1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/vf_bwdif.c

585 lines
19 KiB
C
Raw Normal View History

/*
* BobWeaver Deinterlacing Filter
* Copyright (C) 2016 Thomas Mundt <loudmax@yahoo.de>
*
* Based on YADIF (Yet Another Deinterlacing Filter)
* Copyright (C) 2006-2011 Michael Niedermayer <michaelni@gmx.at>
* 2010 James Darnley <james.darnley@gmail.com>
*
* With use of Weston 3 Field Deinterlacing Filter algorithm
* Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
* Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
* Based on the process described by Martin Weston for BBC R&D
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/imgutils.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "bwdif.h"
/*
* Filter coefficients coef_lf and coef_hf taken from BBC PH-2071 (Weston 3 Field Deinterlacer).
* Used when there is spatial and temporal interpolation.
* Filter coefficients coef_sp are used when there is spatial interpolation only.
* Adjusted for matching visual sharpness impression of spatial and temporal interpolation.
*/
static const uint16_t coef_lf[2] = { 4309, 213 };
static const uint16_t coef_hf[3] = { 5570, 3801, 1016 };
static const uint16_t coef_sp[2] = { 5077, 981 };
typedef struct ThreadData {
AVFrame *frame;
int plane;
int w, h;
int parity;
int tff;
} ThreadData;
#define FILTER_INTRA() \
for (x = 0; x < w; x++) { \
interpol = (coef_sp[0] * (cur[mrefs] + cur[prefs]) - coef_sp[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \
dst[0] = av_clip(interpol, 0, clip_max); \
\
dst++; \
cur++; \
}
#define FILTER1() \
for (x = 0; x < w; x++) { \
int c = cur[mrefs]; \
int d = (prev2[0] + next2[0]) >> 1; \
int e = cur[prefs]; \
int temporal_diff0 = FFABS(prev2[0] - next2[0]); \
int temporal_diff1 =(FFABS(prev[mrefs] - c) + FFABS(prev[prefs] - e)) >> 1; \
int temporal_diff2 =(FFABS(next[mrefs] - c) + FFABS(next[prefs] - e)) >> 1; \
int diff = FFMAX3(temporal_diff0 >> 1, temporal_diff1, temporal_diff2); \
\
if (!diff) { \
dst[0] = d; \
} else {
#define SPAT_CHECK() \
int b = ((prev2[mrefs2] + next2[mrefs2]) >> 1) - c; \
int f = ((prev2[prefs2] + next2[prefs2]) >> 1) - e; \
int dc = d - c; \
int de = d - e; \
int max = FFMAX3(de, dc, FFMIN(b, f)); \
int min = FFMIN3(de, dc, FFMAX(b, f)); \
diff = FFMAX3(diff, min, -max);
#define FILTER_LINE() \
SPAT_CHECK() \
if (FFABS(c - e) > temporal_diff0) { \
interpol = (((coef_hf[0] * (prev2[0] + next2[0]) \
- coef_hf[1] * (prev2[mrefs2] + next2[mrefs2] + prev2[prefs2] + next2[prefs2]) \
+ coef_hf[2] * (prev2[mrefs4] + next2[mrefs4] + prev2[prefs4] + next2[prefs4])) >> 2) \
+ coef_lf[0] * (c + e) - coef_lf[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \
} else { \
interpol = (coef_sp[0] * (c + e) - coef_sp[1] * (cur[mrefs3] + cur[prefs3])) >> 13; \
}
#define FILTER_EDGE() \
if (spat) { \
SPAT_CHECK() \
} \
interpol = (c + e) >> 1;
#define FILTER2() \
if (interpol > d + diff) \
interpol = d + diff; \
else if (interpol < d - diff) \
interpol = d - diff; \
\
dst[0] = av_clip(interpol, 0, clip_max); \
} \
\
dst++; \
cur++; \
prev++; \
next++; \
prev2++; \
next2++; \
}
static void filter_intra(void *dst1, void *cur1, int w, int prefs, int mrefs,
int prefs3, int mrefs3, int parity, int clip_max)
{
uint8_t *dst = dst1;
uint8_t *cur = cur1;
int interpol, x;
FILTER_INTRA()
}
static void filter_line_c(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int prefs2, int mrefs2,
int prefs3, int mrefs3, int prefs4, int mrefs4,
int parity, int clip_max)
{
uint8_t *dst = dst1;
uint8_t *prev = prev1;
uint8_t *cur = cur1;
uint8_t *next = next1;
uint8_t *prev2 = parity ? prev : cur ;
uint8_t *next2 = parity ? cur : next;
int interpol, x;
FILTER1()
FILTER_LINE()
