1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/h264_slice.c

2584 lines
97 KiB
C
Raw Normal View History

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/timer.h"
#include "internal.h"
#include "cabac.h"
#include "cabac_functions.h"
#include "error_resilience.h"
#include "avcodec.h"
#include "h264.h"
#include "h264data.h"
#include "h264chroma.h"
#include "h264_mvpred.h"
#include "golomb.h"
#include "mathops.h"
#include "mpegutils.h"
#include "rectangle.h"
#include "thread.h"
static const uint8_t rem6[QP_MAX_NUM + 1] = {
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3,
};
static const uint8_t div6[QP_MAX_NUM + 1] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10,
10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13,
14,14,14,14,
};
static const uint8_t field_scan[16+1] = {
0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
};
static const uint8_t field_scan8x8[64+1] = {
0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
};
static const uint8_t field_scan8x8_cavlc[64+1] = {
0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
};
// zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
};
static const uint8_t dequant4_coeff_init[6][3] = {
{ 10, 13, 16 },
{ 11, 14, 18 },
{ 13, 16, 20 },
{ 14, 18, 23 },
{ 16, 20, 25 },
{ 18, 23, 29 },
};
static const uint8_t dequant8_coeff_init_scan[16] = {
0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
};
static const uint8_t dequant8_coeff_init[6][6] = {
{ 20, 18, 32, 19, 25, 24 },
{ 22, 19, 35, 21, 28, 26 },
{ 26, 23, 42, 24, 33, 31 },
{ 28, 25, 45, 26, 35, 33 },
{ 32, 28, 51, 30, 40, 38 },
{ 36, 32, 58, 34, 46, 43 },
};
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_420[] = {
#if CONFIG_H264_DXVA2_HWACCEL
AV_PIX_FMT_DXVA2_VLD,
#endif
#if CONFIG_H264_VAAPI_HWACCEL
AV_PIX_FMT_VAAPI_VLD,
#endif
#if CONFIG_H264_VDA_HWACCEL
AV_PIX_FMT_VDA_VLD,
AV_PIX_FMT_VDA,
#endif
#if CONFIG_H264_VDPAU_HWACCEL
AV_PIX_FMT_VDPAU,
#endif
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[] = {
#if CONFIG_H264_DXVA2_HWACCEL
AV_PIX_FMT_DXVA2_VLD,
#endif
#if CONFIG_H264_VAAPI_HWACCEL
AV_PIX_FMT_VAAPI_VLD,
#endif
#if CONFIG_H264_VDA_HWACCEL
AV_PIX_FMT_VDA_VLD,
AV_PIX_FMT_VDA,
#endif
#if CONFIG_H264_VDPAU_HWACCEL
AV_PIX_FMT_VDPAU,
#endif
AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_NONE
};
static void release_unused_pictures(H264Context *h, int remove_current)
{
int i;
/* release non reference frames */
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
if (h->DPB[i].f.buf[0] && !h->DPB[i].reference &&
(remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
ff_h264_unref_picture(h, &h->DPB[i]);
}
}
}
static int alloc_scratch_buffers(H264Context *h, int linesize)
{
int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
if (h->bipred_scratchpad)
return 0;
h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size);
// edge emu needs blocksize + filter length - 1
// (= 21x21 for h264)
h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21);
if (!h->bipred_scratchpad || !h->edge_emu_buffer) {
av_freep(&h->bipred_scratchpad);
av_freep(&h->edge_emu_buffer);
return AVERROR(ENOMEM);
}
return 0;
}
static int init_table_pools(H264Context *h)
{
const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
const int mb_array_size = h->mb_stride * h->mb_height;
const int b4_stride = h->mb_width * 4 + 1;
const int b4_array_size = b4_stride * h->mb_height * 4;
h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
av_buffer_allocz);
h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
sizeof(uint32_t), av_buffer_allocz);
h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
sizeof(int16_t), av_buffer_allocz);
h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
!h->ref_index_pool) {
av_buffer_pool_uninit(&h->qscale_table_pool);
av_buffer_pool_uninit(&h->mb_type_pool);
av_buffer_pool_uninit(&h->motion_val_pool);
av_buffer_pool_uninit(&h->ref_index_pool);
return AVERROR(ENOMEM);
}
return 0;
}
static int alloc_picture(H264Context *h, H264Picture *pic)
{
int i, ret = 0;
av_assert0(!pic->f.data[0]);
pic->tf.f = &pic->f;
ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
AV_GET_BUFFER_FLAG_REF : 0);
if (ret < 0)
goto fail;
h->linesize = pic->f.linesize[0];
h->uvlinesize = pic->f.linesize[1];
pic->crop = h->sps.crop;
pic->crop_top = h->sps.crop_top;
pic->crop_left= h->sps.crop_left;
if (h->avctx->hwaccel) {
const AVHWAccel *hwaccel = h->avctx->hwaccel;
av_assert0(!pic->hwaccel_picture_private);
if (hwaccel->frame_priv_data_size) {
pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
if (!pic->hwaccel_priv_buf)
return AVERROR(ENOMEM);
pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data;
}
}
if (!h->avctx->hwaccel && CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY && pic->f.data[2]) {
int h_chroma_shift, v_chroma_shift;
av_pix_fmt_get_chroma_sub_sample(pic->f.format,
&h_chroma_shift, &v_chroma_shift);
for(i=0; i<FF_CEIL_RSHIFT(h->avctx->height, v_chroma_shift); i++) {
memset(pic->f.data[1] + pic->f.linesize[1]*i,
0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
memset(pic->f.data[2] + pic->f.linesize[2]*i,
0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
}
}
if (!h->qscale_table_pool) {
ret = init_table_pools(h);
if (ret < 0)
goto fail;
}
pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
if (!pic->qscale_table_buf || !pic->mb_type_buf)
goto fail;
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
for (i = 0; i < 2; i++) {
pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
goto fail;
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
pic->ref_index[i] = pic->ref_index_buf[i]->data;
}
return 0;
fail:
ff_h264_unref_picture(h, pic);
return (ret < 0) ? ret : AVERROR(ENOMEM);
}
static inline int pic_is_unused(H264Context *h, H264Picture *pic)
{
if (!pic->f.buf[0])
return 1;
if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF))
return 1;
return 0;
}
static int find_unused_picture(H264Context *h)
{
int i;
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
if (pic_is_unused(h, &h->DPB[i]))
break;
}
if (i == H264_MAX_PICTURE_COUNT)
return AVERROR_INVALIDDATA;
if (h->DPB[i].needs_realloc) {
h->DPB[i].needs_realloc = 0;
ff_h264_unref_picture(h, &h->DPB[i]);
}
return i;
}
static void init_dequant8_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant8_coeff[i] = h->dequant8_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
64 * sizeof(uint8_t))) {
h->dequant8_coeff[i] = h->dequant8_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q];
int idx = rem6[q];
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
h->pps.scaling_matrix8[i][x]) << shift;
}
}
}
static void init_dequant4_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant4_coeff[i] = h->dequant4_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
16 * sizeof(uint8_t))) {
h->dequant4_coeff[i] = h->dequant4_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q] + 2;
int idx = rem6[q];
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
h->pps.scaling_matrix4[i][x]) << shift;
}
}
}
void h264_init_dequant_tables(H264Context *h)
{
int i, x;
init_dequant4_coeff_table(h);
memset(h->dequant8_coeff, 0, sizeof(h->dequant8_coeff));
if (h->pps.transform_8x8_mode)
init_dequant8_coeff_table(h);
if (h->sps.transform_bypass) {
for (i = 0; i < 6; i++)
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][0][x] = 1 << 6;
if (h->pps.transform_8x8_mode)
for (i = 0; i < 6; i++)
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][0][x] = 1 << 6;
}
}
/**
* Mimic alloc_tables(), but for every context thread.
