2016-01-23 18:15:53 +02:00
/*
* Copyright ( C ) 2010 - 2011 Kevin Stone
* Copyright ( C ) 2016 Paul B Mahol
*
* This file is part of FFmpeg .
*
* FFmpeg is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* FFmpeg is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg ; if not , write to the Free Software Foundation , Inc . ,
* 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA .
*/
# include <float.h>
# include "libavutil/common.h"
# include "libavutil/float_dsp.h"
# include "libavutil/imgutils.h"
# include "libavutil/opt.h"
# include "libavutil/pixdesc.h"
# include "avfilter.h"
# include "formats.h"
# include "internal.h"
# include "video.h"
typedef struct FrameData {
uint8_t * paddedp [ 3 ] ;
int padded_stride [ 3 ] ;
int padded_width [ 3 ] ;
int padded_height [ 3 ] ;
uint8_t * dstp [ 3 ] ;
int dst_stride [ 3 ] ;
int field [ 3 ] ;
int32_t * lcount [ 3 ] ;
float * input ;
float * temp ;
} FrameData ;
typedef struct NNEDIContext {
const AVClass * class ;
char * weights_file ;
AVFrame * src ;
AVFrame * second ;
AVFrame * dst ;
int eof ;
int64_t cur_pts ;
AVFloatDSPContext * fdsp ;
int nb_planes ;
int linesize [ 4 ] ;
int planeheight [ 4 ] ;
float * weights0 ;
float * weights1 [ 2 ] ;
int asize ;
int nns ;
int xdia ;
int ydia ;
// Parameters
int deint ;
int field ;
int process_plane ;
int nsize ;
int nnsparam ;
int qual ;
int etype ;
int pscrn ;
int fapprox ;
int max_value ;
void ( * copy_pad ) ( const AVFrame * , FrameData * , struct NNEDIContext * , int ) ;
void ( * evalfunc_0 ) ( struct NNEDIContext * , FrameData * ) ;
void ( * evalfunc_1 ) ( struct NNEDIContext * , FrameData * ) ;
// Functions used in evalfunc_0
void ( * readpixels ) ( const uint8_t * , const int , float * ) ;
void ( * compute_network0 ) ( struct NNEDIContext * s , const float * , const float * , uint8_t * ) ;
int32_t ( * process_line0 ) ( const uint8_t * , int , uint8_t * , const uint8_t * , const int , const int , const int ) ;
// Functions used in evalfunc_1
void ( * extract ) ( const uint8_t * , const int , const int , const int , float * , float * ) ;
void ( * dot_prod ) ( struct NNEDIContext * , const float * , const float * , float * , const int , const int , const float * ) ;
void ( * expfunc ) ( float * , const int ) ;
void ( * wae5 ) ( const float * , const int , float * ) ;
FrameData frame_data ;
} NNEDIContext ;
# define OFFSET(x) offsetof(NNEDIContext, x)
# define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption nnedi_options [ ] = {
{ " weights " , " set weights file " , OFFSET ( weights_file ) , AV_OPT_TYPE_STRING , { . str = " nnedi3_weights.bin " } , 0 , 0 , FLAGS } ,
{ " deint " , " set which frames to deinterlace " , OFFSET ( deint ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , 1 , FLAGS , " deint " } ,
{ " all " , " deinterlace all frames " , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " deint " } ,
{ " interlaced " , " only deinterlace frames marked as interlaced " , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " deint " } ,
{ " field " , " set mode of operation " , OFFSET ( field ) , AV_OPT_TYPE_INT , { . i64 = - 1 } , - 2 , 3 , FLAGS , " field " } ,
{ " af " , " use frame flags, both fields " , 0 , AV_OPT_TYPE_CONST , { . i64 = - 2 } , 0 , 0 , FLAGS , " field " } ,