FILTER2()
}
static void filter_edge(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int prefs2, int mrefs2,
int parity, int clip_max, int spat)
{
uint8_t *dst = dst1;
uint8_t *prev = prev1;
uint8_t *cur = cur1;
uint8_t *next = next1;
uint8_t *prev2 = parity ? prev : cur ;
uint8_t *next2 = parity ? cur : next;
int interpol, x;
FILTER1()
FILTER_EDGE()
FILTER2()
}
static void filter_intra_16bit(void *dst1, void *cur1, int w, int prefs, int mrefs,
int prefs3, int mrefs3, int parity, int clip_max)
{
uint16_t *dst = dst1;
uint16_t *cur = cur1;
int interpol, x;
FILTER_INTRA()
}
static void filter_line_c_16bit(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int prefs2, int mrefs2,
int prefs3, int mrefs3, int prefs4, int mrefs4,
int parity, int clip_max)
{
uint16_t *dst = dst1;
uint16_t *prev = prev1;
uint16_t *cur = cur1;
uint16_t *next = next1;
uint16_t *prev2 = parity ? prev : cur ;
uint16_t *next2 = parity ? cur : next;
int interpol, x;
FILTER1()
FILTER_LINE()
FILTER2()
}
static void filter_edge_16bit(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int prefs2, int mrefs2,
int parity, int clip_max, int spat)
{
uint16_t *dst = dst1;
uint16_t *prev = prev1;
uint16_t *cur = cur1;
uint16_t *next = next1;
uint16_t *prev2 = parity ? prev : cur ;
uint16_t *next2 = parity ? cur : next;
int interpol, x;
FILTER1()
FILTER_EDGE()
FILTER2()
}
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
BWDIFContext *s = ctx->priv;
ThreadData *td = arg;
int linesize = s->cur->linesize[td->plane];
int clip_max = (1 << (s->csp->comp[td->plane].depth)) - 1;
int df = (s->csp->comp[td->plane].depth + 7) / 8;
int refs = linesize / df;
int slice_start = (td->h * jobnr ) / nb_jobs;
int slice_end = (td->h * (jobnr+1)) / nb_jobs;
int y;
for (y = slice_start; y < slice_end; y++) {
if ((y ^ td->parity) & 1) {
uint8_t *prev = &s->prev->data[td->plane][y * linesize];
uint8_t *cur = &s->cur ->data[td->plane][y * linesize];
uint8_t *next = &s->next->data[td->plane][y * linesize];
uint8_t *dst = &td->frame->data[td->plane][y * td->frame->linesize[td->plane]];
if (!s->inter_field) {
s->filter_intra(dst, cur, td->w, (y + df) < td->h ? refs : -refs,
y > (df - 1) ? -refs : refs,
(y + 3*df) < td->h ? 3 * refs : -refs,
y > (3*df - 1) ? -3 * refs : refs,
td->parity ^ td->tff, clip_max);
} else if ((y < 4) || ((y + 5) > td->h)) {
s->filter_edge(dst, prev, cur, next, td->w,
(y + df) < td->h ? refs : -refs,
y > (df - 1) ? -refs : refs,
refs << 1, -(refs << 1),
td->parity ^ td->tff, clip_max,
(y < 2) || ((y + 3) > td->h) ? 0 : 1);
} else {
s->filter_line(dst, prev, cur, next, td->w,
refs, -refs, refs << 1, -(refs << 1),
3 * refs, -3 * refs, refs << 2, -(refs << 2),
td->parity ^ td->tff, clip_max);
}
} else {
memcpy(&td->frame->data[td->plane][y * td->frame->linesize[td->plane]],
&s->cur->data[td->plane][y * linesize], td->w * df);
}
}
return 0;
}
static void filter(AVFilterContext *ctx, AVFrame *dstpic,
int parity, int tff)
{
BWDIFContext *bwdif = ctx->priv;
ThreadData td = { .frame = dstpic, .parity = parity, .tff = tff };
int i;
for (i = 0; i < bwdif->csp->nb_components; i++) {
int w = dstpic->width;
int h = dstpic->height;
if (i == 1 || i == 2) {
w = AV_CEIL_RSHIFT(w, bwdif->csp->log2_chroma_w);
h = AV_CEIL_RSHIFT(h, bwdif->csp->log2_chroma_h);
}
td.w = w;
td.h = h;
td.plane = i;
ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(h, ctx->graph->nb_threads));
}
if (!bwdif->inter_field) {
bwdif->inter_field = 1;
}
emms_c();
}
static int return_frame(AVFilterContext *ctx, int is_second)
{
BWDIFContext *bwdif = ctx->priv;
AVFilterLink *link = ctx->outputs[0];
int tff, ret;
if (bwdif->parity == -1) {
tff = bwdif->cur->interlaced_frame ?