*/
static void clone_tables(H264Context *dst, H264Context *src, int i)
{
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride;
dst->non_zero_count = src->non_zero_count;
dst->slice_table = src->slice_table;
dst->cbp_table = src->cbp_table;
dst->mb2b_xy = src->mb2b_xy;
dst->mb2br_xy = src->mb2br_xy;
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride;
dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride;
dst->direct_table = src->direct_table;
dst->list_counts = src->list_counts;
dst->DPB = src->DPB;
dst->cur_pic_ptr = src->cur_pic_ptr;
dst->cur_pic = src->cur_pic;
dst->bipred_scratchpad = NULL;
dst->edge_emu_buffer = NULL;
ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma,
src->sps.chroma_format_idc);
}
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
#undef REBASE_PICTURE
#define REBASE_PICTURE(pic, new_ctx, old_ctx) \
(((pic) && (pic) >= (old_ctx)->DPB && \
(pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
&(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
H264Context *new_base,
H264Context *old_base)
{
int i;
for (i = 0; i < count; i++) {
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
IN_RANGE(from[i], old_base->DPB,
sizeof(H264Picture) * H264_MAX_PICTURE_COUNT) ||
!from[i]));
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
}
}
static int copy_parameter_set(void **to, void **from, int count, int size)
{
int i;
for (i = 0; i < count; i++) {
if (to[i] && !from[i]) {
av_freep(&to[i]);
} else if (from[i] && !to[i]) {
to[i] = av_malloc(size);
if (!to[i])
return AVERROR(ENOMEM);
}
if (from[i])
memcpy(to[i], from[i], size);
}
return 0;
}
#define copy_fields(to, from, start_field, end_field) \
memcpy(&(to)->start_field, &(from)->start_field, \
(char *)&(to)->end_field - (char *)&(to)->start_field)
static int h264_slice_header_init(H264Context *h, int reinit);
int ff_h264_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
H264Context *h = dst->priv_data, *h1 = src->priv_data;
int inited = h->context_initialized, err = 0;
int context_reinitialized = 0;
int i, ret;
if (dst == src)
return 0;
if (inited &&
(h->width != h1->width ||
h->height != h1->height ||
h->mb_width != h1->mb_width ||
h->mb_height != h1->mb_height ||
h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
h->sps.colorspace != h1->sps.colorspace)) {
/* set bits_per_raw_sample to the previous value. the check for changed
* bit depth in h264_set_parameter_from_sps() uses it and sets it to
* the current value */
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
av_freep(&h->bipred_scratchpad);
h->width = h1->width;
h->height = h1->height;
h->mb_height = h1->mb_height;
h->mb_width = h1->mb_width;
h->mb_num = h1->mb_num;
h->mb_stride = h1->mb_stride;
h->b_stride = h1->b_stride;
// SPS/PPS
if ((ret = copy_parameter_set((void **)h->sps_buffers,
(void **)h1->sps_buffers,
MAX_SPS_COUNT, sizeof(SPS))) < 0)
return ret;
h->sps = h1->sps;
if ((ret = copy_parameter_set((void **)h->pps_buffers,
(void **)h1->pps_buffers,
MAX_PPS_COUNT, sizeof(PPS))) < 0)
return ret;
h->pps = h1->pps;
if ((err = h264_slice_header_init(h, 1)) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n");
return err;
}
context_reinitialized = 1;
#if 0
h264_set_parameter_from_sps(h);
//Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted
h->cur_chroma_format_idc = h1->cur_chroma_format_idc;
#endif
}
/* update linesize on resize for h264. The h264 decoder doesn't
* necessarily call ff_mpv_frame_start in the new thread */
h->linesize = h1->linesize;
h->uvlinesize = h1->uvlinesize;
/* copy block_offset since frame_start may not be called */
memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
if (!inited) {
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
av_freep(&h->rbsp_buffer[0]);
av_freep(&h->rbsp_buffer[1]);
memcpy(h, h1, offsetof(H264Context, intra_pcm_ptr));
memcpy(&h->cabac, &h1->cabac,
sizeof(H264Context) - offsetof(H264Context, cabac));
av_assert0((void*)&h->cabac == &h->mb_padding + 1);
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
memset(&h->er, 0, sizeof(h->er));
memset(&h->mb, 0, sizeof(h->mb));
memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc));
memset(&h->mb_padding, 0, sizeof(h->mb_padding));
memset(&h->cur_pic, 0, sizeof(h->cur_pic));
h->avctx = dst;
h->DPB = NULL;
h->qscale_table_pool = NULL;
h->mb_type_pool = NULL;
h->ref_index_pool = NULL;
h->motion_val_pool = NULL;
for (i = 0; i < 2; i++) {
h->rbsp_buffer[i] = NULL;
h->rbsp_buffer_size[i] = 0;
}
if (h1->context_initialized) {
h->context_initialized = 0;
memset(&h->cur_pic, 0, sizeof(h->cur_pic));
av_frame_unref(&h->cur_pic.f);
h->cur_pic.tf.f = &h->cur_pic.f;
ret = ff_h264_alloc_tables(h);
if (ret < 0) {
av_log(dst, AV_LOG_ERROR, "Could not allocate memory\n");
return ret;
}
ret = ff_h264_context_init(h);
if (ret < 0) {
av_log(dst, AV_LOG_ERROR, "context_init() failed.\n");
return ret;
}
}
h->bipred_scratchpad = NULL;
h->edge_emu_buffer = NULL;
h->thread_context[0] = h;
h->context_initialized = h1->context_initialized;
}
h->avctx->coded_height = h1->avctx->coded_height;
h->avctx->coded_width = h1->avctx->coded_width;
h->avctx->width = h1->avctx->width;
h->avctx->height = h1->avctx->height;
h->coded_picture_number = h1->coded_picture_number;
h->first_field = h1->first_field;
h->picture_structure = h1->picture_structure;
h->qscale = h1->qscale;
h->droppable = h1->droppable;
h->low_delay = h1->low_delay;
for (i = 0; h->DPB && i < H264_MAX_PICTURE_COUNT; i++) {
ff_h264_unref_picture(h, &h->DPB[i]);
if (h1->DPB && h1->DPB[i].f.buf[0] &&
(ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
return ret;
}
h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
ff_h264_unref_picture(h, &h->cur_pic);
if (h1->cur_pic.f.buf[0] && (ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic)) < 0)
return ret;
h->workaround_bugs = h1->workaround_bugs;
h->low_delay = h1->low_delay;
h->droppable = h1->droppable;
// extradata/NAL handling
h->is_avc = h1->is_avc;
// SPS/PPS
if ((ret = copy_parameter_set((void **)h->sps_buffers,
(void **)h1->sps_buffers,
MAX_SPS_COUNT, sizeof(SPS))) < 0)
return ret;
h->sps = h1->sps;
if ((ret = copy_parameter_set((void **)h->pps_buffers,
(void **)h1->pps_buffers,
MAX_PPS_COUNT, sizeof(PPS))) < 0)
return ret;
h->pps = h1->pps;
// Dequantization matrices
// FIXME these are big - can they be only copied when PPS changes?
copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
for (i = 0; i < 6; i++)
h->dequant4_coeff[i] = h->dequant4_buffer[0] +
(h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
for (i = 0; i < 6; i++)
h->dequant8_coeff[i] = h->dequant8_buffer[0] +
(h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
h->dequant_coeff_pps = h1->dequant_coeff_pps;
// POC timing
copy_fields(h, h1, poc_lsb, redundant_pic_count);
// reference lists
copy_fields(h, h1, short_ref, cabac_init_idc);
copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
copy_picture_range(h->delayed_pic, h1->delayed_pic,
MAX_DELAYED_PIC_COUNT + 2, h, h1);
h->frame_recovered = h1->frame_recovered;
if (context_reinitialized)
ff_h264_set_parameter_from_sps(h);
if (!h->cur_pic_ptr)
return 0;
if (!h->droppable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset = h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
h->recovery_frame = h1->recovery_frame;
return err;
}
static int h264_frame_start(H264Context *h)
{
H264Picture *pic;
int i, ret;
const int pixel_shift = h->pixel_shift;
int c[4] = {
1<<(h->sps.bit_depth_luma-1),
1<<(h->sps.bit_depth_chroma-1),
1<<(h->sps.bit_depth_chroma-1),
-1
};
if (!ff_thread_can_start_frame(h->avctx)) {
av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
return -1;
}
release_unused_pictures(h, 1);
h->cur_pic_ptr = NULL;
i = find_unused_picture(h);
if (i < 0) {
av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
return i;
}
pic = &h->DPB[i];
pic->reference = h->droppable ? 0 : h->picture_structure;
pic->f.coded_picture_number = h->coded_picture_number++;
pic->field_picture = h->picture_structure != PICT_FRAME;
/*
* Zero key_frame here; IDR markings per slice in frame or fields are ORed
* in later.
* See decode_nal_units().
*/
pic->f.key_frame = 0;
pic->mmco_reset = 0;
pic->recovered = 0;
pic->invalid_gap = 0;
pic->sei_recovery_frame_cnt = h->sei_recovery_frame_cnt;
if ((ret = alloc_picture(h, pic)) < 0)
return ret;
if(!h->frame_recovered && !h->avctx->hwaccel &&
!(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU))
avpriv_color_frame(&pic->f, c);
h->cur_pic_ptr = pic;
ff_h264_unref_picture(h, &h->cur_pic);
if (CONFIG_ERROR_RESILIENCE) {
ff_h264_set_erpic(&h->er.cur_pic, NULL);
}
if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
return ret;
if (CONFIG_ERROR_RESILIENCE) {
ff_er_frame_start(&h->er);
ff_h264_set_erpic(&h->er.last_pic, NULL);
ff_h264_set_erpic(&h->er.next_pic, NULL);
}
assert(h->linesize && h->uvlinesize);
for (i = 0; i < 16; i++) {
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
h->block_offset[16 + i] =
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + 16 + i] =
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
}
/* We mark the current picture as non-reference after allocating it, so
* that if we break out due to an error it can be released automatically
* in the next ff_mpv_frame_start().
*/
h->cur_pic_ptr->reference = 0;
h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
h->next_output_pic = NULL;
assert(h->cur_pic_ptr->long_ref == 0);
return 0;
}
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int simple)
{
uint8_t *top_border;
int top_idx = 1;
const int pixel_shift = h->pixel_shift;
int chroma444 = CHROMA444(h);
int chroma422 = CHROMA422(h);
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
if (!simple && FRAME_MBAFF(h)) {
if (h->mb_y & 1) {
if (!MB_MBAFF(h)) {
top_border = h->top_borders[0][h->mb_x];
AV_COPY128(top_border, src_y + 15 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
}
}
}
}
} else if (MB_MBAFF(h)) {
top_idx = 0;
} else
return;
}
top_border = h->top_borders[top_idx][h->mb_x];
/* There are two lines saved, the line above the top macroblock
* of a pair, and the line above the bottom macroblock. */
AV_COPY128(top_border, src_y + 16 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * linesize);
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
AV_COPY128(top_border + 64, src_cr + 16 * linesize);
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 16 * linesize);
AV_COPY128(top_border + 32, src_cr + 16 * linesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
}
}
}
}
/**
* Initialize implicit_weight table.
* @param field 0/1 initialize the weight for interlaced MBAFF
* -1 initializes the rest
*/
static void implicit_weight_table(H264Context *h, int field)
{
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
if (field < 0) {
if (h->picture_structure == PICT_FRAME) {
cur_poc = h->cur_pic_ptr->poc;
} else {
cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
}
if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) {
h->use_weight = 0;
h->use_weight_chroma = 0;
return;
}
ref_start = 0;
ref_count0 = h->ref_count[0];
ref_count1 = h->ref_count[1];
} else {
cur_poc = h->cur_pic_ptr->field_poc[field];
ref_start = 16;
ref_count0 = 16 + 2 * h->ref_count[0];
ref_count1 = 16 + 2 * h->ref_count[1];
}
h->use_weight = 2;
h->use_weight_chroma = 2;
h->luma_log2_weight_denom = 5;
h->chroma_log2_weight_denom = 5;
for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
int poc0 = h->ref_list[0][ref0].poc;
for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
int w = 32;
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
int poc1 = h->ref_list[1][ref1].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if (td) {
int tb = av_clip(cur_poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = (tb * tx + 32) >> 8;
if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
w = 64 - dist_scale_factor;
}
}
if (field < 0) {
h->implicit_weight[ref0][ref1][0] =
h->implicit_weight[ref0][ref1][1] = w;
} else {
h->implicit_weight[ref0][ref1][field] = w;
}
}
}
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h)
{
int i;
for (i = 0; i < 16; i++) {
#define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
h->field_scan[i] = TRANSPOSE(field_scan[i]);
#undef TRANSPOSE
}
for (i = 0; i < 64; i++) {
#define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
#undef TRANSPOSE
}
if (h->sps.transform_bypass) { // FIXME same ugly
memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
} else {
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
}
}
/**
* Replicate H264 "master" context to thread contexts.
*/
static int clone_slice(H264Context *dst, H264Context *src)
{
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
dst->cur_pic_ptr = src->cur_pic_ptr;
dst->cur_pic = src->cur_pic;
dst->linesize = src->linesize;
dst->uvlinesize = src->uvlinesize;
dst->first_field = src->first_field;
dst->prev_poc_msb = src->prev_poc_msb;
dst->prev_poc_lsb = src->prev_poc_lsb;
dst->prev_frame_num_offset = src->prev_frame_num_offset;
dst->prev_frame_num = src->prev_frame_num;
dst->short_ref_count = src->short_ref_count;
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
return 0;
}
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
{
switch (h->sps.bit_depth_luma) {
case 9:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP9;
} else
return AV_PIX_FMT_YUV444P9;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P9;
else
return AV_PIX_FMT_YUV420P9;
break;
case 10:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP10;
} else
return AV_PIX_FMT_YUV444P10;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P10;
else
return AV_PIX_FMT_YUV420P10;
break;
case 12:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP12;
} else
return AV_PIX_FMT_YUV444P12;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P12;
else
return AV_PIX_FMT_YUV420P12;
break;
case 14:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
return AV_PIX_FMT_GBRP14;
} else
return AV_PIX_FMT_YUV444P14;
} else if (CHROMA422(h))
return AV_PIX_FMT_YUV422P14;
else
return AV_PIX_FMT_YUV420P14;
break;
case 8:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
return AV_PIX_FMT_GBR24P;
} else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) {
av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n");
}
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P
: AV_PIX_FMT_YUV444P;
} else if (CHROMA422(h)) {
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P
: AV_PIX_FMT_YUV422P;
} else {
int i;
const enum AVPixelFormat * fmt = h->avctx->codec->pix_fmts ?