{ " a " , " use frame flags, single field " , 0 , AV_OPT_TYPE_CONST , { . i64 = - 1 } , 0 , 0 , FLAGS , " field " } ,
{ " t " , " use top field only " , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " field " } ,
{ " b " , " use bottom field only " , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " field " } ,
{ " tf " , " use both fields, top first " , 0 , AV_OPT_TYPE_CONST , { . i64 = 2 } , 0 , 0 , FLAGS , " field " } ,
{ " bf " , " use both fields, bottom first " , 0 , AV_OPT_TYPE_CONST , { . i64 = 3 } , 0 , 0 , FLAGS , " field " } ,
{ " planes " , " set which planes to process " , OFFSET ( process_plane ) , AV_OPT_TYPE_INT , { . i64 = 7 } , 0 , 7 , FLAGS } ,
{ " nsize " , " set size of local neighborhood around each pixel, used by the predictor neural network " , OFFSET ( nsize ) , AV_OPT_TYPE_INT , { . i64 = 6 } , 0 , 6 , FLAGS , " nsize " } ,
{ " s8x6 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s16x6 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s32x6 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 2 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s48x6 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 3 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s8x4 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 4 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s16x4 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 5 } , 0 , 0 , FLAGS , " nsize " } ,
{ " s32x4 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 6 } , 0 , 0 , FLAGS , " nsize " } ,
{ " nns " , " set number of neurons in predictor neural network " , OFFSET ( nnsparam ) , AV_OPT_TYPE_INT , { . i64 = 1 } , 0 , 4 , FLAGS , " nns " } ,
{ " n16 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " nns " } ,
{ " n32 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " nns " } ,
{ " n64 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 2 } , 0 , 0 , FLAGS , " nns " } ,
{ " n128 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 3 } , 0 , 0 , FLAGS , " nns " } ,
{ " n256 " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 4 } , 0 , 0 , FLAGS , " nns " } ,
{ " qual " , " set quality " , OFFSET ( qual ) , AV_OPT_TYPE_INT , { . i64 = 1 } , 1 , 2 , FLAGS , " qual " } ,
{ " fast " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " qual " } ,
{ " slow " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 2 } , 0 , 0 , FLAGS , " qual " } ,
{ " etype " , " set which set of weights to use in the predictor " , OFFSET ( etype ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , 1 , FLAGS , " etype " } ,
{ " a " , " weights trained to minimize absolute error " , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " etype " } ,
{ " s " , " weights trained to minimize squared error " , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " etype " } ,
{ " pscrn " , " set prescreening " , OFFSET ( pscrn ) , AV_OPT_TYPE_INT , { . i64 = 2 } , 0 , 2 , FLAGS , " pscrn " } ,
{ " none " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 0 } , 0 , 0 , FLAGS , " pscrn " } ,
{ " original " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 1 } , 0 , 0 , FLAGS , " pscrn " } ,
{ " new " , NULL , 0 , AV_OPT_TYPE_CONST , { . i64 = 2 } , 0 , 0 , FLAGS , " pscrn " } ,
