pocs[rps_idx]++;
}
} else {
unsigned int num_negative_pics = get_ue_golomb_long(gb);
unsigned int num_positive_pics = get_ue_golomb_long(gb);
num_delta_pocs[rps_idx] = num_negative_pics + num_positive_pics;
for (i = 0; i < num_negative_pics; i++) {
get_ue_golomb_long(gb); // delta_poc_s0_minus1[rps_idx]
skip_bits1 (gb); // used_by_curr_pic_s0_flag[rps_idx]
}
for (i = 0; i < num_positive_pics; i++) {
get_ue_golomb_long(gb); // delta_poc_s1_minus1[rps_idx]
skip_bits1 (gb); // used_by_curr_pic_s1_flag[rps_idx]
}
}
return 0;
}
static int hvcc_parse_sps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
unsigned int i, sps_max_sub_layers_minus1, log2_max_pic_order_cnt_lsb_minus4;
unsigned int num_short_term_ref_pic_sets, num_delta_pocs[MAX_SHORT_TERM_RPS_COUNT];
skip_bits(gb, 4); // sps_video_parameter_set_id
sps_max_sub_layers_minus1 = get_bits (gb, 3);
/*
* numTemporalLayers greater than 1 indicates that the stream to which this
* configuration record applies is temporally scalable and the contained
* number of temporal layers (also referred to as temporal sub-layer or
* sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
* indicates that the stream is not temporally scalable. Value 0 indicates
* that it is unknown whether the stream is temporally scalable.
*/
hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
sps_max_sub_layers_minus1 + 1);
hvcc->temporalIdNested = get_bits1(gb);
hvcc_parse_ptl(gb, hvcc, sps_max_sub_layers_minus1);
get_ue_golomb_long(gb); // sps_seq_parameter_set_id
hvcc->chromaFormat = get_ue_golomb_long(gb);
if (hvcc->chromaFormat == 3)
skip_bits1(gb); // separate_colour_plane_flag
get_ue_golomb_long(gb); // pic_width_in_luma_samples
get_ue_golomb_long(gb); // pic_height_in_luma_samples
if (get_bits1(gb)) { // conformance_window_flag
get_ue_golomb_long(gb); // conf_win_left_offset
get_ue_golomb_long(gb); // conf_win_right_offset
get_ue_golomb_long(gb); // conf_win_top_offset
get_ue_golomb_long(gb); // conf_win_bottom_offset
}
hvcc->bitDepthLumaMinus8 = get_ue_golomb_long(gb);
hvcc->bitDepthChromaMinus8 = get_ue_golomb_long(gb);
log2_max_pic_order_cnt_lsb_minus4 = get_ue_golomb_long(gb);
/* sps_sub_layer_ordering_info_present_flag */
i = get_bits1(gb) ? 0 : sps_max_sub_layers_minus1;
for (; i <= sps_max_sub_layers_minus1; i++)
skip_sub_layer_ordering_info(gb);
get_ue_golomb_long(gb); // log2_min_luma_coding_block_size_minus3
get_ue_golomb_long(gb); // log2_diff_max_min_luma_coding_block_size
get_ue_golomb_long(gb); // log2_min_transform_block_size_minus2
get_ue_golomb_long(gb); // log2_diff_max_min_transform_block_size
get_ue_golomb_long(gb); // max_transform_hierarchy_depth_inter
get_ue_golomb_long(gb); // max_transform_hierarchy_depth_intra
if (get_bits1(gb) && // scaling_list_enabled_flag
get_bits1(gb)) // sps_scaling_list_data_present_flag
skip_scaling_list_data(gb);
skip_bits1(gb); // amp_enabled_flag
skip_bits1(gb); // sample_adaptive_offset_enabled_flag
if (get_bits1(gb)) { // pcm_enabled_flag
skip_bits (gb, 4); // pcm_sample_bit_depth_luma_minus1
skip_bits (gb, 4); // pcm_sample_bit_depth_chroma_minus1
get_ue_golomb_long(gb); // log2_min_pcm_luma_coding_block_size_minus3
