1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00

1541 lines
53 KiB
C
Raw Normal View History

/*
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
* Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file cavs.c
* Chinese AVS video (AVS1-P2, JiZhun profile) decoder
* @author Stefan Gehrer <stefan.gehrer@gmx.de>
*/
#include "avcodec.h"
#include "bitstream.h"
#include "golomb.h"
#include "mpegvideo.h"
#include "cavsdata.h"
#ifdef CONFIG_CAVS_DECODER
typedef struct {
MpegEncContext s;
Picture picture; ///< currently decoded frame
Picture DPB[2]; ///< reference frames
int dist[2]; ///< temporal distances from current frame to ref frames
int profile, level;
int aspect_ratio;
int mb_width, mb_height;
int pic_type;
int progressive;
int pic_structure;
int skip_mode_flag; ///< select between skip_count or one skip_flag per MB
int loop_filter_disable;
int alpha_offset, beta_offset;
int ref_flag;
int mbx, mby; ///< macroblock coordinates
int flags; ///< availability flags of neighbouring macroblocks
int stc; ///< last start code
uint8_t *cy, *cu, *cv; ///< current MB sample pointers
int left_qp;
uint8_t *top_qp;
/** mv motion vector cache
0: D3 B2 B3 C2
4: A1 X0 X1 -
8: A3 X2 X3 -
X are the vectors in the current macroblock (5,6,9,10)
A is the macroblock to the left (4,8)
B is the macroblock to the top (1,2)
C is the macroblock to the top-right (3)
D is the macroblock to the top-left (0)
the same is repeated for backward motion vectors */
vector_t mv[2*4*3];
vector_t *top_mv[2];
vector_t *col_mv;
/** luma pred mode cache
0: -- B2 B3
3: A1 X0 X1
6: A3 X2 X3 */
int pred_mode_Y[3*3];
int *top_pred_Y;
int l_stride, c_stride;
int luma_scan[4];
int qp;
int qp_fixed;
int cbp;
ScanTable scantable;
/** intra prediction is done with un-deblocked samples
they are saved here before deblocking the MB */
uint8_t *top_border_y, *top_border_u, *top_border_v;
uint8_t left_border_y[26], left_border_u[10], left_border_v[10];
uint8_t intern_border_y[26];
uint8_t topleft_border_y, topleft_border_u, topleft_border_v;
void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
uint8_t *col_type_base;
uint8_t *col_type;
/* scaling factors for MV prediction */
int sym_factor; ///< for scaling in symmetrical B block
int direct_den[2]; ///< for scaling in direct B block
int scale_den[2]; ///< for scaling neighbouring MVs
int got_keyframe;
DCTELEM *block;
} AVSContext;
/*****************************************************************************
*
* in-loop deblocking filter
*
****************************************************************************/
static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) {
if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
return 2;
if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
return 1;
if(b){
mvP += MV_BWD_OFFS;
mvQ += MV_BWD_OFFS;
if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
return 1;
}else{
if(mvP->ref != mvQ->ref)
return 1;
}
return 0;
}
#define SET_PARAMS \
alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \
beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \
tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)];
/**
* in-loop deblocking filter for a single macroblock
*
* boundary strength (bs) mapping:
*
* --4---5--
* 0 2 |
* | 6 | 7 |
* 1 3 |
* ---------
*
*/
static void filter_mb(AVSContext *h, enum mb_t mb_type) {
DECLARE_ALIGNED_8(uint8_t, bs[8]);
int qp_avg, alpha, beta, tc;
int i;
/* save un-deblocked lines */
h->topleft_border_y = h->top_border_y[h->mbx*16+15];
h->topleft_border_u = h->top_border_u[h->mbx*10+8];
h->topleft_border_v = h->top_border_v[h->mbx*10+8];
memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
for(i=0;i<8;i++) {
h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
}
if(!h->loop_filter_disable) {
/* determine bs */
if(mb_type == I_8X8)
*((uint64_t *)bs) = 0x0202020202020202ULL;
else{
*((uint64_t *)bs) = 0;
if(partition_flags[mb_type] & SPLITV){
bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
}
if(partition_flags[mb_type] & SPLITH){
bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
}
bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
}
if( *((uint64_t *)bs) ) {
if(h->flags & A_AVAIL) {
qp_avg = (h->qp + h->left_qp + 1) >> 1;
SET_PARAMS;
h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
}
qp_avg = h->qp;
SET_PARAMS;
h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
bs[6],bs[7]);
if(h->flags & B_AVAIL) {
qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
SET_PARAMS;
h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
}
}
}
h->left_qp = h->qp;
h->top_qp[h->mbx] = h->qp;
}
#undef SET_PARAMS
/*****************************************************************************
*
* spatial intra prediction
*
****************************************************************************/
static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top,
uint8_t **left, int block) {
int i;
switch(block) {
case 0:
*left = h->left_border_y;
h->left_border_y[0] = h->left_border_y[1];