{ " fapprox " , NULL , OFFSET ( fapprox ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , 3 , FLAGS } ,
{ NULL }
} ;
AVFILTER_DEFINE_CLASS ( nnedi ) ;
static int config_input ( AVFilterLink * inlink )
{
AVFilterContext * ctx = inlink - > dst ;
NNEDIContext * s = ctx - > priv ;
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get ( inlink - > format ) ;
int ret ;
s - > nb_planes = av_pix_fmt_count_planes ( inlink - > format ) ;
if ( ( ret = av_image_fill_linesizes ( s - > linesize , inlink - > format , inlink - > w ) ) < 0 )
return ret ;
s - > planeheight [ 1 ] = s - > planeheight [ 2 ] = AV_CEIL_RSHIFT ( inlink - > h , desc - > log2_chroma_h ) ;
s - > planeheight [ 0 ] = s - > planeheight [ 3 ] = inlink - > h ;
return 0 ;
}
static int config_output ( AVFilterLink * outlink )
{
AVFilterContext * ctx = outlink - > src ;
NNEDIContext * s = ctx - > priv ;
outlink - > time_base . num = ctx - > inputs [ 0 ] - > time_base . num ;
outlink - > time_base . den = ctx - > inputs [ 0 ] - > time_base . den * 2 ;
outlink - > w = ctx - > inputs [ 0 ] - > w ;
outlink - > h = ctx - > inputs [ 0 ] - > h ;
if ( s - > field > 1 | | s - > field = = - 2 )
outlink - > frame_rate = av_mul_q ( ctx - > inputs [ 0 ] - > frame_rate ,
( AVRational ) { 2 , 1 } ) ;
return 0 ;
}
static int query_formats ( AVFilterContext * ctx )
{
static const enum AVPixelFormat pix_fmts [ ] = {
AV_PIX_FMT_YUV410P , AV_PIX_FMT_YUV411P ,
AV_PIX_FMT_YUV420P , AV_PIX_FMT_YUV422P ,
AV_PIX_FMT_YUV440P , AV_PIX_FMT_YUV444P ,
AV_PIX_FMT_YUVJ444P , AV_PIX_FMT_YUVJ440P ,
AV_PIX_FMT_YUVJ422P , AV_PIX_FMT_YUVJ420P ,
AV_PIX_FMT_YUVJ411P ,
AV_PIX_FMT_GBRP ,
AV_PIX_FMT_GRAY8 ,
AV_PIX_FMT_NONE
} ;
AVFilterFormats * fmts_list = ff_make_format_list ( pix_fmts ) ;
if ( ! fmts_list )
return AVERROR ( ENOMEM ) ;
return ff_set_common_formats ( ctx , fmts_list ) ;
}
static void copy_pad ( const AVFrame * src , FrameData * frame_data , NNEDIContext * s , int fn )
{
const int off = 1 - fn ;
int plane , y , x ;
for ( plane = 0 ; plane < s - > nb_planes ; plane + + ) {
const uint8_t * srcp = ( const uint8_t * ) src - > data [ plane ] ;
uint8_t * dstp = ( uint8_t * ) frame_data - > paddedp [ plane ] ;
const int src_stride = src - > linesize [ plane ] ;
const int dst_stride = frame_data - > padded_stride [ plane ] ;
const int src_height = s - > planeheight [ plane ] ;
const int dst_height = frame_data - > padded_height [ plane ] ;
const int src_width = s - > linesize [ plane ] ;
const int dst_width = frame_data - > padded_width [ plane ] ;
int c = 4 ;
if ( ! ( s - > process_plane & ( 1 < < plane ) ) )
continue ;
// Copy.
for ( y = off ; y < src_height ; y + = 2 )
memcpy ( dstp + 32 + ( 6 + y ) * dst_stride ,
srcp + y * src_stride ,
src_width * sizeof ( uint8_t ) ) ;
// And pad.
dstp + = ( 6 + off ) * dst_stride ;
for ( y = 6 + off ; y < dst_height - 6 ; y + = 2 ) {
int c = 2 ;
for ( x = 0 ; x < 32 ; x + + )
dstp [ x ] = dstp [ 64 - x ] ;
for ( x = dst_width - 32 ; x < dst_width ; x + + , c + = 2 )
dstp [ x ] = dstp [ x - c ] ;
dstp + = dst_stride * 2 ;
}
dstp = ( uint8_t * ) frame_data - > paddedp [ plane ] ;
for ( y = off ; y < 6 ; y + = 2 )
memcpy ( dstp + y * dst_stride ,
dstp + ( 12 + 2 * off - y ) * dst_stride ,
dst_width * sizeof ( uint8_t ) ) ;
