1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/dct-test.c

603 lines
16 KiB
C
Raw Normal View History

/*
* (c) 2001 Fabrice Bellard
* 2007 Marc Hoffman <marc.hoffman@analog.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/dct-test.c
* DCT test (c) 2001 Fabrice Bellard
* Started from sample code by Juan J. Sierralta P.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <math.h>
#include "libavutil/common.h"
#include "simple_idct.h"
#include "aandcttab.h"
#include "faandct.h"
#include "faanidct.h"
#include "x86/idct_xvid.h"
#undef printf
#undef random
void *fast_memcpy(void *a, const void *b, size_t c){return memcpy(a,b,c);};
/* reference fdct/idct */
void fdct(DCTELEM *block);
void idct(DCTELEM *block);
void init_fdct(void);
void ff_mmx_idct(DCTELEM *data);
void ff_mmxext_idct(DCTELEM *data);
void odivx_idct_c(short *block);
// BFIN
void ff_bfin_idct(DCTELEM *block);
void ff_bfin_fdct(DCTELEM *block);
// ALTIVEC
void fdct_altivec(DCTELEM *block);
//void idct_altivec(DCTELEM *block);?? no routine
// ARM
void j_rev_dct_ARM(DCTELEM *data);
void simple_idct_ARM(DCTELEM *data);
void simple_idct_armv5te(DCTELEM *data);
void ff_simple_idct_armv6(DCTELEM *data);
void ff_simple_idct_neon(DCTELEM *data);
void ff_simple_idct_axp(DCTELEM *data);
struct algo {
const char *name;
enum { FDCT, IDCT } is_idct;
void (* func) (DCTELEM *block);
void (* ref) (DCTELEM *block);
enum formattag { NO_PERM,MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM, SSE2_PERM, PARTTRANS_PERM } format;
int mm_support;
};
#ifndef FAAN_POSTSCALE
#define FAAN_SCALE SCALE_PERM
#else
#define FAAN_SCALE NO_PERM
#endif
static int cpu_flags;
struct algo algos[] = {
{"REF-DBL", 0, fdct, fdct, NO_PERM},
{"FAAN", 0, ff_faandct, fdct, FAAN_SCALE},
{"FAANI", 1, ff_faanidct, idct, NO_PERM},
{"IJG-AAN-INT", 0, fdct_ifast, fdct, SCALE_PERM},
{"IJG-LLM-INT", 0, ff_jpeg_fdct_islow, fdct, NO_PERM},
{"REF-DBL", 1, idct, idct, NO_PERM},
{"INT", 1, j_rev_dct, idct, MMX_PERM},
{"SIMPLE-C", 1, ff_simple_idct, idct, NO_PERM},
#if HAVE_MMX
{"MMX", 0, ff_fdct_mmx, fdct, NO_PERM, FF_MM_MMX},
#if HAVE_MMX2
{"MMX2", 0, ff_fdct_mmx2, fdct, NO_PERM, FF_MM_MMXEXT},
{"SSE2", 0, ff_fdct_sse2, fdct, NO_PERM, FF_MM_SSE2},
#endif
#if CONFIG_GPL
{"LIBMPEG2-MMX", 1, ff_mmx_idct, idct, MMX_PERM, FF_MM_MMX},
{"LIBMPEG2-MMXEXT", 1, ff_mmxext_idct, idct, MMX_PERM, FF_MM_MMXEXT},
#endif
{"SIMPLE-MMX", 1, ff_simple_idct_mmx, idct, MMX_SIMPLE_PERM, FF_MM_MMX},
{"XVID-MMX", 1, ff_idct_xvid_mmx, idct, NO_PERM, FF_MM_MMX},
{"XVID-MMX2", 1, ff_idct_xvid_mmx2, idct, NO_PERM, FF_MM_MMXEXT},
{"XVID-SSE2", 1, ff_idct_xvid_sse2, idct, SSE2_PERM, FF_MM_SSE2},
#endif
#if HAVE_ALTIVEC
{"altivecfdct", 0, fdct_altivec, fdct, NO_PERM, FF_MM_ALTIVEC},
#endif
#if ARCH_BFIN
{"BFINfdct", 0, ff_bfin_fdct, fdct, NO_PERM},
{"BFINidct", 1, ff_bfin_idct, idct, NO_PERM},
#endif
#if ARCH_ARM
{"SIMPLE-ARM", 1, simple_idct_ARM, idct, NO_PERM },
{"INT-ARM", 1, j_rev_dct_ARM, idct, MMX_PERM },
#if HAVE_ARMV5TE
{"SIMPLE-ARMV5TE", 1, simple_idct_armv5te, idct, NO_PERM },