memset(&h->left_border_y[17],h->left_border_y[16],9);
memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
top[17] = top[16];
top[0] = top[1];
if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
h->left_border_y[0] = top[0] = h->topleft_border_y;
break;
case 1:
*left = h->intern_border_y;
for(i=0;i<8;i++)
h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
memset(&h->intern_border_y[9],h->intern_border_y[8],9);
h->intern_border_y[0] = h->intern_border_y[1];
memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
if(h->flags & C_AVAIL)
memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
else
memset(&top[9],top[8],9);
top[17] = top[16];
top[0] = top[1];
if(h->flags & B_AVAIL)
h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
break;
case 2:
*left = &h->left_border_y[8];
memcpy(&top[1],h->cy + 7*h->l_stride,16);
top[17] = top[16];
top[0] = top[1];
if(h->flags & A_AVAIL)
top[0] = h->left_border_y[8];
break;
case 3:
*left = &h->intern_border_y[8];
for(i=0;i<8;i++)
h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
memset(&h->intern_border_y[17],h->intern_border_y[16],9);
memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
memset(&top[9],top[8],9);
break;
}
}
static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int y;
uint64_t a = unaligned64(&top[1]);
for(y=0;y<8;y++) {
*((uint64_t *)(d+y*stride)) = a;
}
}
static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int y;
uint64_t a;
for(y=0;y<8;y++) {
a = left[y+1] * 0x0101010101010101ULL;
*((uint64_t *)(d+y*stride)) = a;
}
}
static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int y;
uint64_t a = 0x8080808080808080ULL;
for(y=0;y<8;y++)
*((uint64_t *)(d+y*stride)) = a;
}
static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y,ia;
int ih = 0;
int iv = 0;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
for(x=0; x<4; x++) {
ih += (x+1)*(top[5+x]-top[3-x]);
iv += (x+1)*(left[5+x]-left[3-x]);
}
ia = (top[8]+left[8])<<4;
ih = (17*ih+16)>>5;
iv = (17*iv+16)>>5;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
}
#define LOWPASS(ARRAY,INDEX) \
(( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
}
static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
}
static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
if(x==y)
d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
else if(x>y)
d[y*stride+x] = LOWPASS(top,x-y);
else
d[y*stride+x] = LOWPASS(left,y-x);
}
static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
d[y*stride+x] = LOWPASS(left,y+1);
}
static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
int x,y;
for(y=0; y<8; y++)
for(x=0; x<8; x++)
d[y*stride+x] = LOWPASS(top,x+1);
}
#undef LOWPASS
static inline void modify_pred(const int_fast8_t *mod_table, int *mode) {
*mode = mod_table[*mode];
if(*mode < 0) {
av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
*mode = 0;
}
}
/*****************************************************************************
*
* motion compensation
*
****************************************************************************/
static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
int chroma_height,int delta,int list,uint8_t *dest_y,
uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
int src_y_offset,qpel_mc_func *qpix_op,
h264_chroma_mc_func chroma_op,vector_t *mv){
MpegEncContext * const s = &h->s;
const int mx= mv->x + src_x_offset*8;
const int my= mv->y + src_y_offset*8;
const int luma_xy= (mx&3) + ((my&3)<<2);
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
int extra_height= extra_width;
int emu=0;
const int full_mx= mx>>2;
const int full_my= my>>2;
const int pic_width = 16*h->mb_width;
const int pic_height = 16*h->mb_height;
if(!pic->data[0])
return;
if(mx&7) extra_width -= 3;
if(my&7) extra_height -= 3;
if( full_mx < 0-extra_width
|| full_my < 0-extra_height
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
emu=1;
}
qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
}
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cb= s->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cr= s->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
}
static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
int x_offset, int y_offset,qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg, vector_t *mv){
qpel_mc_func *qpix_op= qpix_put;
h264_chroma_mc_func chroma_op= chroma_put;
dest_y += 2*x_offset + 2*y_offset*h->l_stride;
dest_cb += x_offset + y_offset*h->c_stride;
dest_cr += x_offset + y_offset*h->c_stride;
x_offset += 8*h->mbx;
y_offset += 8*h->mby;
if(mv->ref >= 0){
Picture *ref= &h->DPB[mv->ref];
mc_dir_part(h, ref, square, chroma_height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, mv);
qpix_op= qpix_avg;
chroma_op= chroma_avg;
}
if((mv+MV_BWD_OFFS)->ref >= 0){
Picture *ref= &h->DPB[0];
mc_dir_part(h, ref, square, chroma_height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, mv+MV_BWD_OFFS);
}
}
static void inter_pred(AVSContext *h, enum mb_t mb_type) {
if(partition_flags[mb_type] == 0){ // 16x16
mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
