1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/aaccoder.c

1037 lines
40 KiB
C
Raw Normal View History

/*
* AAC coefficients encoder
* Copyright (C) 2008-2009 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/aaccoder.c
* AAC coefficients encoder
*/
/***********************************
* TODOs:
* speedup quantizer selection
* add sane pulse detection
***********************************/
#include "avcodec.h"
#include "put_bits.h"
#include "aac.h"
#include "aacenc.h"
#include "aactab.h"
/** bits needed to code codebook run value for long windows */
static const uint8_t run_value_bits_long[64] = {
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
};
/** bits needed to code codebook run value for short windows */
static const uint8_t run_value_bits_short[16] = {
3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
};
static const uint8_t *run_value_bits[2] = {
run_value_bits_long, run_value_bits_short
};
/**
* Quantize one coefficient.
* @return absolute value of the quantized coefficient
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
*/
static av_always_inline int quant(float coef, const float Q)
{
float a = coef * Q;
return sqrtf(a * sqrtf(a)) + 0.4054;
}
static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
int size, float Q34, int is_signed, int maxval)
{
int i;
double qc;
for (i = 0; i < size; i++) {
qc = scaled[i] * Q34;
out[i][0] = (int)FFMIN(qc, (double)maxval);
out[i][1] = (int)FFMIN(qc + 0.4054, (double)maxval);
if (is_signed && in[i] < 0.0f) {
out[i][0] = -out[i][0];
out[i][1] = -out[i][1];
}
}
}
static void abs_pow34_v(float *out, const float *in, const int size)
{
#ifndef USE_REALLY_FULL_SEARCH
int i;
for (i = 0; i < size; i++) {
float a = fabsf(in[i]);
out[i] = sqrtf(a * sqrtf(a));
}
#endif /* USE_REALLY_FULL_SEARCH */
}
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
/**
* Calculate rate distortion cost for quantizing with given codebook
*
* @return quantization distortion
*/
static float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits)
{
const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f*IQ;
int i, j, k;
float cost = 0;
const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
int resbits = 0;
#ifndef USE_REALLY_FULL_SEARCH
const float Q34 = sqrtf(Q * sqrtf(Q));
const int range = aac_cb_range[cb];
const int maxval = aac_cb_maxval[cb];
int offs[4];
#endif /* USE_REALLY_FULL_SEARCH */
if (!cb) {
for (i = 0; i < size; i++)
cost += in[i]*in[i]*lambda;
if (bits)
*bits = 0;
return cost;
}
#ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1;
for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range;
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */
for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minbits = 0;
const float *vec;
#ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f;
for (j = 0; j < dim; j++)
mincost += in[i+j]*in[i+j]*lambda;
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits;
for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
for (k = 0; k < dim; k++) {
if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
break;
}
}
if (same)
continue;
for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
mincost = INFINITY;
vec = ff_aac_codebook_vectors[cb-1];
for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j];
#endif /* USE_REALLY_FULL_SEARCH */
if (IS_CODEBOOK_UNSIGNED(cb)) {
for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]);
float di;
//do not code with escape sequence small values
if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY;
break;
}