#endif
#if HAVE_ARMV6
{"SIMPLE-ARMV6", 1, ff_simple_idct_armv6, idct, MMX_PERM },
#endif
#if HAVE_NEON
{"SIMPLE-NEON", 1, ff_simple_idct_neon, idct, PARTTRANS_PERM },
#endif
#endif /* ARCH_ARM */
#if ARCH_ALPHA
{"SIMPLE-ALPHA", 1, ff_simple_idct_axp, idct, NO_PERM },
#endif
{ 0 }
};
#define AANSCALE_BITS 12
uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
int64_t gettime(void)
{
struct timeval tv;
gettimeofday(&tv,NULL);
return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
}
#define NB_ITS 20000
#define NB_ITS_SPEED 50000
static short idct_mmx_perm[64];
static short idct_simple_mmx_perm[64]={
0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
};
static const uint8_t idct_sse2_row_perm[8] = {0, 4, 1, 5, 2, 6, 3, 7};
void idct_mmx_init(void)
{
int i;
/* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
for (i = 0; i < 64; i++) {
idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
// idct_simple_mmx_perm[i] = simple_block_permute_op(i);
}
}
static DCTELEM block[64] __attribute__ ((aligned (16)));
static DCTELEM block1[64] __attribute__ ((aligned (8)));
static DCTELEM block_org[64] __attribute__ ((aligned (8)));
static inline void mmx_emms(void)
{
#if HAVE_MMX
if (cpu_flags & FF_MM_MMX)
__asm__ volatile ("emms\n\t");
#endif
}
void dct_error(const char *name, int is_idct,
void (*fdct_func)(DCTELEM *block),
void (*fdct_ref)(DCTELEM *block), int form, int test)
{
int it, i, scale;
int err_inf, v;
int64_t err2, ti, ti1, it1;
int64_t sysErr[64], sysErrMax=0;
int maxout=0;
int blockSumErrMax=0, blockSumErr;
srandom(0);
err_inf = 0;
err2 = 0;
for(i=0; i<64; i++) sysErr[i]=0;
for(it=0;it<NB_ITS;it++) {
for(i=0;i<64;i++)
block1[i] = 0;
switch(test){
case 0:
for(i=0;i<64;i++)
block1[i] = (random() % 512) -256;
if (is_idct){
fdct(block1);
for(i=0;i<64;i++)
block1[i]>>=3;
}
break;
case 1:{
int num= (random()%10)+1;
for(i=0;i<num;i++)
block1[random()%64] = (random() % 512) -256;
}break;
case 2:
block1[0]= (random()%4096)-2048;
block1[63]= (block1[0]&1)^1;
break;
}
#if 0 // simulate mismatch control
{ int sum=0;
for(i=0;i<64;i++)
sum+=block1[i];
if((sum&1)==0) block1[63]^=1;
}
#endif
for(i=0; i<64; i++)
block_org[i]= block1[i];
if (form == MMX_PERM) {
for(i=0;i<64;i++)
block[idct_mmx_perm[i]] = block1[i];
} else if (form == MMX_SIMPLE_PERM) {
for(i=0;i<64;i++)
block[idct_simple_mmx_perm[i]] = block1[i];
} else if (form == SSE2_PERM) {
for(i=0; i<64; i++)
block[(i&0x38) | idct_sse2_row_perm[i&7]] = block1[i];
} else if (form == PARTTRANS_PERM) {
for(i=0; i<64; i++)
block[(i&0x24) | ((i&3)<<3) | ((i>>3)&3)] = block1[i];
} else {
for(i=0; i<64; i++)
block[i]= block1[i];
}
#if 0 // simulate mismatch control for tested IDCT but not the ref
{ int sum=0;
for(i=0;i<64;i++)
sum+=block[i];
if((sum&1)==0) block[63]^=1;
}
#endif
fdct_func(block);
mmx_emms();
if (form == SCALE_PERM) {
for(i=0; i<64; i++) {
scale = 8*(1 << (AANSCALE_BITS + 11)) / ff_aanscales[i];
block[i] = (block[i] * scale /*+ (1<<(AANSCALE_BITS-1))*/) >> AANSCALE_BITS;
}
}