h->avctx->codec->pix_fmts :
h->avctx->color_range == AVCOL_RANGE_JPEG ?
h264_hwaccel_pixfmt_list_jpeg_420 :
h264_hwaccel_pixfmt_list_420;
for (i=0; fmt[i] != AV_PIX_FMT_NONE; i++)
if (fmt[i] == h->avctx->pix_fmt && !force_callback)
return fmt[i];
return ff_thread_get_format(h->avctx, fmt);
}
break;
default:
av_log(h->avctx, AV_LOG_ERROR,
"Unsupported bit depth %d\n", h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
}
}
/* export coded and cropped frame dimensions to AVCodecContext */
static int init_dimensions(H264Context *h)
{
int width = h->width - (h->sps.crop_right + h->sps.crop_left);
int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
int crop_present = h->sps.crop_left || h->sps.crop_top ||
h->sps.crop_right || h->sps.crop_bottom;
av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width);
av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height);
/* handle container cropping */
if (!crop_present &&
FFALIGN(h->avctx->width, 16) == h->width &&
FFALIGN(h->avctx->height, 16) == h->height) {
width = h->avctx->width;
height = h->avctx->height;
}
if (width <= 0 || height <= 0) {
av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
width, height);
if (h->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
h->sps.crop_bottom =
h->sps.crop_top =
h->sps.crop_right =
h->sps.crop_left =
h->sps.crop = 0;
width = h->width;
height = h->height;
}
h->avctx->coded_width = h->width;
h->avctx->coded_height = h->height;
h->avctx->width = width;
h->avctx->height = height;
return 0;
}
static int h264_slice_header_init(H264Context *h, int reinit)
{
int nb_slices = (HAVE_THREADS &&
h->avctx->active_thread_type & FF_THREAD_SLICE) ?
h->avctx->thread_count : 1;
int i, ret;
ff_set_sar(h->avctx, h->sps.sar);
av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
&h->chroma_x_shift, &h->chroma_y_shift);
if (h->sps.timing_info_present_flag) {
int64_t den = h->sps.time_scale;
if (h->x264_build < 44U)
den *= 2;
av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den,
h->sps.num_units_in_tick, den, 1 << 30);
}
if (reinit)
ff_h264_free_tables(h, 0);
h->first_field = 0;
h->prev_interlaced_frame = 1;
init_scan_tables(h);
ret = ff_h264_alloc_tables(h);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
goto fail;
}
if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
int max_slices;
if (h->mb_height)
max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
else
max_slices = H264_MAX_THREADS;
av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
" reducing to %d\n", nb_slices, max_slices);
nb_slices = max_slices;
}
h->slice_context_count = nb_slices;
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
ret = ff_h264_context_init(h);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
goto fail;
}
} else {
for (i = 1; i < h->slice_context_count; i++) {
H264Context *c;
c = h->thread_context[i] = av_mallocz(sizeof(H264Context));
if (!c) {
ret = AVERROR(ENOMEM);
goto fail;
}
c->avctx = h->avctx;
if (CONFIG_ERROR_RESILIENCE) {
c->mecc = h->mecc;
}
c->vdsp = h->vdsp;
c->h264dsp = h->h264dsp;
c->h264qpel = h->h264qpel;
c->h264chroma = h->h264chroma;
c->sps = h->sps;
c->pps = h->pps;
c->pixel_shift = h->pixel_shift;
c->cur_chroma_format_idc = h->cur_chroma_format_idc;
c->width = h->width;
c->height = h->height;
c->linesize = h->linesize;
c->uvlinesize = h->uvlinesize;
c->chroma_x_shift = h->chroma_x_shift;
c->chroma_y_shift = h->chroma_y_shift;
c->qscale = h->qscale;
c->droppable = h->droppable;
c->data_partitioning = h->data_partitioning;
c->low_delay = h->low_delay;
c->mb_width = h->mb_width;
c->mb_height = h->mb_height;
c->mb_stride = h->mb_stride;
c->mb_num = h->mb_num;
c->flags = h->flags;
c->workaround_bugs = h->workaround_bugs;
c->pict_type = h->pict_type;
init_scan_tables(c);
clone_tables(c, h, i);
c->context_initialized = 1;
}
for (i = 0; i < h->slice_context_count; i++)
if ((ret = ff_h264_context_init(h->thread_context[i])) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
goto fail;
}
}
h->context_initialized = 1;
return 0;
fail:
ff_h264_free_tables(h, 0);
h->context_initialized = 0;
return ret;
}
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
{
switch (a) {
case AV_PIX_FMT_YUVJ420P: return AV_PIX_FMT_YUV420P;
case AV_PIX_FMT_YUVJ422P: return AV_PIX_FMT_YUV422P;
case AV_PIX_FMT_YUVJ444P: return AV_PIX_FMT_YUV444P;
default:
return a;
}
}
/**
* Decode a slice header.
* This will (re)intialize the decoder and call h264_frame_start() as needed.
*
* @param h h264context
* @param h0 h264 master context (differs from 'h' when doing sliced based
* parallel decoding)
*
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
*/
int ff_h264_decode_slice_header(H264Context *h, H264Context *h0)
{
unsigned int first_mb_in_slice;
unsigned int pps_id;
int ret;
unsigned int slice_type, tmp, i, j;
int last_pic_structure, last_pic_droppable;
int must_reinit;
int needs_reinit = 0;
int field_pic_flag, bottom_field_flag;
h->qpel_put = h->h264qpel.put_h264_qpel_pixels_tab;
h->qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab;
first_mb_in_slice = get_ue_golomb_long(&h->gb);
if (first_mb_in_slice == 0) { // FIXME better field boundary detection
if (h0->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) {
ff_h264_field_end(h, 1);
}
h0->current_slice = 0;
if (!h0->first_field) {
if (h->cur_pic_ptr && !h->droppable) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
h->cur_pic_ptr = NULL;
}
}
slice_type = get_ue_golomb_31(&h->gb);
if (slice_type > 9) {
av_log(h->avctx, AV_LOG_ERROR,
"slice type %d too large at %d %d\n",
slice_type, h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
}
if (slice_type > 4) {
slice_type -= 5;
h->slice_type_fixed = 1;
} else
h->slice_type_fixed = 0;
slice_type = golomb_to_pict_type[slice_type];
h->slice_type = slice_type;
h->slice_type_nos = slice_type & 3;
if (h->nal_unit_type == NAL_IDR_SLICE &&
h->slice_type_nos != AV_PICTURE_TYPE_I) {
av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
return AVERROR_INVALIDDATA;
}
if (
(h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
(h->avctx->skip_frame >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) ||
(h->avctx->skip_frame >= AVDISCARD_NONINTRA && h->slice_type_nos != AV_PICTURE_TYPE_I) ||
(h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != NAL_IDR_SLICE) ||
h->avctx->skip_frame >= AVDISCARD_ALL) {
return SLICE_SKIPED;
}
// to make a few old functions happy, it's wrong though
h->pict_type = h->slice_type;
pps_id = get_ue_golomb(&h->gb);
if (pps_id >= MAX_PPS_COUNT) {
av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
return AVERROR_INVALIDDATA;
}
if (!h0->pps_buffers[pps_id]) {
av_log(h->avctx, AV_LOG_ERROR,
"non-existing PPS %u referenced\n",
pps_id);
return AVERROR_INVALIDDATA;
}
if (h0->au_pps_id >= 0 && pps_id != h0->au_pps_id) {
av_log(h->avctx, AV_LOG_ERROR,
"PPS change from %d to %d forbidden\n",
h0->au_pps_id, pps_id);
return AVERROR_INVALIDDATA;
}
h->pps = *h0->pps_buffers[pps_id];
if (!h0->sps_buffers[h->pps.sps_id]) {
av_log(h->avctx, AV_LOG_ERROR,
"non-existing SPS %u referenced\n",
h->pps.sps_id);
return AVERROR_INVALIDDATA;
}
if (h->pps.sps_id != h->sps.sps_id ||
h->pps.sps_id != h->current_sps_id ||