get_ue_golomb_long(gb); // log2_diff_max_min_pcm_luma_coding_block_size
skip_bits1 (gb); // pcm_loop_filter_disabled_flag
}
num_short_term_ref_pic_sets = get_ue_golomb_long(gb);
if (num_short_term_ref_pic_sets > MAX_SHORT_TERM_RPS_COUNT)
return AVERROR_INVALIDDATA;
for (i = 0; i < num_short_term_ref_pic_sets; i++) {
int ret = parse_rps(gb, i, num_short_term_ref_pic_sets, num_delta_pocs);
if (ret < 0)
return ret;
}
if (get_bits1(gb)) { // long_term_ref_pics_present_flag
for (i = 0; i < get_ue_golomb_long(gb); i++) { // num_long_term_ref_pics_sps
int len = FFMIN(log2_max_pic_order_cnt_lsb_minus4 + 4, 16);
skip_bits (gb, len); // lt_ref_pic_poc_lsb_sps[i]
skip_bits1(gb); // used_by_curr_pic_lt_sps_flag[i]
}
}
skip_bits1(gb); // sps_temporal_mvp_enabled_flag
skip_bits1(gb); // strong_intra_smoothing_enabled_flag
if (get_bits1(gb)) // vui_parameters_present_flag
hvcc_parse_vui(gb, hvcc, sps_max_sub_layers_minus1);
/* nothing useful for hvcC past this point */
return 0;
}
static int hvcc_parse_pps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t tiles_enabled_flag, entropy_coding_sync_enabled_flag;
get_ue_golomb_long(gb); // pps_pic_parameter_set_id
get_ue_golomb_long(gb); // pps_seq_parameter_set_id
/*
* dependent_slice_segments_enabled_flag u(1)
* output_flag_present_flag u(1)
* num_extra_slice_header_bits u(3)
* sign_data_hiding_enabled_flag u(1)
* cabac_init_present_flag u(1)
*/
skip_bits(gb, 7);
get_ue_golomb_long(gb); // num_ref_idx_l0_default_active_minus1
get_ue_golomb_long(gb); // num_ref_idx_l1_default_active_minus1
get_se_golomb_long(gb); // init_qp_minus26
2014-03-03 17:53:41 +03:00
/*
* constrained_intra_pred_flag u(1)
* transform_skip_enabled_flag u(1)
*/
skip_bits(gb, 2);
if (get_bits1(gb)) // cu_qp_delta_enabled_flag
get_ue_golomb_long(gb); // diff_cu_qp_delta_depth
get_se_golomb_long(gb); // pps_cb_qp_offset
get_se_golomb_long(gb); // pps_cr_qp_offset
2014-03-03 17:53:41 +03:00
/*
* weighted_pred_flag u(1)
* weighted_bipred_flag u(1)
* transquant_bypass_enabled_flag u(1)
*/
skip_bits(gb, 3);
tiles_enabled_flag = get_bits1(gb);
entropy_coding_sync_enabled_flag = get_bits1(gb);
if (entropy_coding_sync_enabled_flag && tiles_enabled_flag)
hvcc->parallelismType = 0; // mixed-type parallel decoding
else if (entropy_coding_sync_enabled_flag)
hvcc->parallelismType = 3; // wavefront-based parallel decoding
else if (tiles_enabled_flag)
hvcc->parallelismType = 2; // tile-based parallel decoding
else
hvcc->parallelismType = 1; // slice-based parallel decoding
/* nothing useful for hvcC past this point */
return 0;
}
static uint8_t *nal_unit_extract_rbsp(const uint8_t *src, uint32_t src_len,
uint32_t *dst_len)
{
uint8_t *dst;
uint32_t i, len;
dst = av_malloc(src_len);
if (!dst)
return NULL;
/* NAL unit header (2 bytes) */
i = len = 0;
while (i < 2 && i < src_len)
dst[len++] = src[i++];
while (i + 2 < src_len)
if (!src[i] && !src[i + 1] && src[i + 2] == 3) {
dst[len++] = src[i++];
dst[len++] = src[i++];
i++; // remove emulation_prevention_three_byte
} else
dst[len++] = src[i++];
while (i < src_len)
dst[len++] = src[i++];
*dst_len = len;