h->s.dsp.put_cavs_qpel_pixels_tab[0],
h->s.dsp.put_h264_chroma_pixels_tab[0],
h->s.dsp.avg_cavs_qpel_pixels_tab[0],
h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
}else{
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
h->s.dsp.put_cavs_qpel_pixels_tab[1],
h->s.dsp.put_h264_chroma_pixels_tab[1],
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
h->s.dsp.put_cavs_qpel_pixels_tab[1],
h->s.dsp.put_h264_chroma_pixels_tab[1],
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
h->s.dsp.put_cavs_qpel_pixels_tab[1],
h->s.dsp.put_h264_chroma_pixels_tab[1],
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
h->s.dsp.put_cavs_qpel_pixels_tab[1],
h->s.dsp.put_h264_chroma_pixels_tab[1],
h->s.dsp.avg_cavs_qpel_pixels_tab[1],
h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
}
/* set intra prediction modes to default values */
h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP;
h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP;
}
/*****************************************************************************
*
* motion vector prediction
*
****************************************************************************/
static inline void set_mvs(vector_t *mv, enum block_t size) {
switch(size) {
case BLK_16X16:
mv[MV_STRIDE ] = mv[0];
mv[MV_STRIDE+1] = mv[0];
case BLK_16X8:
mv[1] = mv[0];
break;
case BLK_8X16:
mv[MV_STRIDE] = mv[0];
break;
}
}
static inline void store_mvs(AVSContext *h) {
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0];
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1];
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2];
h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3];
}
static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
int den = h->scale_den[src->ref];
*d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
*d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
}
static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
int ax, ay, bx, by, cx, cy;
int len_ab, len_bc, len_ca, len_mid;
/* scale candidates according to their temporal span */
scale_mv(h, &ax, &ay, mvA, mvP->dist);
scale_mv(h, &bx, &by, mvB, mvP->dist);
scale_mv(h, &cx, &cy, mvC, mvP->dist);
/* find the geometrical median of the three candidates */
len_ab = abs(ax - bx) + abs(ay - by);
len_bc = abs(bx - cx) + abs(by - cy);
len_ca = abs(cx - ax) + abs(cy - ay);
len_mid = mid_pred(len_ab, len_bc, len_ca);
if(len_mid == len_ab) {
mvP->x = cx;
mvP->y = cy;
} else if(len_mid == len_bc) {
mvP->x = ax;
mvP->y = ay;
} else {
mvP->x = bx;
mvP->y = by;
}
}
static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw,
vector_t *col_mv) {
vector_t *pmv_bw = pmv_fw + MV_BWD_OFFS;
int den = h->direct_den[col_mv->ref];
int m = col_mv->x >> 31;
pmv_fw->dist = h->dist[1];
pmv_bw->dist = h->dist[0];
pmv_fw->ref = 1;
pmv_bw->ref = 0;
/* scale the co-located motion vector according to its temporal span */
pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
m = col_mv->y >> 31;
pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
}
static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) {
vector_t *dst = src + MV_BWD_OFFS;
/* backward mv is the scaled and negated forward mv */
dst->x = -((src->x * h->sym_factor + 256) >> 9);
dst->y = -((src->y * h->sym_factor + 256) >> 9);
dst->ref = 0;
dst->dist = h->dist[0];
set_mvs(dst, size);
}
static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
enum mv_pred_t mode, enum block_t size, int ref) {
vector_t *mvP = &h->mv[nP];
vector_t *mvA = &h->mv[nP-1];
vector_t *mvB = &h->mv[nP-4];
vector_t *mvC = &h->mv[nC];
const vector_t *mvP2 = NULL;
mvP->ref = ref;
mvP->dist = h->dist[mvP->ref];
if(mvC->ref == NOT_AVAIL)
mvC = &h->mv[nP-5]; // set to top-left (mvD)
if((mode == MV_PRED_PSKIP) &&
((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
((mvA->x | mvA->y | mvA->ref) == 0) ||
((mvB->x | mvB->y | mvB->ref) == 0) )) {
mvP2 = &un_mv;
/* if there is only one suitable candidate, take it */
} else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
mvP2= mvA;
} else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
mvP2= mvB;
} else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
mvP2= mvC;
} else if(mode == MV_PRED_LEFT && mvA->ref == ref){
mvP2= mvA;
} else if(mode == MV_PRED_TOP && mvB->ref == ref){
mvP2= mvB;
} else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
mvP2= mvC;
}
if(mvP2){
mvP->x = mvP2->x;
mvP->y = mvP2->y;
}else
mv_pred_median(h, mvP, mvA, mvB, mvC);
if(mode < MV_PRED_PSKIP) {
mvP->x += get_se_golomb(&h->s.gb);
mvP->y += get_se_golomb(&h->s.gb);
}
set_mvs(mvP,size);
}
/*****************************************************************************
*
* residual data decoding
*
****************************************************************************/
/** kth-order exponential golomb code */
static inline int get_ue_code(GetBitContext *gb, int order) {
if(order) {
int ret = get_ue_golomb(gb) << order;
return ret + get_bits(gb,order);
}
return get_ue_golomb(gb);
}
/**