h0->sps_buffers[h->pps.sps_id]->new) {
h->sps = *h0->sps_buffers[h->pps.sps_id];
if (h->mb_width != h->sps.mb_width ||
h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) ||
h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc
)
needs_reinit = 1;
if (h->bit_depth_luma != h->sps.bit_depth_luma ||
h->chroma_format_idc != h->sps.chroma_format_idc) {
h->bit_depth_luma = h->sps.bit_depth_luma;
h->chroma_format_idc = h->sps.chroma_format_idc;
needs_reinit = 1;
}
if ((ret = ff_h264_set_parameter_from_sps(h)) < 0)
return ret;
}
h->avctx->profile = ff_h264_get_profile(&h->sps);
h->avctx->level = h->sps.level_idc;
h->avctx->refs = h->sps.ref_frame_count;
must_reinit = (h->context_initialized &&
( 16*h->sps.mb_width != h->avctx->coded_width
|| 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height
|| h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
|| h->cur_chroma_format_idc != h->sps.chroma_format_idc
|| av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio)
|| h->mb_width != h->sps.mb_width
|| h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag)
));
if (non_j_pixfmt(h0->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h0, 0)))
must_reinit = 1;
h->mb_width = h->sps.mb_width;
h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
h->mb_num = h->mb_width * h->mb_height;
h->mb_stride = h->mb_width + 1;
h->b_stride = h->mb_width * 4;
h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
h->width = 16 * h->mb_width;
h->height = 16 * h->mb_height;
ret = init_dimensions(h);
if (ret < 0)
return ret;
if (h->sps.video_signal_type_present_flag) {
h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
if (h->sps.colour_description_present_flag) {
if (h->avctx->colorspace != h->sps.colorspace)
needs_reinit = 1;
h->avctx->color_primaries = h->sps.color_primaries;
h->avctx->color_trc = h->sps.color_trc;
h->avctx->colorspace = h->sps.colorspace;
}
}
if (h->context_initialized &&
(must_reinit || needs_reinit)) {
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR,
"changing width %d -> %d / height %d -> %d on "
"slice %d\n",
h->width, h->avctx->coded_width,
h->height, h->avctx->coded_height,
h0->current_slice + 1);
return AVERROR_INVALIDDATA;
}
ff_h264_flush_change(h);
if ((ret = get_pixel_format(h, 1)) < 0)
return ret;
h->avctx->pix_fmt = ret;
av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
"pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
if ((ret = h264_slice_header_init(h, 1)) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"h264_slice_header_init() failed\n");
return ret;
}
}
if (!h->context_initialized) {
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR,
"Cannot (re-)initialize context during parallel decoding.\n");
return AVERROR_PATCHWELCOME;
}
if ((ret = get_pixel_format(h, 1)) < 0)
return ret;
h->avctx->pix_fmt = ret;
if ((ret = h264_slice_header_init(h, 0)) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"h264_slice_header_init() failed\n");
return ret;
}
}
if (h == h0 && h->dequant_coeff_pps != pps_id) {
h->dequant_coeff_pps = pps_id;
h264_init_dequant_tables(h);
}
h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0;
h->mb_aff_frame = 0;
last_pic_structure = h0->picture_structure;
last_pic_droppable = h0->droppable;
h->droppable = h->nal_ref_idc == 0;
if (h->sps.frame_mbs_only_flag) {
h->picture_structure = PICT_FRAME;
} else {
if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
return -1;
}
field_pic_flag = get_bits1(&h->gb);
if (field_pic_flag) {
bottom_field_flag = get_bits1(&h->gb);
h->picture_structure = PICT_TOP_FIELD + bottom_field_flag;
} else {
h->picture_structure = PICT_FRAME;
h->mb_aff_frame = h->sps.mb_aff;
}
}
h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME;
if (h0->current_slice != 0) {
if (last_pic_structure != h->picture_structure ||
last_pic_droppable != h->droppable) {
av_log(h->avctx, AV_LOG_ERROR,
"Changing field mode (%d -> %d) between slices is not allowed\n",
last_pic_structure, h->picture_structure);
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_INVALIDDATA;
} else if (!h0->cur_pic_ptr) {
av_log(h->avctx, AV_LOG_ERROR,
"unset cur_pic_ptr on slice %d\n",
h0->current_slice + 1);
return AVERROR_INVALIDDATA;
}
} else {
/* Shorten frame num gaps so we don't have to allocate reference
* frames just to throw them away */
if (h->frame_num != h->prev_frame_num) {
int unwrap_prev_frame_num = h->prev_frame_num;
int max_frame_num = 1 << h->sps.log2_max_frame_num;
if (unwrap_prev_frame_num > h->frame_num)
unwrap_prev_frame_num -= max_frame_num;
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
if (unwrap_prev_frame_num < 0)
unwrap_prev_frame_num += max_frame_num;
h->prev_frame_num = unwrap_prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* Here, we're using that to see if we should mark previously
* decode frames as "finished".
* We have to do that before the "dummy" in-between frame allocation,
* since that can modify h->cur_pic_ptr. */
if (h0->first_field) {
assert(h0->cur_pic_ptr);
assert(h0->cur_pic_ptr->f.buf[0]);
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* Mark old field/frame as completed */
if (h0->cur_pic_ptr->tf.owner == h0->avctx) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_BOTTOM_FIELD);
}
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
if (last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
if (h0->cur_pic_ptr->frame_num != h->frame_num) {
/* This and previous field were reference, but had
* different frame_nums. Consider this field first in
* pair. Throw away previous field except for reference
* purposes. */
if (last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
/* Second field in complementary pair */
if (!((last_pic_structure == PICT_TOP_FIELD &&
h->picture_structure == PICT_BOTTOM_FIELD) ||
(last_pic_structure == PICT_BOTTOM_FIELD &&
h->picture_structure == PICT_TOP_FIELD))) {
av_log(h->avctx, AV_LOG_ERROR,
"Invalid field mode combination %d/%d\n",
last_pic_structure, h->picture_structure);
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_INVALIDDATA;
} else if (last_pic_droppable != h->droppable) {
avpriv_request_sample(h->avctx,
"Found reference and non-reference fields in the same frame, which");
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_PATCHWELCOME;
}
}
}
}
while (h->frame_num != h->prev_frame_num && !h0->first_field &&
h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
h->frame_num, h->prev_frame_num);
if (!h->sps.gaps_in_frame_num_allowed_flag)
for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
h->last_pocs[i] = INT_MIN;
ret = h264_frame_start(h);
if (ret < 0) {
h0->first_field = 0;
return ret;
}
h->prev_frame_num++;
h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
h->cur_pic_ptr->frame_num = h->prev_frame_num;
h->cur_pic_ptr->invalid_gap = !h->sps.gaps_in_frame_num_allowed_flag;
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
ret = ff_generate_sliding_window_mmcos(h, 1);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
/* Error concealment: If a ref is missing, copy the previous ref
* in its place.
* FIXME: Avoiding a memcpy would be nice, but ref handling makes
* many assumptions about there being no actual duplicates.