fdct_ref(block1);
blockSumErr=0;
for(i=0;i<64;i++) {
v = abs(block[i] - block1[i]);
if (v > err_inf)
err_inf = v;
err2 += v * v;
sysErr[i] += block[i] - block1[i];
blockSumErr += v;
if( abs(block[i])>maxout) maxout=abs(block[i]);
}
if(blockSumErrMax < blockSumErr) blockSumErrMax= blockSumErr;
#if 0 // print different matrix pairs
if(blockSumErr){
printf("\n");
for(i=0; i<64; i++){
if((i&7)==0) printf("\n");
printf("%4d ", block_org[i]);
}
for(i=0; i<64; i++){
if((i&7)==0) printf("\n");
printf("%4d ", block[i] - block1[i]);
}
}
#endif
}
for(i=0; i<64; i++) sysErrMax= FFMAX(sysErrMax, FFABS(sysErr[i]));
#if 1 // dump systematic errors
for(i=0; i<64; i++){
if(i%8==0) printf("\n");
printf("%5d ", (int)sysErr[i]);
}
printf("\n");
#endif
printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
is_idct ? "IDCT" : "DCT",
name, err_inf, (double)err2 / NB_ITS / 64.0, (double)sysErrMax / NB_ITS, maxout, blockSumErrMax);
#if 1 //Speed test
/* speed test */
for(i=0;i<64;i++)
block1[i] = 0;
switch(test){
case 0:
for(i=0;i<64;i++)
block1[i] = (random() % 512) -256;
if (is_idct){
fdct(block1);
for(i=0;i<64;i++)
block1[i]>>=3;
}
break;
case 1:{
case 2:
block1[0] = (random() % 512) -256;
block1[1] = (random() % 512) -256;
block1[2] = (random() % 512) -256;
block1[3] = (random() % 512) -256;
}break;
}
if (form == MMX_PERM) {
for(i=0;i<64;i++)
block[idct_mmx_perm[i]] = block1[i];
} else if(form == MMX_SIMPLE_PERM) {
for(i=0;i<64;i++)
block[idct_simple_mmx_perm[i]] = block1[i];
} else {
for(i=0; i<64; i++)
block[i]= block1[i];
}
ti = gettime();
it1 = 0;
do {
for(it=0;it<NB_ITS_SPEED;it++) {
for(i=0; i<64; i++)
block[i]= block1[i];
// memcpy(block, block1, sizeof(DCTELEM) * 64);
// do not memcpy especially not fastmemcpy because it does movntq !!!
fdct_func(block);
}
it1 += NB_ITS_SPEED;
ti1 = gettime() - ti;
} while (ti1 < 1000000);
mmx_emms();
printf("%s %s: %0.1f kdct/s\n",
is_idct ? "IDCT" : "DCT",
name, (double)it1 * 1000.0 / (double)ti1);
#endif
}
static uint8_t img_dest[64] __attribute__ ((aligned (8)));
static uint8_t img_dest1[64] __attribute__ ((aligned (8)));
void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
{
static int init;
static double c8[8][8];
static double c4[4][4];
double block1[64], block2[64], block3[64];
double s, sum, v;
int i, j, k;
if (!init) {
init = 1;
for(i=0;i<8;i++) {
sum = 0;
for(j=0;j<8;j++) {
s = (i==0) ? sqrt(1.0/8.0) : sqrt(1.0/4.0);
c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
sum += c8[i][j] * c8[i][j];
}
}
for(i=0;i<4;i++) {
sum = 0;
for(j=0;j<4;j++) {
s = (i==0) ? sqrt(1.0/4.0) : sqrt(1.0/2.0);
c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
sum += c4[i][j] * c4[i][j];
}
}
}
/* butterfly */
s = 0.5 * sqrt(2.0);
for(i=0;i<4;i++) {
for(j=0;j<8;j++) {
block1[8*(2*i)+j] = (block[8*(2*i)+j] + block[8*(2*i+1)+j]) * s;
block1[8*(2*i+1)+j] = (block[8*(2*i)+j] - block[8*(2*i+1)+j]) * s;
}
}
/* idct8 on lines */
for(i=0;i<8;i++) {
for(j=0;j<8;j++) {
sum = 0;
for(k=0;k<8;k++)
sum += c8[k][j] * block1[8*i+k];
block2[8*i+j] = sum;