* decode coefficients from one 8x8 block, dequantize, inverse transform
* and add them to sample block
* @param r pointer to 2D VLC table
* @param esc_golomb_order escape codes are k-golomb with this order k
* @param qp quantizer
* @param dst location of sample block
* @param stride line stride in frame buffer
*/
static int decode_residual_block(AVSContext *h, GetBitContext *gb,
const residual_vlc_t *r, int esc_golomb_order,
int qp, uint8_t *dst, int stride) {
int i,pos = -1;
int level_code, esc_code, level, run, mask;
int level_buf[64];
int run_buf[64];
int dqm = dequant_mul[qp];
int dqs = dequant_shift[qp];
int dqa = 1 << (dqs - 1);
const uint8_t *scantab = h->scantable.permutated;
DCTELEM *block = h->block;
for(i=0;i<65;i++) {
level_code = get_ue_code(gb,r->golomb_order);
if(level_code >= ESCAPE_CODE) {
run = ((level_code - ESCAPE_CODE) >> 1) + 1;
esc_code = get_ue_code(gb,esc_golomb_order);
level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
while(level > r->inc_limit)
r++;
mask = -(level_code & 1);
level = (level^mask) - mask;
} else {
level = r->rltab[level_code][0];
if(!level) //end of block signal
break;
run = r->rltab[level_code][1];
r += r->rltab[level_code][2];
}
level_buf[i] = level;
run_buf[i] = run;
}
/* inverse scan and dequantization */
while(--i >= 0){
pos += run_buf[i];
if(pos > 63) {
av_log(h->s.avctx, AV_LOG_ERROR,
"position out of block bounds at pic %d MB(%d,%d)\n",
h->picture.poc, h->mbx, h->mby);
return -1;
}
block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs;
}
h->s.dsp.cavs_idct8_add(dst,block,stride);
return 0;
}
static inline void decode_residual_chroma(AVSContext *h) {
if(h->cbp & (1<<4))
decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
h->cu,h->c_stride);
if(h->cbp & (1<<5))
decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
h->cv,h->c_stride);
}
static inline int decode_residual_inter(AVSContext *h) {
int block;
/* get coded block pattern */
int cbp= get_ue_golomb(&h->s.gb);
if(cbp > 63){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
return -1;
}
h->cbp = cbp_tab[cbp][1];
/* get quantizer */
if(h->cbp && !h->qp_fixed)
h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
for(block=0;block<4;block++)
if(h->cbp & (1<<block))
decode_residual_block(h,&h->s.gb,inter_2dvlc,0,h->qp,
h->cy + h->luma_scan[block], h->l_stride);
decode_residual_chroma(h);
return 0;
}
/*****************************************************************************
*
* macroblock level
*
****************************************************************************/
/**
* initialise predictors for motion vectors and intra prediction
*/
static inline void init_mb(AVSContext *h) {
int i;
/* copy predictors from top line (MB B and C) into cache */
for(i=0;i<3;i++) {
h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
}
h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
/* clear top predictors if MB B is not available */
if(!(h->flags & B_AVAIL)) {
h->mv[MV_FWD_B2] = un_mv;
h->mv[MV_FWD_B3] = un_mv;
h->mv[MV_BWD_B2] = un_mv;
h->mv[MV_BWD_B3] = un_mv;
h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
h->flags &= ~(C_AVAIL|D_AVAIL);
} else if(h->mbx) {
h->flags |= D_AVAIL;
}
if(h->mbx == h->mb_width-1) //MB C not available
h->flags &= ~C_AVAIL;
/* clear top-right predictors if MB C is not available */
if(!(h->flags & C_AVAIL)) {
h->mv[MV_FWD_C2] = un_mv;
h->mv[MV_BWD_C2] = un_mv;
}
/* clear top-left predictors if MB D is not available */
if(!(h->flags & D_AVAIL)) {
h->mv[MV_FWD_D3] = un_mv;
h->mv[MV_BWD_D3] = un_mv;
}
/* set pointer for co-located macroblock type */
h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
}
static inline void check_for_slice(AVSContext *h);
/**
* save predictors for later macroblocks and increase
* macroblock address
* @returns 0 if end of frame is reached, 1 otherwise
*/
static inline int next_mb(AVSContext *h) {
int i;
h->flags |= A_AVAIL;
h->cy += 16;
h->cu += 8;
h->cv += 8;
/* copy mvs as predictors to the left */
for(i=0;i<=20;i+=4)
h->mv[i] = h->mv[i+2];
/* copy bottom mvs from cache to top line */
h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
/* next MB address */
h->mbx++;
if(h->mbx == h->mb_width) { //new mb line
h->flags = B_AVAIL|C_AVAIL;
/* clear left pred_modes */
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
/* clear left mv predictors */
for(i=0;i<=20;i+=4)
h->mv[i] = un_mv;
h->mbx = 0;
h->mby++;
/* re-calculate sample pointers */
h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
if(h->mby == h->mb_height) { //frame end
return 0;
} else {
//check_for_slice(h);
}
}
return 1;
}
static int decode_mb_i(AVSContext *h, int cbp_code) {
GetBitContext *gb = &h->s.gb;
int block, pred_mode_uv;
uint8_t top[18];
uint8_t *left = NULL;
uint8_t *d;
init_mb(h);
/* get intra prediction modes from stream */
for(block=0;block<4;block++) {
int nA,nB,predpred;
int pos = scan3x3[block];
nA = h->pred_mode_Y[pos-1];
nB = h->pred_mode_Y[pos-3];
predpred = FFMIN(nA,nB);
if(predpred == NOT_AVAIL) // if either is not available