* FIXME: This does not copy padding for out-of-frame motion
* vectors. Given we are concealing a lost frame, this probably
* is not noticeable by comparison, but it should be fixed. */
if (h->short_ref_count) {
if (prev) {
av_image_copy(h->short_ref[0]->f.data,
h->short_ref[0]->f.linesize,
(const uint8_t **)prev->f.data,
prev->f.linesize,
h->avctx->pix_fmt,
h->mb_width * 16,
h->mb_height * 16);
h->short_ref[0]->poc = prev->poc + 2;
}
h->short_ref[0]->frame_num = h->prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* We're using that to see whether to continue decoding in that
* frame, or to allocate a new one. */
if (h0->first_field) {
assert(h0->cur_pic_ptr);
assert(h0->cur_pic_ptr->f.buf[0]);
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
h0->cur_pic_ptr = NULL;
h0->first_field = FIELD_PICTURE(h);
} else {
if (h0->cur_pic_ptr->frame_num != h->frame_num) {
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
h0->picture_structure==PICT_BOTTOM_FIELD);
/* This and the previous field had different frame_nums.
* Consider this field first in pair. Throw away previous
* one except for reference purposes. */
h0->first_field = 1;
h0->cur_pic_ptr = NULL;
} else {
/* Second field in complementary pair */
h0->first_field = 0;
}
}
} else {
/* Frame or first field in a potentially complementary pair */
h0->first_field = FIELD_PICTURE(h);
}
if (!FIELD_PICTURE(h) || h0->first_field) {
if (h264_frame_start(h) < 0) {
h0->first_field = 0;
return AVERROR_INVALIDDATA;
}
} else {
release_unused_pictures(h, 0);
}
/* Some macroblocks can be accessed before they're available in case
* of lost slices, MBAFF or threading. */
if (FIELD_PICTURE(h)) {
for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
} else {
memset(h->slice_table, -1,
(h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
}
h0->last_slice_type = -1;
}
if (h != h0 && (ret = clone_slice(h, h0)) < 0)
return ret;
/* can't be in alloc_tables because linesize isn't known there.
* FIXME: redo bipred weight to not require extra buffer? */
for (i = 0; i < h->slice_context_count; i++)
if (h->thread_context[i]) {
ret = alloc_scratch_buffers(h->thread_context[i], h->linesize);
if (ret < 0)
return ret;
}
h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
av_assert1(h->mb_num == h->mb_width * h->mb_height);
if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
first_mb_in_slice >= h->mb_num) {
av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return AVERROR_INVALIDDATA;
}
h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width;
h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) <<
FIELD_OR_MBAFF_PICTURE(h);
if (h->picture_structure == PICT_BOTTOM_FIELD)
h->resync_mb_y = h->mb_y = h->mb_y + 1;
av_assert1(h->mb_y < h->mb_height);
if (h->picture_structure == PICT_FRAME) {
h->curr_pic_num = h->frame_num;
h->max_pic_num = 1 << h->sps.log2_max_frame_num;
} else {
h->curr_pic_num = 2 * h->frame_num + 1;
h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
}
if (h->nal_unit_type == NAL_IDR_SLICE)
get_ue_golomb(&h->gb); /* idr_pic_id */
if (h->sps.poc_type == 0) {
h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
h->delta_poc_bottom = get_se_golomb(&h->gb);
}
if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
h->delta_poc[0] = get_se_golomb(&h->gb);
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
h->delta_poc[1] = get_se_golomb(&h->gb);
}
ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc);
if (h->pps.redundant_pic_cnt_present)
h->redundant_pic_count = get_ue_golomb(&h->gb);
ret = ff_set_ref_count(h);
if (ret < 0)
return ret;
if (slice_type != AV_PICTURE_TYPE_I &&
(h0->current_slice == 0 ||
slice_type != h0->last_slice_type ||
memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) {
ff_h264_fill_default_ref_list(h);
}
if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
ret = ff_h264_decode_ref_pic_list_reordering(h);
if (ret < 0) {
h->ref_count[1] = h->ref_count[0] = 0;
return ret;
}
}
if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) ||
(h->pps.weighted_bipred_idc == 1 &&
h->slice_type_nos == AV_PICTURE_TYPE_B))
ff_pred_weight_table(h);
else if (h->pps.weighted_bipred_idc == 2 &&
h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, -1);
} else {
h->use_weight = 0;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
}
// If frame-mt is enabled, only update mmco tables for the first slice
// in a field. Subsequent slices can temporarily clobber h->mmco_index
// or h->mmco, which will cause ref list mix-ups and decoding errors
// further down the line. This may break decoding if the first slice is
// corrupt, thus we only do this if frame-mt is enabled.
if (h->nal_ref_idc) {
ret = ff_h264_decode_ref_pic_marking(h0, &h->gb,
!(h->avctx->active_thread_type & FF_THREAD_FRAME) ||
h0->current_slice == 0);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
}
if (FRAME_MBAFF(h)) {
ff_h264_fill_mbaff_ref_list(h);
if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, 0);
implicit_weight_table(h, 1);
}
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
ff_h264_direct_dist_scale_factor(h);
ff_h264_direct_ref_list_init(h);
if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
tmp = get_ue_golomb_31(&h->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
return AVERROR_INVALIDDATA;
}
h->cabac_init_idc = tmp;
}
h->last_qscale_diff = 0;
tmp = h->pps.init_qp + get_se_golomb(&h->gb);
if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return AVERROR_INVALIDDATA;
}
h->qscale = tmp;
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
// FIXME qscale / qp ... stuff
if (h->slice_type == AV_PICTURE_TYPE_SP)
get_bits1(&h->gb); /* sp_for_switch_flag */
if (h->slice_type == AV_PICTURE_TYPE_SP ||
h->slice_type == AV_PICTURE_TYPE_SI)
get_se_golomb(&h->gb); /* slice_qs_delta */
h->deblocking_filter = 1;
h->slice_alpha_c0_offset = 0;
h->slice_beta_offset = 0;
if (h->pps.deblocking_filter_parameters_present) {
tmp = get_ue_golomb_31(&h->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking_filter_idc %u out of range\n", tmp);
return AVERROR_INVALIDDATA;
}
h->deblocking_filter = tmp;
if (h->deblocking_filter < 2)
h->deblocking_filter ^= 1; // 1<->0
if (h->deblocking_filter) {
h->slice_alpha_c0_offset = get_se_golomb(&h->gb) * 2;
h->slice_beta_offset = get_se_golomb(&h->gb) * 2;
if (h->slice_alpha_c0_offset > 12 ||
h->slice_alpha_c0_offset < -12 ||
h->slice_beta_offset > 12 ||
h->slice_beta_offset < -12) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking filter parameters %d %d out of range\n",
h->slice_alpha_c0_offset, h->slice_beta_offset);
return AVERROR_INVALIDDATA;
}
}
}
if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
h->nal_unit_type != NAL_IDR_SLICE) ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
h->slice_type_nos != AV_PICTURE_TYPE_I) ||
(h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
h->slice_type_nos == AV_PICTURE_TYPE_B) ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
h->nal_ref_idc == 0))
h->deblocking_filter = 0;
if (h->deblocking_filter == 1 && h0->max_contexts > 1) {
if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
/* Cheat slightly for speed:
* Do not bother to deblock across slices. */
h->deblocking_filter = 2;
} else {
h0->max_contexts = 1;
if (!h0->single_decode_warning) {
av_log(h->avctx, AV_LOG_INFO,
"Cannot parallelize slice decoding with deblocking filter type 1, decoding such frames in sequential order\n"
"To parallelize slice decoding you need video encoded with disable_deblocking_filter_idc set to 2 (deblock only edges that do not cross slices).\n"
"Setting the flags2 libavcodec option to +fast (-flags2 +fast) will disable deblocking across slices and enable parallel slice decoding "
"but will generate non-standard-compliant output.\n");
h0->single_decode_warning = 1;
}
if (h != h0) {
av_log(h->avctx, AV_LOG_ERROR,
"Deblocking switched inside frame.\n");
return SLICE_SINGLETHREAD;
}
}
}
h->qp_thresh = 15 -
FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) -
FFMAX3(0,
h->pps.chroma_qp_index_offset[0],
h->pps.chroma_qp_index_offset[1]) +
6 * (h->sps.bit_depth_luma - 8);
h0->last_slice_type = slice_type;
memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count));
h->slice_num = ++h0->current_slice;
if (h->slice_num)
h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y;
if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y