bwdif->cur->top_field_first : 1;
} else {
tff = bwdif->parity ^ 1;
}
if (is_second) {
bwdif->out = ff_get_video_buffer(link, link->w, link->h);
if (!bwdif->out)
return AVERROR(ENOMEM);
av_frame_copy_props(bwdif->out, bwdif->cur);
bwdif->out->interlaced_frame = 0;
if (bwdif->inter_field < 0)
bwdif->inter_field = 0;
}
filter(ctx, bwdif->out, tff ^ !is_second, tff);
if (is_second) {
int64_t cur_pts = bwdif->cur->pts;
int64_t next_pts = bwdif->next->pts;
if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
bwdif->out->pts = cur_pts + next_pts;
} else {
bwdif->out->pts = AV_NOPTS_VALUE;
}
}
ret = ff_filter_frame(ctx->outputs[0], bwdif->out);
bwdif->frame_pending = (bwdif->mode&1) && !is_second;
return ret;
}
static int checkstride(BWDIFContext *bwdif, const AVFrame *a, const AVFrame *b)
{
int i;
for (i = 0; i < bwdif->csp->nb_components; i++)
if (a->linesize[i] != b->linesize[i])
return 1;
return 0;
}
static void fixstride(AVFilterLink *link, AVFrame *f)
{
AVFrame *dst = ff_default_get_video_buffer(link, f->width, f->height);
if(!dst)
return;
av_frame_copy_props(dst, f);
av_image_copy(dst->data, dst->linesize,
(const uint8_t **)f->data, f->linesize,
dst->format, dst->width, dst->height);
av_frame_unref(f);
av_frame_move_ref(f, dst);
av_frame_free(&dst);
}
static int filter_frame(AVFilterLink *link, AVFrame *frame)
{
AVFilterContext *ctx = link->dst;
BWDIFContext *bwdif = ctx->priv;
av_assert0(frame);
if (bwdif->frame_pending)
return_frame(ctx, 1);
if (bwdif->prev)
av_frame_free(&bwdif->prev);
bwdif->prev = bwdif->cur;
bwdif->cur = bwdif->next;
bwdif->next = frame;
if (!bwdif->cur) {
bwdif->cur = av_frame_clone(bwdif->next);
if (!bwdif->cur)
return AVERROR(ENOMEM);
bwdif->inter_field = 0;
}
if (checkstride(bwdif, bwdif->next, bwdif->cur)) {
av_log(ctx, AV_LOG_VERBOSE, "Reallocating frame due to differing stride\n");
fixstride(link, bwdif->next);
}
if (checkstride(bwdif, bwdif->next, bwdif->cur))
fixstride(link, bwdif->cur);
if (bwdif->prev && checkstride(bwdif, bwdif->next, bwdif->prev))
fixstride(link, bwdif->prev);
if (checkstride(bwdif, bwdif->next, bwdif->cur) || (bwdif->prev && checkstride(bwdif, bwdif->next, bwdif->prev))) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate frame\n");
return -1;
}
if (!bwdif->prev)
return 0;
if ((bwdif->deint && !bwdif->cur->interlaced_frame) ||
ctx->is_disabled ||
(bwdif->deint && !bwdif->prev->interlaced_frame && bwdif->prev->repeat_pict) ||
(bwdif->deint && !bwdif->next->interlaced_frame && bwdif->next->repeat_pict)
) {
bwdif->out = av_frame_clone(bwdif->cur);
if (!bwdif->out)
return AVERROR(ENOMEM);
av_frame_free(&bwdif->prev);
if (bwdif->out->pts != AV_NOPTS_VALUE)
bwdif->out->pts *= 2;
return ff_filter_frame(ctx->outputs[0], bwdif->out);
}
bwdif->out = ff_get_video_buffer(ctx->outputs[0], link->w, link->h);
if (!bwdif->out)
return AVERROR(ENOMEM);
av_frame_copy_props(bwdif->out, bwdif->cur);
bwdif->out->interlaced_frame = 0;
if (bwdif->out->pts != AV_NOPTS_VALUE)
bwdif->out->pts *= 2;
return return_frame(ctx, 0);
}
static int request_frame(AVFilterLink *link)
{
AVFilterContext *ctx = link->src;
BWDIFContext *bwdif = ctx->priv;
int ret;
if (bwdif->frame_pending) {