if (vec[k] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
} else {
int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
} else {
di = t - vec[k]*IQ;
}
if (vec[k] != 0.0f)
curbits++;
rd += di*di*lambda;
}
} else {
for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda;
}
}
rd += curbits;
if (rd < mincost) {
mincost = rd;
minidx = j;
minbits = curbits;
}
}
cost += mincost;
resbits += minbits;
if (cost >= uplim)
return uplim;
}
if (bits)
*bits = resbits;
return cost;
}
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
const float *in, int size, int scale_idx,
int cb, const float lambda)
{
const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f*IQ;
const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
int i, j, k;
#ifndef USE_REALLY_FULL_SEARCH
const float Q34 = sqrtf(Q * sqrtf(Q));
const int range = aac_cb_range[cb];
const int maxval = aac_cb_maxval[cb];
int offs[4];
float *scaled = s->scoefs;
#endif /* USE_REALLY_FULL_SEARCH */
//START_TIMER
if (!cb)
return;
#ifndef USE_REALLY_FULL_SEARCH
offs[0] = 1;
for (i = 1; i < dim; i++)
offs[i] = offs[i-1]*range;
abs_pow34_v(scaled, in, size);
quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
#endif /* USE_REALLY_FULL_SEARCH */
for (i = 0; i < size; i += dim) {
float mincost;
int minidx = 0;
int minbits = 0;
const float *vec;
#ifndef USE_REALLY_FULL_SEARCH
int (*quants)[2] = &s->qcoefs[i];
mincost = 0.0f;
for (j = 0; j < dim; j++)
mincost += in[i+j]*in[i+j]*lambda;
minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
minbits = ff_aac_spectral_bits[cb-1][minidx];
mincost += minbits;
for (j = 0; j < (1<<dim); j++) {
float rd = 0.0f;
int curbits;
int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
int same = 0;
for (k = 0; k < dim; k++) {
if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
same = 1;
break;
}
}
if (same)
continue;
for (k = 0; k < dim; k++)
curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
#else
vec = ff_aac_codebook_vectors[cb-1];
mincost = INFINITY;
for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
float rd = 0.0f;
int curbits = ff_aac_spectral_bits[cb-1][j];
int curidx = j;
#endif /* USE_REALLY_FULL_SEARCH */
if (IS_CODEBOOK_UNSIGNED(cb)) {
for (k = 0; k < dim; k++) {
float t = fabsf(in[i+k]);
float di;
//do not code with escape sequence small values
if (vec[k] == 64.0f && t < 39.0f*IQ) {
rd = INFINITY;
break;
}
if (vec[k] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
di = t - CLIPPED_ESCAPE;
curbits += 21;
} else {
int c = av_clip(quant(t, Q), 0, 8191);
di = t - c*cbrt(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
} else {
di = t - vec[k]*IQ;
}
if (vec[k] != 0.0f)
curbits++;
rd += di*di*lambda;
}
} else {
for (k = 0; k < dim; k++) {
float di = in[i+k] - vec[k]*IQ;
rd += di*di*lambda;
}
}
rd += curbits;
if (rd < mincost) {
mincost = rd;
minidx = curidx;
minbits = curbits;
}
}
put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
if (IS_CODEBOOK_UNSIGNED(cb))
for (j = 0; j < dim; j++)
if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f);
if (cb == ESC_BT) {
for (j = 0; j < 2; j++) {
if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
int len = av_log2(coef);
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
put_bits(pb, len, coef & ((1 << len) - 1));
}
}
}
}
//STOP_TIMER("quantize_and_encode")
}
/**
* structure used in optimal codebook search
*/
typedef struct BandCodingPath {
int prev_idx; ///< pointer to the previous path point
float cost; ///< path cost
int run;
} BandCodingPath;
/**
* Encode band info for single window group bands.