&& h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y
&& h->slice_num >= MAX_SLICES) {
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
}
for (j = 0; j < 2; j++) {
int id_list[16];
int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j];
for (i = 0; i < 16; i++) {
id_list[i] = 60;
if (j < h->list_count && i < h->ref_count[j] &&
h->ref_list[j][i].f.buf[0]) {
int k;
AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer;
for (k = 0; k < h->short_ref_count; k++)
if (h->short_ref[k]->f.buf[0]->buffer == buf) {
id_list[i] = k;
break;
}
for (k = 0; k < h->long_ref_count; k++)
if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) {
id_list[i] = h->short_ref_count + k;
break;
}
}
}
ref2frm[0] =
ref2frm[1] = -1;
for (i = 0; i < 16; i++)
ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3);
ref2frm[18 + 0] =
ref2frm[18 + 1] = -1;
for (i = 16; i < 48; i++)
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
(h->ref_list[j][i].reference & 3);
}
if (h->ref_count[0]) ff_h264_set_erpic(&h->er.last_pic, &h->ref_list[0][0]);
if (h->ref_count[1]) ff_h264_set_erpic(&h->er.next_pic, &h->ref_list[1][0]);
h->er.ref_count = h->ref_count[0];
h0->au_pps_id = pps_id;
h->sps.new =
h0->sps_buffers[h->pps.sps_id]->new = 0;
h->current_sps_id = h->pps.sps_id;
if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
av_log(h->avctx, AV_LOG_DEBUG,
"slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
h->slice_num,
(h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
first_mb_in_slice,
av_get_picture_type_char(h->slice_type),
h->slice_type_fixed ? " fix" : "",
h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
pps_id, h->frame_num,
h->cur_pic_ptr->field_poc[0],
h->cur_pic_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
h->qscale,
h->deblocking_filter,
h->slice_alpha_c0_offset, h->slice_beta_offset,
h->use_weight,
h->use_weight == 1 && h->use_weight_chroma ? "c" : "",
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
}
return 0;
}
int ff_h264_get_slice_type(const H264Context *h)
{
switch (h->slice_type) {
case AV_PICTURE_TYPE_P:
return 0;
case AV_PICTURE_TYPE_B:
return 1;
case AV_PICTURE_TYPE_I:
return 2;
case AV_PICTURE_TYPE_SP:
return 3;
case AV_PICTURE_TYPE_SI:
return 4;
default:
return AVERROR_INVALIDDATA;
}
}
static av_always_inline void fill_filter_caches_inter(H264Context *h,
int mb_type, int top_xy,
int left_xy[LEFT_MBS],
int top_type,
int left_type[LEFT_MBS],
int mb_xy, int list)
{
int b_stride = h->b_stride;
int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
const int b8_xy = 4 * top_xy + 2;
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
ref_cache[0 - 1 * 8] =
ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
ref_cache[2 - 1 * 8] =
ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
} else {
AV_ZERO128(mv_dst - 1 * 8);
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
}
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy = 4 * left_xy[LTOP] + 1;
int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
} else {
AV_ZERO32(mv_dst - 1 + 0);
AV_ZERO32(mv_dst - 1 + 8);
AV_ZERO32(mv_dst - 1 + 16);
AV_ZERO32(mv_dst - 1 + 24);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] =
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = LIST_NOT_USED;
}
}
}
if (!USES_LIST(mb_type, list)) {
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
return;
}
{
int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
AV_WN32A(&ref_cache[0 * 8], ref01);
AV_WN32A(&ref_cache[1 * 8], ref01);
AV_WN32A(&ref_cache[2 * 8], ref23);
AV_WN32A(&ref_cache[3 * 8], ref23);
}
{
int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride];
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
}
}
/**
*
* @return non zero if the loop filter can be skipped
*/
static int fill_filter_caches(H264Context *h, int mb_type)
{
const int mb_xy = h->mb_xy;
int top_xy, left_xy[LEFT_MBS];
int top_type, left_type[LEFT_MBS];
uint8_t *nnz;
uint8_t *nnz_cache;
top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
if (FRAME_MBAFF(h)) {
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if (h->mb_y & 1) {
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LTOP] -= h->mb_stride;
} else {
if (curr_mb_field_flag)
top_xy += h->mb_stride &
(((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LBOT] += h->mb_stride;
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[LTOP] = left_xy[LTOP];
h->left_mb_xy[LBOT] = left_xy[LBOT];
{
/* For sufficiently low qp, filtering wouldn't do anything.
* This is a conservative estimate: could also check beta_offset
* and more accurate chroma_qp. */
int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
int qp = h->cur_pic.qscale_table[mb_xy];
if (qp <= qp_thresh &&
(left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
(top_xy < 0 ||
((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
if (!FRAME_MBAFF(h))
return 1;
if ((left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
(top_xy < h->mb_stride ||
((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
return 1;
}
}
top_type = h->cur_pic.mb_type[top_xy];
left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
if (h->deblocking_filter == 2) {
if (h->slice_table[top_xy] != h->slice_num)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] != h->slice_num)
left_type[LTOP] = left_type[LBOT] = 0;
} else {
if (h->slice_table[top_xy] == 0xFFFF)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
left_type[LTOP] = left_type[LBOT] = 0;
}
h->top_type = top_type;
h->left_type[LTOP] = left_type[LTOP];
h->left_type[LBOT] = left_type[LBOT];
if (IS_INTRA(mb_type))
return 0;
fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 0);
if (h->list_count == 2)
fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 1);
nnz = h->non_zero_count[mb_xy];
nnz_cache = h->non_zero_count_cache;
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
h->cbp = h->cbp_table[mb_xy];
if (top_type) {
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
}
if (left_type[LTOP]) {
nnz = h->non_zero_count[left_xy[LTOP]];
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
}
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ
* from what the loop filter needs */
if (!CABAC(h) && h->pps.transform_8x8_mode) {
if (IS_8x8DCT(top_type)) {
nnz_cache[4 + 8 * 0] =
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
nnz_cache[6 + 8 * 0] =
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
}
if (IS_8x8DCT(left_type[LTOP])) {
nnz_cache[3 + 8 * 1] =
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(left_type[LBOT])) {
nnz_cache[3 + 8 * 3] =
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(mb_type)) {
nnz_cache[scan8[0]] =
nnz_cache[scan8[1]] =
nnz_cache[scan8[2]] =
nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12;
nnz_cache[scan8[0 + 4]] =
nnz_cache[scan8[1 + 4]] =
nnz_cache[scan8[2 + 4]] =
nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12;
nnz_cache[scan8[0 + 8]] =
nnz_cache[scan8[1 + 8]] =
nnz_cache[scan8[2 + 8]] =
nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12;
nnz_cache[scan8[0 + 12]] =
nnz_cache[scan8[1 + 12]] =
nnz_cache[scan8[2 + 12]] =
nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12;
}
}
return 0;
}
static void loop_filter(H264Context *h, int start_x, int end_x)
{
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y = h->mb_y + FRAME_MBAFF(h);
const int old_slice_type = h->slice_type;
const int pixel_shift = h->pixel_shift;
const int block_h = 16 >> h->chroma_y_shift;
if (h->deblocking_filter) {
for (mb_x = start_x; mb_x < end_x; mb_x++)
for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
int mb_xy, mb_type;
mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride;
h->slice_num = h->slice_table[mb_xy];
mb_type = h->cur_pic.mb_type[mb_xy];
h->list_count = h->list_counts[mb_xy];
if (FRAME_MBAFF(h))
h->mb_mbaff =
h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
h->mb_x = mb_x;
h->mb_y = mb_y;
dest_y = h->cur_pic.f.data[0] +
((mb_x << pixel_shift) + mb_y * h->linesize) * 16;
dest_cb = h->cur_pic.f.data[1] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * h->uvlinesize * block_h;
dest_cr = h->cur_pic.f.data[2] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * h->uvlinesize * block_h;
// FIXME simplify above
if (MB_FIELD(h)) {
linesize = h->mb_linesize = h->linesize * 2;
uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2;
if (mb_y & 1) { // FIXME move out of this function?