return dst;
}
static void nal_unit_parse_header(GetBitContext *gb, uint8_t *nal_type)
{
skip_bits1(gb); // forbidden_zero_bit
*nal_type = get_bits(gb, 6);
/*
* nuh_layer_id u(6)
* nuh_temporal_id_plus1 u(3)
*/
skip_bits(gb, 9);
}
static int hvcc_array_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
uint8_t nal_type, int ps_array_completeness,
HEVCDecoderConfigurationRecord *hvcc)
{
int ret;
uint8_t index;
uint16_t numNalus;
HVCCNALUnitArray *array;
for (index = 0; index < hvcc->numOfArrays; index++)
if (hvcc->array[index].NAL_unit_type == nal_type)
break;
if (index >= hvcc->numOfArrays) {
uint8_t i;
ret = av_reallocp_array(&hvcc->array, index + 1, sizeof(HVCCNALUnitArray));
if (ret < 0)
return ret;
for (i = hvcc->numOfArrays; i <= index; i++)
memset(&hvcc->array[i], 0, sizeof(HVCCNALUnitArray));
hvcc->numOfArrays = index + 1;
}
array = &hvcc->array[index];
numNalus = array->numNalus;
ret = av_reallocp_array(&array->nalUnit, numNalus + 1, sizeof(uint8_t*));
if (ret < 0)
return ret;
ret = av_reallocp_array(&array->nalUnitLength, numNalus + 1, sizeof(uint16_t));
if (ret < 0)
return ret;
array->nalUnit [numNalus] = nal_buf;
array->nalUnitLength[numNalus] = nal_size;
array->NAL_unit_type = nal_type;
array->numNalus++;
/*
* When the sample entry name is hvc1, the default and mandatory value of
* array_completeness is 1 for arrays of all types of parameter sets, and 0
* for all other arrays. When the sample entry name is hev1, the default
* value of array_completeness is 0 for all arrays.
*/
if (nal_type == NAL_VPS || nal_type == NAL_SPS || nal_type == NAL_PPS)
array->array_completeness = ps_array_completeness;
return 0;
}
static int hvcc_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
int ps_array_completeness,
HEVCDecoderConfigurationRecord *hvcc)
{
int ret = 0;
GetBitContext gbc;
uint8_t nal_type;
uint8_t *rbsp_buf;
uint32_t rbsp_size;
rbsp_buf = nal_unit_extract_rbsp(nal_buf, nal_size, &rbsp_size);
if (!rbsp_buf) {
ret = AVERROR(ENOMEM);
goto end;
}
ret = init_get_bits8(&gbc, rbsp_buf, rbsp_size);
if (ret < 0)
goto end;
nal_unit_parse_header(&gbc, &nal_type);
/*
* Note: only 'declarative' SEI messages are allowed in
* hvcC. Perhaps the SEI playload type should be checked
* and non-declarative SEI messages discarded?
*/
switch (nal_type) {
case NAL_VPS:
case NAL_SPS:
case NAL_PPS:
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ret = hvcc_array_add_nal_unit(nal_buf, nal_size, nal_type,
ps_array_completeness, hvcc);
if (ret < 0)
goto end;
else if (nal_type == NAL_VPS)
ret = hvcc_parse_vps(&gbc, hvcc);
else if (nal_type == NAL_SPS)
ret = hvcc_parse_sps(&gbc, hvcc);
else if (nal_type == NAL_PPS)
ret = hvcc_parse_pps(&gbc, hvcc);
if (ret < 0)
goto end;
break;
default:
ret = AVERROR_INVALIDDATA;
goto end;
}
end:
av_free(rbsp_buf);
return ret;
}
static void hvcc_init(HEVCDecoderConfigurationRecord *hvcc)
{
memset(hvcc, 0, sizeof(HEVCDecoderConfigurationRecord));
hvcc->configurationVersion = 1;
hvcc->lengthSizeMinusOne = 3; // 4 bytes
/*
* The following fields have all their valid bits set by default,
* the ProfileTierLevel parsing code will unset them when needed.