*/
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
int win, int group_len, const float lambda)
{
BandCodingPath path[120][12];
int w, swb, cb, start, start2, size;
int i, j;
const int max_sfb = sce->ics.max_sfb;
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
const int run_esc = (1 << run_bits) - 1;
int idx, ppos, count;
int stackrun[120], stackcb[120], stack_len;
float next_minrd = INFINITY;
int next_mincb = 0;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128;
for (cb = 0; cb < 12; cb++) {
path[0][cb].cost = 0.0f;
path[0][cb].prev_idx = -1;
path[0][cb].run = 0;
}
for (swb = 0; swb < max_sfb; swb++) {
start2 = start;
size = sce->ics.swb_sizes[swb];
if (sce->zeroes[win*16 + swb]) {
for (cb = 0; cb < 12; cb++) {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
} else {
float minrd = next_minrd;
int mincb = next_mincb;
next_minrd = INFINITY;
next_mincb = 0;
for (cb = 0; cb < 12; cb++) {
float cost_stay_here, cost_get_here;
float rd = 0.0f;
for (w = 0; w < group_len; w++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
rd += quantize_band_cost(s, sce->coeffs + start + w*128,
s->scoefs + start + w*128, size,
sce->sf_idx[(win+w)*16+swb], cb,
lambda / band->threshold, INFINITY, NULL);
}
cost_stay_here = path[swb][cb].cost + rd;
cost_get_here = minrd + rd + run_bits + 4;
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
path[swb+1][cb].prev_idx = mincb;
path[swb+1][cb].cost = cost_get_here;
path[swb+1][cb].run = 1;
} else {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = cost_stay_here;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
if (path[swb+1][cb].cost < next_minrd) {
next_minrd = path[swb+1][cb].cost;
next_mincb = cb;
}
}
}
start += sce->ics.swb_sizes[swb];
}
//convert resulting path from backward-linked list
stack_len = 0;
idx = 0;
for (cb = 1; cb < 12; cb++)
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb;
ppos = max_sfb;
while (ppos > 0) {
cb = idx;
stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb;
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
ppos -= path[ppos][cb].run;
stack_len++;
}
//perform actual band info encoding
start = 0;
for (i = stack_len - 1; i >= 0; i--) {
put_bits(&s->pb, 4, stackcb[i]);
count = stackrun[i];
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
//XXX: memset when band_type is also uint8_t
for (j = 0; j < count; j++) {
sce->band_type[win*16 + start] = stackcb[i];
start++;
}
while (count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc);
count -= run_esc;
}
put_bits(&s->pb, run_bits, count);
}
}
typedef struct TrellisPath {
float cost;
int prev;
int min_val;
int max_val;
} TrellisPath;
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int q, w, w2, g, start = 0;
int i;
int idx;
TrellisPath paths[256*121];
int bandaddr[121];
int minq;
float mincost;
for (i = 0; i < 256; i++) {
paths[i].cost = 0.0f;
paths[i].prev = -1;
paths[i].min_val = i;
paths[i].max_val = i;
}
for (i = 256; i < 256*121; i++) {
paths[i].cost = INFINITY;
paths[i].prev = -2;
paths[i].min_val = INT_MAX;
paths[i].max_val = 0;
}
idx = 256;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
float qmin, qmax;
int nz = 0;
bandaddr[idx >> 8] = w * 16 + g;
qmin = INT_MAX;
qmax = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
sce->zeroes[(w+w2)*16+g] = 0;
nz = 1;
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
float t = fabsf(coefs[w2*128+i]);
if (t > 0.0f)
qmin = FFMIN(qmin, t);
qmax = FFMAX(qmax, t);
}
}
if (nz) {
int minscale, maxscale;
float minrd = INFINITY;
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
for (q = minscale; q < maxscale; q++) {
float dists[12], dist;
memset(dists, 0, sizeof(dists));
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
int cb;
for (cb = 0; cb <= ESC_BT; cb++)
dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
q, cb, lambda / band->threshold, INFINITY, NULL);
}
dist = dists[0];
for (i = 1; i <= ESC_BT; i++)
dist = FFMIN(dist, dists[i]);
minrd = FFMIN(minrd, dist);
for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost;
int minv, maxv;
if (isinf(paths[idx - 256 + i].cost))
continue;
cost = paths[idx - 256 + i].cost + dist
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
paths[idx + q].max_val = maxv;
}
}
}
} else {
for (q = 0; q < 256; q++) {
if (!isinf(paths[idx - 256 + q].cost)) {
paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
paths[idx + q].prev = idx - 256 + q;
paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
continue;
}
for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
float cost;
int minv, maxv;