predpred = INTRA_L_LP;
if(!get_bits1(gb)){
int rem_mode= get_bits(gb, 2);
predpred = rem_mode + (rem_mode >= predpred);
}
h->pred_mode_Y[pos] = predpred;
}
pred_mode_uv = get_ue_golomb(gb);
if(pred_mode_uv > 6) {
av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
return -1;
}
/* save pred modes before they get modified */
h->pred_mode_Y[3] = h->pred_mode_Y[5];
h->pred_mode_Y[6] = h->pred_mode_Y[8];
h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
/* modify pred modes according to availability of neighbour samples */
if(!(h->flags & A_AVAIL)) {
modify_pred(left_modifier_l, &h->pred_mode_Y[4] );
modify_pred(left_modifier_l, &h->pred_mode_Y[7] );
modify_pred(left_modifier_c, &pred_mode_uv );
}
if(!(h->flags & B_AVAIL)) {
modify_pred(top_modifier_l, &h->pred_mode_Y[4] );
modify_pred(top_modifier_l, &h->pred_mode_Y[5] );
modify_pred(top_modifier_c, &pred_mode_uv );
}
/* get coded block pattern */
if(h->pic_type == FF_I_TYPE)
cbp_code = get_ue_golomb(gb);
if(cbp_code > 63){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
return -1;
}
h->cbp = cbp_tab[cbp_code][0];
if(h->cbp && !h->qp_fixed)
h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta
/* luma intra prediction interleaved with residual decode/transform/add */
for(block=0;block<4;block++) {
d = h->cy + h->luma_scan[block];
load_intra_pred_luma(h, top, &left, block);
h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]]
(d, top, left, h->l_stride);
if(h->cbp & (1<<block))
decode_residual_block(h,gb,intra_2dvlc,1,h->qp,d,h->l_stride);
}
/* chroma intra prediction */
/* extend borders by one pixel */
h->left_border_u[9] = h->left_border_u[8];
h->left_border_v[9] = h->left_border_v[8];
h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
if(h->mbx && h->mby) {
h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
} else {
h->left_border_u[0] = h->left_border_u[1];
h->left_border_v[0] = h->left_border_v[1];
h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
}
h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
h->left_border_u, h->c_stride);
h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
h->left_border_v, h->c_stride);
decode_residual_chroma(h);
filter_mb(h,I_8X8);
/* mark motion vectors as intra */
h->mv[MV_FWD_X0] = intra_mv;
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
h->mv[MV_BWD_X0] = intra_mv;
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
if(h->pic_type != FF_B_TYPE)
*h->col_type = I_8X8;
return 0;
}
static void decode_mb_p(AVSContext *h, enum mb_t mb_type) {
GetBitContext *gb = &h->s.gb;
int ref[4];
init_mb(h);
switch(mb_type) {
case P_SKIP:
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
break;
case P_16X16:
ref[0] = h->ref_flag ? 0 : get_bits1(gb);
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
break;
case P_16X8:
ref[0] = h->ref_flag ? 0 : get_bits1(gb);
ref[2] = h->ref_flag ? 0 : get_bits1(gb);
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
break;
case P_8X16:
ref[0] = h->ref_flag ? 0 : get_bits1(gb);
ref[1] = h->ref_flag ? 0 : get_bits1(gb);
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]);
break;
case P_8X8:
ref[0] = h->ref_flag ? 0 : get_bits1(gb);
ref[1] = h->ref_flag ? 0 : get_bits1(gb);
ref[2] = h->ref_flag ? 0 : get_bits1(gb);
ref[3] = h->ref_flag ? 0 : get_bits1(gb);
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
}
inter_pred(h, mb_type);
store_mvs(h);
if(mb_type != P_SKIP)
decode_residual_inter(h);
filter_mb(h,mb_type);
*h->col_type = mb_type;
}
static void decode_mb_b(AVSContext *h, enum mb_t mb_type) {
int block;
enum sub_mb_t sub_type[4];
int flags;
init_mb(h);
/* reset all MVs */
h->mv[MV_FWD_X0] = dir_mv;
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
h->mv[MV_BWD_X0] = dir_mv;
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
switch(mb_type) {
case B_SKIP:
case B_DIRECT:
if(!(*h->col_type)) {
/* intra MB at co-location, do in-plane prediction */
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
} else
/* direct prediction from co-located P MB, block-wise */
for(block=0;block<4;block++)
mv_pred_direct(h,&h->mv[mv_scan[block]],
&h->col_mv[(h->mby*h->mb_width+h->mbx)*4 + block]);
break;
case B_FWD_16X16:
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
break;
case B_SYM_16X16:
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
break;
case B_BWD_16X16:
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
break;
case B_8X8:
for(block=0;block<4;block++)
sub_type[block] = get_bits(&h->s.gb,2);
for(block=0;block<4;block++) {
switch(sub_type[block]) {
case B_SUB_DIRECT:
if(!(*h->col_type)) {
/* intra MB at co-location, do in-plane prediction */
mv_pred(h, mv_scan[block], mv_scan[block]-3,
MV_PRED_BSKIP, BLK_8X8, 1);
mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
mv_scan[block]-3+MV_BWD_OFFS,
MV_PRED_BSKIP, BLK_8X8, 0);
} else
mv_pred_direct(h,&h->mv[mv_scan[block]],
&h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
break;
case B_SUB_FWD:
mv_pred(h, mv_scan[block], mv_scan[block]-3,
MV_PRED_MEDIAN, BLK_8X8, 1);
break;