for ( y = dst_height - 6 + off ; y < dst_height ; y + = 2 , c + = 4 )
memcpy ( dstp + y * dst_stride ,
dstp + ( y - c ) * dst_stride ,
dst_width * sizeof ( uint8_t ) ) ;
}
}
static void elliott ( float * data , const int n )
{
int i ;
for ( i = 0 ; i < n ; i + + )
data [ i ] = data [ i ] / ( 1.0f + FFABS ( data [ i ] ) ) ;
}
static void dot_prod ( NNEDIContext * s , const float * data , const float * weights , float * vals , const int n , const int len , const float * scale )
{
int i ;
for ( i = 0 ; i < n ; i + + ) {
float sum ;
sum = s - > fdsp - > scalarproduct_float ( data , & weights [ i * len ] , len ) ;
vals [ i ] = sum * scale [ 0 ] + weights [ n * len + i ] ;
}
}
static void dot_prods ( NNEDIContext * s , const float * dataf , const float * weightsf , float * vals , const int n , const int len , const float * scale )
{
const int16_t * data = ( int16_t * ) dataf ;
const int16_t * weights = ( int16_t * ) weightsf ;
const float * wf = ( float * ) & weights [ n * len ] ;
int i , j ;
for ( i = 0 ; i < n ; i + + ) {
int sum = 0 , off = ( ( i > > 2 ) < < 3 ) + ( i & 3 ) ;
for ( j = 0 ; j < len ; j + + )
sum + = data [ j ] * weights [ i * len + j ] ;
vals [ i ] = sum * wf [ off ] * scale [ 0 ] + wf [ off + 4 ] ;
}
}
static void compute_network0 ( NNEDIContext * s , const float * input , const float * weights , uint8_t * d )
{
float t , temp [ 12 ] , scale = 1.0f ;
dot_prod ( s , input , weights , temp , 4 , 48 , & scale ) ;
t = temp [ 0 ] ;
elliott ( temp , 4 ) ;
temp [ 0 ] = t ;
dot_prod ( s , temp , weights + 4 * 49 , temp + 4 , 4 , 4 , & scale ) ;
elliott ( temp + 4 , 4 ) ;
dot_prod ( s , temp , weights + 4 * 49 + 4 * 5 , temp + 8 , 4 , 8 , & scale ) ;
if ( FFMAX ( temp [ 10 ] , temp [ 11 ] ) < = FFMAX ( temp [ 8 ] , temp [ 9 ] ) )
d [ 0 ] = 1 ;
else
d [ 0 ] = 0 ;
}
static void compute_network0_i16 ( NNEDIContext * s , const float * inputf , const float * weightsf , uint8_t * d )
{
const float * wf = weightsf + 2 * 48 ;
float t , temp [ 12 ] , scale = 1.0f ;
dot_prods ( s , inputf , weightsf , temp , 4 , 48 , & scale ) ;
t = temp [ 0 ] ;
elliott ( temp , 4 ) ;
temp [ 0 ] = t ;
dot_prod ( s , temp , wf + 8 , temp + 4 , 4 , 4 , & scale ) ;
elliott ( temp + 4 , 4 ) ;
dot_prod ( s , temp , wf + 8 + 4 * 5 , temp + 8 , 4 , 8 , & scale ) ;
if ( FFMAX ( temp [ 10 ] , temp [ 11 ] ) < = FFMAX ( temp [ 8 ] , temp [ 9 ] ) )
d [ 0 ] = 1 ;
else
d [ 0 ] = 0 ;
}
static void pixel2float48 ( const uint8_t * t8 , const int pitch , float * p )
{
const uint8_t * t = ( const uint8_t * ) t8 ;
int y , x ;
for ( y = 0 ; y < 4 ; y + + )
for ( x = 0 ; x < 12 ; x + + )
p [ y * 12 + x ] = t [ y * pitch * 2 + x ] ;
}
static void byte2word48 ( const uint8_t * t , const int pitch , float * pf )
{
int16_t * p = ( int16_t * ) pf ;
int y , x ;
for ( y = 0 ; y < 4 ; y + + )
for ( x = 0 ; x < 12 ; x + + )
p [ y * 12 + x ] = t [ y * pitch * 2 + x ] ;
}
static int32_t process_line0 ( const uint8_t * tempu , int width , uint8_t * dstp8 , const uint8_t * src3p8 , const int src_pitch , const int max_value , const int chroma )
{
uint8_t * dstp = ( uint8_t * ) dstp8 ;
const uint8_t * src3p = ( const uint8_t * ) src3p8 ;
int minimum = 0 ;
int maximum = max_value - 1 ; // Technically the -1 is only needed for 8 and 16 bit input.