return_frame(ctx, 1);
return 0;
}
if (bwdif->eof)
return AVERROR_EOF;
ret = ff_request_frame(link->src->inputs[0]);
if (ret == AVERROR_EOF && bwdif->cur) {
AVFrame *next = av_frame_clone(bwdif->next);
if (!next)
return AVERROR(ENOMEM);
bwdif->inter_field = -1;
next->pts = bwdif->next->pts * 2 - bwdif->cur->pts;
filter_frame(link->src->inputs[0], next);
bwdif->eof = 1;
} else if (ret < 0) {
return ret;
}
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
BWDIFContext *bwdif = ctx->priv;
av_frame_free(&bwdif->prev);
av_frame_free(&bwdif->cur );
av_frame_free(&bwdif->next);
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_props(AVFilterLink *link)
{
AVFilterContext *ctx = link->src;
BWDIFContext *s = link->src->priv;
link->time_base.num = link->src->inputs[0]->time_base.num;
link->time_base.den = link->src->inputs[0]->time_base.den * 2;
link->w = link->src->inputs[0]->w;
link->h = link->src->inputs[0]->h;
if(s->mode&1)
link->frame_rate = av_mul_q(link->src->inputs[0]->frame_rate, (AVRational){2,1});
if (link->w < 3 || link->h < 3) {
av_log(ctx, AV_LOG_ERROR, "Video of less than 3 columns or lines is not supported\n");
return AVERROR(EINVAL);
}
s->csp = av_pix_fmt_desc_get(link->format);
if (s->csp->comp[0].depth > 8) {
s->filter_intra = filter_intra_16bit;
s->filter_line = filter_line_c_16bit;
s->filter_edge = filter_edge_16bit;
} else {
s->filter_intra = filter_intra;
s->filter_line = filter_line_c;
s->filter_edge = filter_edge;
}
if (ARCH_X86)
ff_bwdif_init_x86(s);
return 0;
}
#define OFFSET(x) offsetof(BWDIFContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, INT_MIN, INT_MAX, FLAGS, unit }
static const AVOption bwdif_options[] = {
{ "mode", "specify the interlacing mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BWDIF_MODE_SEND_FIELD}, 0, 1, FLAGS, "mode"},
CONST("send_frame", "send one frame for each frame", BWDIF_MODE_SEND_FRAME, "mode"),
CONST("send_field", "send one frame for each field", BWDIF_MODE_SEND_FIELD, "mode"),
{ "parity", "specify the assumed picture field parity", OFFSET(parity), AV_OPT_TYPE_INT, {.i64=BWDIF_PARITY_AUTO}, -1, 1, FLAGS, "parity" },
CONST("tff", "assume top field first", BWDIF_PARITY_TFF, "parity"),
CONST("bff", "assume bottom field first", BWDIF_PARITY_BFF, "parity"),
CONST("auto", "auto detect parity", BWDIF_PARITY_AUTO, "parity"),
{ "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=BWDIF_DEINT_ALL}, 0, 1, FLAGS, "deint" },
CONST("all", "deinterlace all frames", BWDIF_DEINT_ALL, "deint"),
CONST("interlaced", "only deinterlace frames marked as interlaced", BWDIF_DEINT_INTERLACED, "deint"),
{ NULL }
};
AVFILTER_DEFINE_CLASS(bwdif);
static const AVFilterPad avfilter_vf_bwdif_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad avfilter_vf_bwdif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
.config_props = config_props,
},
{ NULL }
};
AVFilter ff_vf_bwdif = {
.name = "bwdif",
.description = NULL_IF_CONFIG_SMALL("Deinterlace the input image."),
.priv_size = sizeof(BWDIFContext),
.priv_class = &bwdif_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = avfilter_vf_bwdif_inputs,
.outputs = avfilter_vf_bwdif_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
};