case B_SUB_SYM:
mv_pred(h, mv_scan[block], mv_scan[block]-3,
MV_PRED_MEDIAN, BLK_8X8, 1);
mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
break;
}
}
for(block=0;block<4;block++) {
if(sub_type[block] == B_SUB_BWD)
mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
mv_scan[block]+MV_BWD_OFFS-3,
MV_PRED_MEDIAN, BLK_8X8, 0);
}
break;
default:
assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
flags = partition_flags[mb_type];
if(mb_type & 1) { /* 16x8 macroblock types */
if(flags & FWD0)
mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
if(flags & SYM0)
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
if(flags & FWD1)
mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
if(flags & SYM1)
mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8);
if(flags & BWD0)
mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
if(flags & BWD1)
mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
} else { /* 8x16 macroblock types */
if(flags & FWD0)
mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
if(flags & SYM0)
mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
if(flags & FWD1)
mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
if(flags & SYM1)
mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16);
if(flags & BWD0)
mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
if(flags & BWD1)
mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0);
}
}
inter_pred(h, mb_type);
if(mb_type != B_SKIP)
decode_residual_inter(h);
filter_mb(h,mb_type);
}
/*****************************************************************************
*
* slice level
*
****************************************************************************/
static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
if(h->stc > 0xAF)
av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
h->mby = h->stc;
if((h->mby == 0) && (!h->qp_fixed)){
h->qp_fixed = get_bits1(gb);
h->qp = get_bits(gb,6);
}
/* inter frame or second slice can have weighting params */
if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2))
if(get_bits1(gb)) { //slice_weighting_flag
av_log(h->s.avctx, AV_LOG_ERROR,
"weighted prediction not yet supported\n");
}
return 0;
}
static inline void check_for_slice(AVSContext *h) {
GetBitContext *gb = &h->s.gb;
int align;
align = (-get_bits_count(gb)) & 7;
if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
get_bits_long(gb,24+align);
h->stc = get_bits(gb,8);
decode_slice_header(h,gb);
}
}
/*****************************************************************************
*
* frame level
*
****************************************************************************/
static void init_pic(AVSContext *h) {
int i;
/* clear some predictors */
for(i=0;i<=20;i+=4)
h->mv[i] = un_mv;
h->mv[MV_BWD_X0] = dir_mv;
set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
h->mv[MV_FWD_X0] = dir_mv;
set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
h->cy = h->picture.data[0];
h->cu = h->picture.data[1];
h->cv = h->picture.data[2];
h->l_stride = h->picture.linesize[0];
h->c_stride = h->picture.linesize[1];
h->luma_scan[2] = 8*h->l_stride;
h->luma_scan[3] = 8*h->l_stride+8;
h->mbx = h->mby = 0;
h->flags = 0;
}
static int decode_pic(AVSContext *h) {
MpegEncContext *s = &h->s;
int skip_count;
enum mb_t mb_type;
if (!s->context_initialized) {
s->avctx->idct_algo = FF_IDCT_CAVS;
if (MPV_common_init(s) < 0)
return -1;
ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct);
}
get_bits(&s->gb,16);//bbv_dwlay
if(h->stc == PIC_PB_START_CODE) {
h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
if(h->pic_type > FF_B_TYPE) {
av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
return -1;
}
/* make sure we have the reference frames we need */
if(!h->DPB[0].data[0] ||
(!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE))
return -1;
} else {
h->pic_type = FF_I_TYPE;
if(get_bits1(&s->gb))
get_bits(&s->gb,16);//time_code
}
/* release last B frame */
if(h->picture.data[0])
s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
init_pic(h);
h->picture.poc = get_bits(&s->gb,8)*2;
/* get temporal distances and MV scaling factors */
if(h->pic_type != FF_B_TYPE) {
h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512;
} else {
h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512;
}
h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512;
h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
if(h->pic_type == FF_B_TYPE) {
h->sym_factor = h->dist[0]*h->scale_den[1];
} else {
h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
}
if(s->low_delay)
get_ue_golomb(&s->gb); //bbv_check_times
h->progressive = get_bits1(&s->gb);
if(h->progressive)
h->pic_structure = 1;
else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) )
get_bits1(&s->gb); //advanced_pred_mode_disable
skip_bits1(&s->gb); //top_field_first
skip_bits1(&s->gb); //repeat_first_field
h->qp_fixed = get_bits1(&s->gb);
h->qp = get_bits(&s->gb,6);
if(h->pic_type == FF_I_TYPE) {
if(!h->progressive && !h->pic_structure)
skip_bits1(&s->gb);//what is this?