*/
hvcc->general_profile_compatibility_flags = 0xffffffff;
hvcc->general_constraint_indicator_flags = 0xffffffffffff;
/*
* Initialize this field with an invalid value which can be used to detect
* whether we didn't see any VUI (in wich case it should be reset to zero).
*/
hvcc->min_spatial_segmentation_idc = MAX_SPATIAL_SEGMENTATION + 1;
}
static void hvcc_close(HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t i;
for (i = 0; i < hvcc->numOfArrays; i++) {
hvcc->array[i].numNalus = 0;
av_freep(&hvcc->array[i].nalUnit);
av_freep(&hvcc->array[i].nalUnitLength);
}
hvcc->numOfArrays = 0;
av_freep(&hvcc->array);
}
static int hvcc_write(AVIOContext *pb, HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t i;
uint16_t j, vps_count = 0, sps_count = 0, pps_count = 0;
/*
* We only support writing HEVCDecoderConfigurationRecord version 1.
*/
hvcc->configurationVersion = 1;
/*
* If min_spatial_segmentation_idc is invalid, reset to 0 (unspecified).
*/
if (hvcc->min_spatial_segmentation_idc > MAX_SPATIAL_SEGMENTATION)
hvcc->min_spatial_segmentation_idc = 0;
/*
* parallelismType indicates the type of parallelism that is used to meet
* the restrictions imposed by min_spatial_segmentation_idc when the value
* of min_spatial_segmentation_idc is greater than 0.
*/
if (!hvcc->min_spatial_segmentation_idc)
hvcc->parallelismType = 0;
/*
* It's unclear how to properly compute these fields, so
* let's always set them to values meaning 'unspecified'.
*/
hvcc->avgFrameRate = 0;
hvcc->constantFrameRate = 0;
av_dlog(NULL, "configurationVersion: %"PRIu8"\n",
hvcc->configurationVersion);
av_dlog(NULL, "general_profile_space: %"PRIu8"\n",
hvcc->general_profile_space);
av_dlog(NULL, "general_tier_flag: %"PRIu8"\n",
hvcc->general_tier_flag);
av_dlog(NULL, "general_profile_idc: %"PRIu8"\n",
hvcc->general_profile_idc);
av_dlog(NULL, "general_profile_compatibility_flags: 0x%08"PRIx32"\n",
hvcc->general_profile_compatibility_flags);
av_dlog(NULL, "general_constraint_indicator_flags: 0x%012"PRIx64"\n",
hvcc->general_constraint_indicator_flags);
av_dlog(NULL, "general_level_idc: %"PRIu8"\n",
hvcc->general_level_idc);
av_dlog(NULL, "min_spatial_segmentation_idc: %"PRIu16"\n",
hvcc->min_spatial_segmentation_idc);
av_dlog(NULL, "parallelismType: %"PRIu8"\n",
hvcc->parallelismType);
av_dlog(NULL, "chromaFormat: %"PRIu8"\n",
hvcc->chromaFormat);
av_dlog(NULL, "bitDepthLumaMinus8: %"PRIu8"\n",
hvcc->bitDepthLumaMinus8);
av_dlog(NULL, "bitDepthChromaMinus8: %"PRIu8"\n",
hvcc->bitDepthChromaMinus8);
av_dlog(NULL, "avgFrameRate: %"PRIu16"\n",
hvcc->avgFrameRate);
av_dlog(NULL, "constantFrameRate: %"PRIu8"\n",
hvcc->constantFrameRate);
av_dlog(NULL, "numTemporalLayers: %"PRIu8"\n",
hvcc->numTemporalLayers);
av_dlog(NULL, "temporalIdNested: %"PRIu8"\n",
hvcc->temporalIdNested);
av_dlog(NULL, "lengthSizeMinusOne: %"PRIu8"\n",
hvcc->lengthSizeMinusOne);
av_dlog(NULL, "numOfArrays: %"PRIu8"\n",
hvcc->numOfArrays);
for (i = 0; i < hvcc->numOfArrays; i++) {
av_dlog(NULL, "array_completeness[%"PRIu8"]: %"PRIu8"\n",
i, hvcc->array[i].array_completeness);
av_dlog(NULL, "NAL_unit_type[%"PRIu8"]: %"PRIu8"\n",
i, hvcc->array[i].NAL_unit_type);
av_dlog(NULL, "numNalus[%"PRIu8"]: %"PRIu16"\n",
i, hvcc->array[i].numNalus);
for (j = 0; j < hvcc->array[i].numNalus; j++)
av_dlog(NULL,
"nalUnitLength[%"PRIu8"][%"PRIu16"]: %"PRIu16"\n",
i, j, hvcc->array[i].nalUnitLength[j]);
}
/*
* We need at least one of each: VPS, SPS and PPS.