int count = 0 , x ;
for ( x = 0 ; x < width ; x + + ) {
if ( tempu [ x ] ) {
int tmp = 19 * ( src3p [ x + src_pitch * 2 ] + src3p [ x + src_pitch * 4 ] ) - 3 * ( src3p [ x ] + src3p [ x + src_pitch * 6 ] ) ;
tmp / = 32 ;
dstp [ x ] = FFMAX ( FFMIN ( tmp , maximum ) , minimum ) ;
} else {
2016-02-11 02:16:52 +02:00
dstp [ x ] = 255 ;
2016-01-23 18:15:53 +02:00
count + + ;
}
}
return count ;
}
// new prescreener functions
static void byte2word64 ( const uint8_t * t , const int pitch , float * p )
{
int16_t * ps = ( int16_t * ) p ;
int y , x ;
for ( y = 0 ; y < 4 ; y + + )
for ( x = 0 ; x < 16 ; x + + )
ps [ y * 16 + x ] = t [ y * pitch * 2 + x ] ;
}
static void compute_network0new ( NNEDIContext * s , const float * datai , const float * weights , uint8_t * d )
{
int16_t * data = ( int16_t * ) datai ;
int16_t * ws = ( int16_t * ) weights ;
float * wf = ( float * ) & ws [ 4 * 64 ] ;
float vals [ 8 ] ;
int mask , i , j ;
for ( i = 0 ; i < 4 ; i + + ) {
int sum = 0 ;
float t ;
for ( j = 0 ; j < 64 ; j + + )
sum + = data [ j ] * ws [ ( i < < 3 ) + ( ( j > > 3 ) < < 5 ) + ( j & 7 ) ] ;
t = sum * wf [ i ] + wf [ 4 + i ] ;
vals [ i ] = t / ( 1.0f + FFABS ( t ) ) ;
}
for ( i = 0 ; i < 4 ; i + + ) {
float sum = 0.0f ;
for ( j = 0 ; j < 4 ; j + + )
sum + = vals [ j ] * wf [ 8 + i + ( j < < 2 ) ] ;
vals [ 4 + i ] = sum + wf [ 8 + 16 + i ] ;
}
mask = 0 ;
for ( i = 0 ; i < 4 ; i + + ) {
if ( vals [ 4 + i ] > 0.0f )
mask | = ( 0x1 < < ( i < < 3 ) ) ;
}
( ( int * ) d ) [ 0 ] = mask ;
}
static void evalfunc_0 ( NNEDIContext * s , FrameData * frame_data )
{
float * input = frame_data - > input ;
const float * weights0 = s - > weights0 ;
float * temp = frame_data - > temp ;
uint8_t * tempu = ( uint8_t * ) temp ;
int plane , x , y ;
// And now the actual work.
for ( plane = 0 ; plane < s - > nb_planes ; plane + + ) {
const uint8_t * srcp = ( const uint8_t * ) frame_data - > paddedp [ plane ] ;
const int src_stride = frame_data - > padded_stride [ plane ] / sizeof ( uint8_t ) ;
const int width = frame_data - > padded_width [ plane ] ;
const int height = frame_data - > padded_height [ plane ] ;
uint8_t * dstp = ( uint8_t * ) frame_data - > dstp [ plane ] ;
const int dst_stride = frame_data - > dst_stride [ plane ] / sizeof ( uint8_t ) ;
const uint8_t * src3p ;
int ystart , ystop ;
int32_t * lcount ;
if ( ! ( s - > process_plane & ( 1 < < plane ) ) )
continue ;
for ( y = 1 - frame_data - > field [ plane ] ; y < height - 12 ; y + = 2 ) {
memcpy ( dstp + y * dst_stride ,
srcp + 32 + ( 6 + y ) * src_stride ,
( width - 64 ) * sizeof ( uint8_t ) ) ;
}
ystart = 6 + frame_data - > field [ plane ] ;
ystop = height - 6 ;
srcp + = ystart * src_stride ;
dstp + = ( ystart - 6 ) * dst_stride - 32 ;
src3p = srcp - src_stride * 3 ;
lcount = frame_data - > lcount [ plane ] - 6 ;