skip_bits(&s->gb,4); //reserved bits
} else {
if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1))
h->ref_flag = get_bits1(&s->gb);
skip_bits(&s->gb,4); //reserved bits
h->skip_mode_flag = get_bits1(&s->gb);
}
h->loop_filter_disable = get_bits1(&s->gb);
if(!h->loop_filter_disable && get_bits1(&s->gb)) {
h->alpha_offset = get_se_golomb(&s->gb);
h->beta_offset = get_se_golomb(&s->gb);
} else {
h->alpha_offset = h->beta_offset = 0;
}
check_for_slice(h);
if(h->pic_type == FF_I_TYPE) {
do {
decode_mb_i(h, 0);
} while(next_mb(h));
} else if(h->pic_type == FF_P_TYPE) {
do {
if(h->skip_mode_flag) {
skip_count = get_ue_golomb(&s->gb);
while(skip_count--) {
decode_mb_p(h,P_SKIP);
if(!next_mb(h))
goto done;
}
mb_type = get_ue_golomb(&s->gb) + P_16X16;
} else
mb_type = get_ue_golomb(&s->gb) + P_SKIP;
if(mb_type > P_8X8) {
decode_mb_i(h, mb_type - P_8X8 - 1);
} else
decode_mb_p(h,mb_type);
} while(next_mb(h));
} else { /* FF_B_TYPE */
do {
if(h->skip_mode_flag) {
skip_count = get_ue_golomb(&s->gb);
while(skip_count--) {
decode_mb_b(h,B_SKIP);
if(!next_mb(h))
goto done;
}
mb_type = get_ue_golomb(&s->gb) + B_DIRECT;
} else
mb_type = get_ue_golomb(&s->gb) + B_SKIP;
if(mb_type > B_8X8) {
decode_mb_i(h, mb_type - B_8X8 - 1);
} else
decode_mb_b(h,mb_type);
} while(next_mb(h));
}
done:
if(h->pic_type != FF_B_TYPE) {
if(h->DPB[1].data[0])
s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture));
memcpy(&h->DPB[0], &h->picture, sizeof(Picture));
memset(&h->picture,0,sizeof(Picture));
}
return 0;
}
/*****************************************************************************
*
* headers and interface
*
****************************************************************************/
/**
* some predictions require data from the top-neighbouring macroblock.
* this data has to be stored for one complete row of macroblocks
* and this storage space is allocated here
*/
static void init_top_lines(AVSContext *h) {
/* alloc top line of predictors */
h->top_qp = av_malloc( h->mb_width);
h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
h->top_border_y = av_malloc((h->mb_width+1)*16);
h->top_border_u = av_malloc((h->mb_width)*10);
h->top_border_v = av_malloc((h->mb_width)*10);
/* alloc space for co-located MVs and types */
h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
h->col_type_base = av_malloc(h->mb_width*h->mb_height);
h->block = av_mallocz(64*sizeof(DCTELEM));
}
static int decode_seq_header(AVSContext *h) {
MpegEncContext *s = &h->s;
extern const AVRational ff_frame_rate_tab[];
int frame_rate_code;
h->profile = get_bits(&s->gb,8);
h->level = get_bits(&s->gb,8);
skip_bits1(&s->gb); //progressive sequence
s->width = get_bits(&s->gb,14);
s->height = get_bits(&s->gb,14);
skip_bits(&s->gb,2); //chroma format
skip_bits(&s->gb,3); //sample_precision
h->aspect_ratio = get_bits(&s->gb,4);
frame_rate_code = get_bits(&s->gb,4);
skip_bits(&s->gb,18);//bit_rate_lower
skip_bits1(&s->gb); //marker_bit
skip_bits(&s->gb,12);//bit_rate_upper
s->low_delay = get_bits1(&s->gb);
h->mb_width = (s->width + 15) >> 4;
h->mb_height = (s->height + 15) >> 4;
h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
h->s.avctx->width = s->width;
h->s.avctx->height = s->height;
if(!h->top_qp)
init_top_lines(h);
return 0;
}
static void cavs_flush(AVCodecContext * avctx) {
AVSContext *h = avctx->priv_data;
h->got_keyframe = 0;
}
static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
uint8_t * buf, int buf_size) {
AVSContext *h = avctx->priv_data;
MpegEncContext *s = &h->s;
int input_size;
const uint8_t *buf_end;
const uint8_t *buf_ptr;
AVFrame *picture = data;
uint32_t stc;
s->avctx = avctx;
if (buf_size == 0) {
if(!s->low_delay && h->DPB[0].data[0]) {
*data_size = sizeof(AVPicture);