*/
for (i = 0; i < hvcc->numOfArrays; i++)
switch (hvcc->array[i].NAL_unit_type) {
case NAL_VPS:
vps_count += hvcc->array[i].numNalus;
break;
case NAL_SPS:
sps_count += hvcc->array[i].numNalus;
break;
case NAL_PPS:
pps_count += hvcc->array[i].numNalus;
break;
default:
break;
}
if (!vps_count || vps_count > MAX_VPS_COUNT ||
!sps_count || sps_count > MAX_SPS_COUNT ||
!pps_count || pps_count > MAX_PPS_COUNT)
return AVERROR_INVALIDDATA;
/* unsigned int(8) configurationVersion = 1; */
avio_w8(pb, hvcc->configurationVersion);
/*
* unsigned int(2) general_profile_space;
* unsigned int(1) general_tier_flag;
* unsigned int(5) general_profile_idc;
*/
avio_w8(pb, hvcc->general_profile_space << 6 |
hvcc->general_tier_flag << 5 |
hvcc->general_profile_idc);
/* unsigned int(32) general_profile_compatibility_flags; */
avio_wb32(pb, hvcc->general_profile_compatibility_flags);
/* unsigned int(48) general_constraint_indicator_flags; */
avio_wb32(pb, hvcc->general_constraint_indicator_flags >> 16);
avio_wb16(pb, hvcc->general_constraint_indicator_flags);
/* unsigned int(8) general_level_idc; */
avio_w8(pb, hvcc->general_level_idc);
/*
* bit(4) reserved = 1111b;
* unsigned int(12) min_spatial_segmentation_idc;
*/
avio_wb16(pb, hvcc->min_spatial_segmentation_idc | 0xf000);
/*
* bit(6) reserved = 111111b;
* unsigned int(2) parallelismType;
*/
avio_w8(pb, hvcc->parallelismType | 0xfc);
/*
* bit(6) reserved = 111111b;
* unsigned int(2) chromaFormat;
*/
avio_w8(pb, hvcc->chromaFormat | 0xfc);
/*
* bit(5) reserved = 11111b;
* unsigned int(3) bitDepthLumaMinus8;
*/
avio_w8(pb, hvcc->bitDepthLumaMinus8 | 0xf8);
/*
* bit(5) reserved = 11111b;
* unsigned int(3) bitDepthChromaMinus8;
*/
avio_w8(pb, hvcc->bitDepthChromaMinus8 | 0xf8);
/* bit(16) avgFrameRate; */
avio_wb16(pb, hvcc->avgFrameRate);
/*
* bit(2) constantFrameRate;
* bit(3) numTemporalLayers;
* bit(1) temporalIdNested;
* unsigned int(2) lengthSizeMinusOne;
*/
avio_w8(pb, hvcc->constantFrameRate << 6 |
hvcc->numTemporalLayers << 3 |
hvcc->temporalIdNested << 2 |
hvcc->lengthSizeMinusOne);
/* unsigned int(8) numOfArrays; */
avio_w8(pb, hvcc->numOfArrays);
for (i = 0; i < hvcc->numOfArrays; i++) {
/*
* bit(1) array_completeness;
* unsigned int(1) reserved = 0;
* unsigned int(6) NAL_unit_type;
*/
avio_w8(pb, hvcc->array[i].array_completeness << 7 |
hvcc->array[i].NAL_unit_type & 0x3f);
/* unsigned int(16) numNalus; */
avio_wb16(pb, hvcc->array[i].numNalus);
for (j = 0; j < hvcc->array[i].numNalus; j++) {
/* unsigned int(16) nalUnitLength; */
avio_wb16(pb, hvcc->array[i].nalUnitLength[j]);
/* bit(8*nalUnitLength) nalUnit; */
avio_write(pb, hvcc->array[i].nalUnit[j],
hvcc->array[i].nalUnitLength[j]);
}
}
return 0;
}