if (isinf(paths[idx - 256 + i].cost))
continue;
cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
minv = FFMIN(paths[idx - 256 + i].min_val, q);
maxv = FFMAX(paths[idx - 256 + i].max_val, q);
if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
paths[idx + q].cost = cost;
paths[idx + q].prev = idx - 256 + i;
paths[idx + q].min_val = minv;
paths[idx + q].max_val = maxv;
}
}
}
}
sce->zeroes[w*16+g] = !nz;
start += sce->ics.swb_sizes[g];
idx += 256;
}
}
idx -= 256;
mincost = paths[idx].cost;
minq = idx;
for (i = 1; i < 256; i++) {
if (paths[idx + i].cost < mincost) {
mincost = paths[idx + i].cost;
minq = idx + i;
}
}
while (minq >= 256) {
sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
minq = paths[minq].prev;
}
//set the same quantizers inside window groups
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for (g = 0; g < sce->ics.num_swb; g++)
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
/**
* two-loop quantizers search taken from ISO 13818-7 Appendix C
*/
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
float dists[128], uplims[128];
int fflag, minscaler;
int its = 0;
int allz = 0;
float minthr = INFINITY;
//XXX: some heuristic to determine initial quantizers will reduce search time
memset(dists, 0, sizeof(dists));
//determine zero bands and upper limits
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int nz = 0;
float uplim = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
uplim += band->threshold;
if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
nz = 1;
}
uplims[w*16+g] = uplim *512;
sce->zeroes[w*16+g] = !nz;
if (nz)
minthr = FFMIN(minthr, uplim);
allz = FFMAX(allz, nz);
}
}
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue;
}
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
}
}
if (!allz)
return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
//perform two-loop search
//outer loop - improve quality
do {
int tbits, qstep;
minscaler = sce->sf_idx[0];
//inner loop - quantize spectrum to fit into given number of bits
qstep = its ? 1 : 32;
do {
int prev = -1;
tbits = 0;
fflag = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
int bits = 0;
int cb;
float mindist = INFINITY;
int minbits = 0;
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
start += sce->ics.swb_sizes[g];
continue;
}
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
for (cb = 0; cb <= ESC_BT; cb++) {
float dist = 0.0f;
int bb = 0;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g],
cb,
lambda,
INFINITY,
&b);
bb += b;
}
if (dist < mindist) {
mindist = dist;
minbits = bb;
}
}
dists[w*16+g] = (mindist - minbits) / lambda;
bits = minbits;
if (prev != -1) {
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
}
tbits += bits;
start += sce->ics.swb_sizes[g];
prev = sce->sf_idx[w*16+g];
}
}
if (tbits > destbits) {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] < 218 - qstep)
sce->sf_idx[i] += qstep;
} else {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] > 60 - qstep)
sce->sf_idx[i] -= qstep;
}
qstep >>= 1;
if (!qstep && tbits > destbits*1.02)
qstep = 1;
if (sce->sf_idx[0] >= 217)
break;
} while (qstep);
fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g];
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
sce->sf_idx[w*16+g]--;
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
}
}
its++;
} while (fflag && its < 10);
}
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
float uplim[128], maxq[128];
int minq, maxsf;
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
int last = 0, lastband = 0, curband = 0;
float avg_energy = 0.0;
if (sce->ics.num_windows == 1) {
start = 0;
for (i = 0; i < 1024; i++) {
if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
if (sce->coeffs[i]) {
avg_energy += sce->coeffs[i] * sce->coeffs[i];
last = i;
lastband = curband;
}
}
} else {
for (w = 0; w < 8; w++) {
const float *coeffs = sce->coeffs + w*128;
start = 0;
for (i = 0; i < 128; i++) {
if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
if (coeffs[i]) {
avg_energy += coeffs[i] * coeffs[i];
last = FFMAX(last, i);
lastband = FFMAX(lastband, curband);
}
}
}
}
last++;
avg_energy /= last;
if (avg_energy == 0.0f) {
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
sce->sf_idx[i] = SCALE_ONE_POS;
return;
}
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
float *coefs = sce->coeffs + start;
const int size = sce->ics.swb_sizes[g];
int start2 = start, end2 = start + size, peakpos = start;
float maxval = -1, thr = 0.0f, t;
maxq[w*16+g] = 0.0f;
if (g > lastband) {
maxq[w*16+g] = 0.0f;
start += size;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