}
}
/* idct4 */
for(i=0;i<8;i++) {
for(j=0;j<4;j++) {
/* top */
sum = 0;
for(k=0;k<4;k++)
sum += c4[k][j] * block2[8*(2*k)+i];
block3[8*(2*j)+i] = sum;
/* bottom */
sum = 0;
for(k=0;k<4;k++)
sum += c4[k][j] * block2[8*(2*k+1)+i];
block3[8*(2*j+1)+i] = sum;
}
}
/* clamp and store the result */
for(i=0;i<8;i++) {
for(j=0;j<8;j++) {
v = block3[8*i+j];
if (v < 0)
v = 0;
else if (v > 255)
v = 255;
dest[i * linesize + j] = (int)rint(v);
}
}
}
void idct248_error(const char *name,
void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block))
{
int it, i, it1, ti, ti1, err_max, v;
srandom(0);
/* just one test to see if code is correct (precision is less
important here) */
err_max = 0;
for(it=0;it<NB_ITS;it++) {
/* XXX: use forward transform to generate values */
for(i=0;i<64;i++)
block1[i] = (random() % 256) - 128;
block1[0] += 1024;
for(i=0; i<64; i++)
block[i]= block1[i];
idct248_ref(img_dest1, 8, block);
for(i=0; i<64; i++)
block[i]= block1[i];
idct248_put(img_dest, 8, block);
for(i=0;i<64;i++) {
v = abs((int)img_dest[i] - (int)img_dest1[i]);
if (v == 255)
printf("%d %d\n", img_dest[i], img_dest1[i]);
if (v > err_max)
err_max = v;
}
#if 0
printf("ref=\n");
for(i=0;i<8;i++) {
int j;
for(j=0;j<8;j++) {
printf(" %3d", img_dest1[i*8+j]);
}
printf("\n");
}
printf("out=\n");
for(i=0;i<8;i++) {
int j;
for(j=0;j<8;j++) {
printf(" %3d", img_dest[i*8+j]);
}
printf("\n");
}
#endif
}
printf("%s %s: err_inf=%d\n",
1 ? "IDCT248" : "DCT248",
name, err_max);
ti = gettime();
it1 = 0;
do {
for(it=0;it<NB_ITS_SPEED;it++) {
for(i=0; i<64; i++)
block[i]= block1[i];
// memcpy(block, block1, sizeof(DCTELEM) * 64);
// do not memcpy especially not fastmemcpy because it does movntq !!!
idct248_put(img_dest, 8, block);
}
it1 += NB_ITS_SPEED;
ti1 = gettime() - ti;
} while (ti1 < 1000000);
mmx_emms();
printf("%s %s: %0.1f kdct/s\n",
1 ? "IDCT248" : "DCT248",
name, (double)it1 * 1000.0 / (double)ti1);
}
void help(void)
{
printf("dct-test [-i] [<test-number>]\n"
"test-number 0 -> test with random matrixes\n"
" 1 -> test with random sparse matrixes\n"
" 2 -> do 3. test from mpeg4 std\n"
"-i test IDCT implementations\n"
"-4 test IDCT248 implementations\n");
}
int main(int argc, char **argv)
{
int test_idct = 0, test_248_dct = 0;
int c,i;
int test=1;
cpu_flags = mm_support();
init_fdct();
idct_mmx_init();
for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i;
for(i=0;i<MAX_NEG_CROP;i++) {
cropTbl[i] = 0;
cropTbl[i + MAX_NEG_CROP + 256] = 255;
}
for(;;) {
c = getopt(argc, argv, "ih4");
if (c == -1)
break;
switch(c) {
case 'i':
test_idct = 1;
break;
case '4':
test_248_dct = 1;
break;
default :
case 'h':
help();
return 0;
}
}
if(optind <argc) test= atoi(argv[optind]);
printf("ffmpeg DCT/IDCT test\n");
if (test_248_dct) {
idct248_error("SIMPLE-C", ff_simple_idct248_put);
} else {
for (i=0;algos[i].name;i++)
if (algos[i].is_idct == test_idct && !(~cpu_flags & algos[i].mm_support)) {
dct_error (algos[i].name, algos[i].is_idct, algos[i].func, algos[i].ref, algos[i].format, test);
}
}
return 0;
}