int ff_hevc_annexb2mp4(AVIOContext *pb, const uint8_t *buf_in,
int size, int filter_ps, int *ps_count)
{
int num_ps = 0, ret = 0;
uint8_t *buf, *end, *start = NULL;
if (!filter_ps) {
ret = ff_avc_parse_nal_units(pb, buf_in, size);
goto end;
}
ret = ff_avc_parse_nal_units_buf(buf_in, &start, &size);
if (ret < 0)
goto end;
ret = 0;
buf = start;
end = start + size;
while (end - buf > 4) {
uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
uint8_t type = (buf[4] >> 1) & 0x3f;
buf += 4;
switch (type) {
case NAL_VPS:
case NAL_SPS:
case NAL_PPS:
num_ps++;
break;
default:
ret += 4 + len;
avio_wb32(pb, len);
avio_write(pb, buf, len);
break;
}
buf += len;
}
end:
free(start);
if (ps_count)
*ps_count = num_ps;
return ret;
}
int ff_hevc_annexb2mp4_buf(const uint8_t *buf_in, uint8_t **buf_out,
int *size, int filter_ps, int *ps_count)
{
AVIOContext *pb;
int num_ps = 0, ret = 0;
uint8_t *buf, *end, *start = NULL;
if (!filter_ps) {
ret = ff_avc_parse_nal_units_buf(buf_in, buf_out, size);
goto end;
}
ret = avio_open_dyn_buf(&pb);
if (ret < 0)
goto end;
ret = ff_avc_parse_nal_units_buf(buf_in, &start, size);
if (ret < 0)
goto end;
buf = start;
end = start + *size;
while (end - buf > 4) {
uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
uint8_t type = (buf[4] >> 1) & 0x3f;
buf += 4;
switch (type) {
case NAL_VPS:
case NAL_SPS:
case NAL_PPS:
num_ps++;
break;
default:
avio_wb32(pb, len);
avio_write(pb, buf, len);
break;
}
buf += len;
}
*size = avio_close_dyn_buf(pb, buf_out);
end:
free(start);
if (ps_count)
*ps_count = num_ps;
return ret;
}
2014-03-03 17:53:41 +03:00
int ff_isom_write_hvcc(AVIOContext *pb, const uint8_t *data,
int size, int ps_array_completeness)
{
int ret = 0;
uint8_t *buf, *end, *start = NULL;
HEVCDecoderConfigurationRecord hvcc;
hvcc_init(&hvcc);
if (size < 6) {
/* We can't write a valid hvcC from the provided data */
ret = AVERROR_INVALIDDATA;
goto end;
} else if (*data == 1) {
/* Data is already hvcC-formatted */
avio_write(pb, data, size);
goto end;
} else if (!(AV_RB24(data) == 1 || AV_RB32(data) == 1)) {
/* Not a valid Annex B start code prefix */
ret = AVERROR_INVALIDDATA;
goto end;
}
ret = ff_avc_parse_nal_units_buf(data, &start, &size);
if (ret < 0)
goto end;
buf = start;
end = start + size;
while (end - buf > 4) {
uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
uint8_t type = (buf[4] >> 1) & 0x3f;
buf += 4;
switch (type) {
case NAL_VPS:
case NAL_SPS:
case NAL_PPS:
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ret = hvcc_add_nal_unit(buf, len, ps_array_completeness, &hvcc);
if (ret < 0)
goto end;
break;
default:
break;
}
buf += len;
}
ret = hvcc_write(pb, &hvcc);
end:
hvcc_close(&hvcc);
av_free(start);
return ret;
}