*picture = *(AVFrame *) &h->DPB[0];
}
return 0;
}
buf_ptr = buf;
buf_end = buf + buf_size;
for(;;) {
buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
if(stc & 0xFFFFFE00)
return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
input_size = (buf_end - buf_ptr)*8;
switch(stc) {
case SEQ_START_CODE:
init_get_bits(&s->gb, buf_ptr, input_size);
decode_seq_header(h);
break;
case PIC_I_START_CODE:
if(!h->got_keyframe) {
if(h->DPB[0].data[0])
avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
if(h->DPB[1].data[0])
avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
h->got_keyframe = 1;
}
case PIC_PB_START_CODE:
*data_size = 0;
if(!h->got_keyframe)
break;
init_get_bits(&s->gb, buf_ptr, input_size);
h->stc = stc;
if(decode_pic(h))
break;
*data_size = sizeof(AVPicture);
if(h->pic_type != FF_B_TYPE) {
if(h->DPB[1].data[0]) {
*picture = *(AVFrame *) &h->DPB[1];
} else {
*data_size = 0;
}
} else
*picture = *(AVFrame *) &h->picture;
break;
case EXT_START_CODE:
//mpeg_decode_extension(avctx,buf_ptr, input_size);
break;
case USER_START_CODE:
//mpeg_decode_user_data(avctx,buf_ptr, input_size);
break;
default:
if (stc >= SLICE_MIN_START_CODE &&
stc <= SLICE_MAX_START_CODE) {
init_get_bits(&s->gb, buf_ptr, input_size);
decode_slice_header(h, &s->gb);
}
break;
}
}
}
static int cavs_decode_init(AVCodecContext * avctx) {
AVSContext *h = avctx->priv_data;
MpegEncContext * const s = &h->s;
MPV_decode_defaults(s);
s->avctx = avctx;
avctx->pix_fmt= PIX_FMT_YUV420P;
h->luma_scan[0] = 0;
h->luma_scan[1] = 8;
h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
h->mv[ 7] = un_mv;
h->mv[19] = un_mv;
return 0;
}
static int cavs_decode_end(AVCodecContext * avctx) {
AVSContext *h = avctx->priv_data;
av_free(h->top_qp);
av_free(h->top_mv[0]);
av_free(h->top_mv[1]);
av_free(h->top_pred_Y);
av_free(h->top_border_y);
av_free(h->top_border_u);
av_free(h->top_border_v);
av_free(h->col_mv);
av_free(h->col_type_base);
av_free(h->block);
return 0;
}
AVCodec cavs_decoder = {
"cavs",
CODEC_TYPE_VIDEO,
CODEC_ID_CAVS,
sizeof(AVSContext),
cavs_decode_init,
NULL,
cavs_decode_end,
cavs_decode_frame,
CODEC_CAP_DR1 | CODEC_CAP_DELAY,
.flush= cavs_flush,
};
#endif /* CONFIG_CAVS_DECODER */
#ifdef CONFIG_CAVSVIDEO_PARSER
/**
* finds the end of the current frame in the bitstream.
* @return the position of the first byte of the next frame, or -1
*/
static int cavs_find_frame_end(ParseContext *pc, const uint8_t *buf,
int buf_size) {
int pic_found, i;
uint32_t state;
pic_found= pc->frame_start_found;
state= pc->state;
i=0;
if(!pic_found){
for(i=0; i<buf_size; i++){
state= (state<<8) | buf[i];
if(state == PIC_I_START_CODE || state == PIC_PB_START_CODE){
i++;
pic_found=1;
break;
}
}
}
if(pic_found){
/* EOF considered as end of frame */
if (buf_size == 0)
return 0;
for(; i<buf_size; i++){
state= (state<<8) | buf[i];
if((state&0xFFFFFF00) == 0x100){
if(state < SLICE_MIN_START_CODE || state > SLICE_MAX_START_CODE){
pc->frame_start_found=0;
pc->state=-1;
return i-3;
}
}
}
}
pc->frame_start_found= pic_found;
pc->state= state;
return END_NOT_FOUND;
}
static int cavsvideo_parse(AVCodecParserContext *s,
AVCodecContext *avctx,
uint8_t **poutbuf, int *poutbuf_size,
const uint8_t *buf, int buf_size)
{
ParseContext *pc = s->priv_data;
int next;
if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
next= buf_size;
}else{
next= cavs_find_frame_end(pc, buf, buf_size);
if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
*poutbuf = NULL;
*poutbuf_size = 0;
return buf_size;
}
}
*poutbuf = (uint8_t *)buf;
*poutbuf_size = buf_size;
return next;
}
AVCodecParser cavsvideo_parser = {
{ CODEC_ID_CAVS },
sizeof(ParseContext1),
NULL,
cavsvideo_parse,
ff_parse1_close,
ff_mpeg4video_split,
};
#endif /* CONFIG_CAVSVIDEO_PARSER */