continue;
}
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
for (i = 0; i < size; i++) {
float t = coefs[w2*128+i]*coefs[w2*128+i];
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
thr += t;
if (sce->ics.num_windows == 1 && maxval < t) {
maxval = t;
peakpos = start+i;
}
}
}
if (sce->ics.num_windows == 1) {
start2 = FFMAX(peakpos - 2, start2);
end2 = FFMIN(peakpos + 3, end2);
} else {
start2 -= start;
end2 -= start;
}
start += size;
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
t = 1.0 - (1.0 * start2 / last);
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
}
}
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
const int size = sce->ics.swb_sizes[g];
int scf, prev_scf, step;
int min_scf = 0, max_scf = 255;
float curdiff;
if (maxq[w*16+g] < 21.544) {
sce->zeroes[w*16+g] = 1;
start += size;
continue;
}
sce->zeroes[w*16+g] = 0;
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
step = 16;
for (;;) {
float dist = 0.0f;
int quant_max;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
scf,
ESC_BT,
lambda,
INFINITY,
&b);
dist -= b;
}
dist *= 1.0f / 512.0f / lambda;
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
if (quant_max >= 8191) { // too much, return to the previous quantizer
sce->sf_idx[w*16+g] = prev_scf;
break;
}
prev_scf = scf;
curdiff = fabsf(dist - uplim[w*16+g]);
if (curdiff == 0.0f)
step = 0;
else
step = fabsf(log2(curdiff));
if (dist > uplim[w*16+g])
step = -step;
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
sce->sf_idx[w*16+g] = scf;
break;
}
scf += step;
if (step > 0)
min_scf = scf;
else
max_scf = scf;
}
start += size;
}
}
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
for (i = 1; i < 128; i++) {
if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i-1];
else
minq = FFMIN(minq, sce->sf_idx[i]);
}
if (minq == INT_MAX)
minq = 0;
minq = FFMIN(minq, SCALE_MAX_POS);
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
for (i = 126; i >= 0; i--) {
if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i+1];
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
}
}
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int minq = 255;
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
if (band->energy <= band->threshold) {
sce->sf_idx[(w+w2)*16+g] = 218;
sce->zeroes[(w+w2)*16+g] = 1;
} else {
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
sce->zeroes[(w+w2)*16+g] = 0;
}
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
}
}
}
for (i = 0; i < 128; i++) {
sce->sf_idx[i] = 140;
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
}
//set the same quantizers inside window groups
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for (g = 0; g < sce->ics.num_swb; g++)
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
const float lambda)
{
int start = 0, i, w, w2, g;
float M[128], S[128];
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window)
return;
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
for (g = 0; g < sce0->ics.num_swb; g++) {
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
float dist1 = 0.0f, dist2 = 0.0f;
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
float minthr = FFMIN(band0->threshold, band1->threshold);
float maxthr = FFMAX(band0->threshold, band1->threshold);
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
M[i] = (sce0->coeffs[start+w2*128+i]
+ sce1->coeffs[start+w2*128+i]) * 0.5;
S[i] = sce0->coeffs[start+w2*128+i]
- sce1->coeffs[start+w2*128+i];
}
abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
L34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / band0->threshold, INFINITY, NULL);
dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
R34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
lambda / band1->threshold, INFINITY, NULL);
dist2 += quantize_band_cost(s, M,
M34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / maxthr, INFINITY, NULL);
dist2 += quantize_band_cost(s, S,
S34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
lambda / minthr, INFINITY, NULL);
}
cpe->ms_mask[w*16+g] = dist2 < dist1;
}
start += sce0->ics.swb_sizes[g];
}
}
}
AACCoefficientsEncoder ff_aac_coders[] = {
{
search_for_quantizers_faac,
encode_window_bands_info,
quantize_and_encode_band,
// search_for_ms,
},
{
search_for_quantizers_anmr,
encode_window_bands_info,
quantize_and_encode_band,
// search_for_ms,
},
{
search_for_quantizers_twoloop,
encode_window_bands_info,
quantize_and_encode_band,
// search_for_ms,
},
{
search_for_quantizers_fast,
encode_window_bands_info,
quantize_and_encode_band,
// search_for_ms,
},
};