dest_y -= h->linesize * 15;
dest_cb -= h->uvlinesize * (block_h - 1);
dest_cr -= h->uvlinesize * (block_h - 1);
}
} else {
linesize = h->mb_linesize = h->linesize;
uvlinesize = h->mb_uvlinesize = h->uvlinesize;
}
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 0);
if (fill_filter_caches(h, mb_type))
continue;
h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
if (FRAME_MBAFF(h)) {
ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr,
linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb,
dest_cr, linesize, uvlinesize);
}
}
}
h->slice_type = old_slice_type;
h->mb_x = end_x;
h->mb_y = end_mb_y - FRAME_MBAFF(h);
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
}
static void predict_field_decoding_flag(H264Context *h)
{
const int mb_xy = h->mb_x + h->mb_y * h->mb_stride;
int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ?
h->cur_pic.mb_type[mb_xy - 1] :
(h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ?
h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* Draw edges and report progress for the last MB row.
*/
static void decode_finish_row(H264Context *h)
{
int top = 16 * (h->mb_y >> FIELD_PICTURE(h));
int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
int height = 16 << FRAME_MBAFF(h);
int deblock_border = (16 + 4) << FRAME_MBAFF(h);
if (h->deblocking_filter) {
if ((top + height) >= pic_height)
height += deblock_border;
top -= deblock_border;
}
if (top >= pic_height || (top + height) < 0)
return;
height = FFMIN(height, pic_height - top);
if (top < 0) {
height = top + height;
top = 0;
}
ff_h264_draw_horiz_band(h, top, height);
if (h->droppable || h->er.error_occurred)
return;
ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
h->picture_structure == PICT_BOTTOM_FIELD);
}
static void er_add_slice(H264Context *h, int startx, int starty,
int endx, int endy, int status)
{
if (CONFIG_ERROR_RESILIENCE) {
ERContext *er = &h->er;
ff_er_add_slice(er, startx, starty, endx, endy, status);
}
}
static int decode_slice(struct AVCodecContext *avctx, void *arg)
{
H264Context *h = *(void **)arg;
int lf_x_start = h->mb_x;
h->mb_skip_run = -1;
av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3));
h->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
avctx->codec_id != AV_CODEC_ID_H264 ||
(CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->er.error_status_table) {
const int start_i = av_clip(h->resync_mb_x + h->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
if (start_i) {
int prev_status = h->er.error_status_table[h->er.mb_index2xy[start_i - 1]];
prev_status &= ~ VP_START;
if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
h->er.error_occurred = 1;
}
}
if (h->pps.cabac) {
/* realign */
align_get_bits(&h->gb);
/* init cabac */
ff_init_cabac_decoder(&h->cabac,
h->gb.buffer + get_bits_count(&h->gb) / 8,
(get_bits_left(&h->gb) + 7) / 8);
ff_h264_init_cabac_states(h);
for (;;) {
// START_TIMER
int ret = ff_h264_decode_mb_cabac(h);
int eos;
// STOP_TIMER("decode_mb_cabac")
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
h->mb_y++;
ret = ff_h264_decode_mb_cabac(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
h->mb_y--;
}
eos = get_cabac_terminate(&h->cabac);
if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
h->cabac.bytestream > h->cabac.bytestream_end + 2) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
h->mb_y, ER_MB_END);
if (h->mb_x >= lf_x_start)
loop_filter(h, lf_x_start, h->mb_x + 1);
return 0;
}
if (h->cabac.bytestream > h->cabac.bytestream_end + 2 )
av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", h->cabac.bytestream_end - h->cabac.bytestream);
if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
h->mb_x, h->mb_y,
h->cabac.bytestream_end - h->cabac.bytestream);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
if (++h->mb_x >= h->mb_width) {
loop_filter(h, lf_x_start, h->mb_x);
h->mb_x = lf_x_start = 0;
decode_finish_row(h);
++h->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++h->mb_y;
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
predict_field_decoding_flag(h);
}
}
if (eos || h->mb_y >= h->mb_height) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
h->mb_y, ER_MB_END);
if (h->mb_x > lf_x_start)
loop_filter(h, lf_x_start, h->mb_x);
return 0;
}
}
} else {
for (;;) {
int ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
h->mb_y++;
ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
h->mb_y--;
}
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", h->mb_x, h->mb_y);
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return ret;
}
if (++h->mb_x >= h->mb_width) {
loop_filter(h, lf_x_start, h->mb_x);
h->mb_x = lf_x_start = 0;
decode_finish_row(h);
++h->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++h->mb_y;
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
predict_field_decoding_flag(h);
}
if (h->mb_y >= h->mb_height) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
if ( get_bits_left(&h->gb) == 0
|| get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x - 1, h->mb_y, ER_MB_END);
return 0;
} else {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x, h->mb_y, ER_MB_END);
return AVERROR_INVALIDDATA;
}
}
}
if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) {
tprintf(h->avctx, "slice end %d %d\n",
get_bits_count(&h->gb), h->gb.size_in_bits);
if (get_bits_left(&h->gb) == 0) {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
h->mb_x - 1, h->mb_y, ER_MB_END);
if (h->mb_x > lf_x_start)
loop_filter(h, lf_x_start, h->mb_x);
return 0;
} else {
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
h->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
}
}
}
}
/**
* Call decode_slice() for each context.
*
* @param h h264 master context
* @param context_count number of contexts to execute
*/
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
{
AVCodecContext *const avctx = h->avctx;
H264Context *hx;
int i;
av_assert0(h->mb_y < h->mb_height);
if (h->avctx->hwaccel ||
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
return 0;
if (context_count == 1) {
return decode_slice(avctx, &h);
} else {
av_assert0(context_count > 0);
for (i = 1; i < context_count; i++) {
hx = h->thread_context[i];
if (CONFIG_ERROR_RESILIENCE) {
hx->er.error_count = 0;
}
hx->x264_build = h->x264_build;
}
avctx->execute(avctx, decode_slice, h->thread_context,
NULL, context_count, sizeof(void *));
/* pull back stuff from slices to master context */
hx = h->thread_context[context_count - 1];
h->mb_x = hx->mb_x;
h->mb_y = hx->mb_y;
h->droppable = hx->droppable;
h->picture_structure = hx->picture_structure;
if (CONFIG_ERROR_RESILIENCE) {
for (i = 1; i < context_count; i++)
h->er.error_count += h->thread_context[i]->er.error_count;
}
}
return 0;
}