if ( s - > pscrn = = 1 ) { // original
for ( y = ystart ; y < ystop ; y + = 2 ) {
for ( x = 32 ; x < width - 32 ; x + + ) {
s - > readpixels ( ( const uint8_t * ) ( src3p + x - 5 ) , src_stride , input ) ;
s - > compute_network0 ( s , input , weights0 , tempu + x ) ;
}
lcount [ y ] + = s - > process_line0 ( tempu + 32 , width - 64 , ( uint8_t * ) ( dstp + 32 ) , ( const uint8_t * ) ( src3p + 32 ) , src_stride , s - > max_value , plane ) ;
src3p + = src_stride * 2 ;
dstp + = dst_stride * 2 ;
}
} else if ( s - > pscrn > 1 ) { // new
for ( y = ystart ; y < ystop ; y + = 2 ) {
for ( x = 32 ; x < width - 32 ; x + = 4 ) {
s - > readpixels ( ( const uint8_t * ) ( src3p + x - 6 ) , src_stride , input ) ;
s - > compute_network0 ( s , input , weights0 , tempu + x ) ;
}
lcount [ y ] + = s - > process_line0 ( tempu + 32 , width - 64 , ( uint8_t * ) ( dstp + 32 ) , ( const uint8_t * ) ( src3p + 32 ) , src_stride , s - > max_value , plane ) ;
src3p + = src_stride * 2 ;
dstp + = dst_stride * 2 ;
}
} else { // no prescreening
for ( y = ystart ; y < ystop ; y + = 2 ) {
memset ( dstp + 32 , 255 , ( width - 64 ) * sizeof ( uint8_t ) ) ;
lcount [ y ] + = width - 64 ;
dstp + = dst_stride * 2 ;
}
}
}
}
static void extract_m8 ( const uint8_t * srcp8 , const int stride , const int xdia , const int ydia , float * mstd , float * input )
{
// uint8_t or uint16_t or float
const uint8_t * srcp = ( const uint8_t * ) srcp8 ;
2016-02-03 10:38:11 +02:00
float scale ;
double tmp ;
2016-01-23 18:15:53 +02:00
// int32_t or int64_t or double
int64_t sum = 0 , sumsq = 0 ;
int y , x ;
for ( y = 0 ; y < ydia ; y + + ) {
const uint8_t * srcpT = srcp + y * stride * 2 ;
for ( x = 0 ; x < xdia ; x + + ) {
sum + = srcpT [ x ] ;
sumsq + = ( uint32_t ) srcpT [ x ] * ( uint32_t ) srcpT [ x ] ;
input [ x ] = srcpT [ x ] ;
}
input + = xdia ;
}
2016-02-03 10:38:11 +02:00
scale = 1.0f / ( xdia * ydia ) ;
2016-01-23 18:15:53 +02:00
mstd [ 0 ] = sum * scale ;
2016-02-03 10:38:11 +02:00
tmp = ( double ) sumsq * scale - ( double ) mstd [ 0 ] * mstd [ 0 ] ;
2016-01-23 18:15:53 +02:00
mstd [ 3 ] = 0.0f ;
if ( tmp < = FLT_EPSILON )
mstd [ 1 ] = mstd [ 2 ] = 0.0f ;
else {
mstd [ 1 ] = sqrt ( tmp ) ;
mstd [ 2 ] = 1.0f / mstd [ 1 ] ;
}
}
static void extract_m8_i16 ( const uint8_t * srcp , const int stride , const int xdia , const int ydia , float * mstd , float * inputf )
{
int16_t * input = ( int16_t * ) inputf ;
2016-02-03 10:38:11 +02:00
float scale ;
2016-01-23 18:15:53 +02:00
int sum = 0 , sumsq = 0 ;
int y , x ;
for ( y = 0 ; y < ydia ; y + + ) {
const uint8_t * srcpT = srcp + y * stride * 2 ;
for ( x = 0 ; x < xdia ; x + + ) {
sum + = srcpT [ x ] ;
sumsq + = srcpT [ x ] * srcpT [ x ] ;
input [ x ] = srcpT [ x ] ;
}
input + = xdia ;
}
2016-02-03 10:38:11 +02:00
scale = 1.0f / ( float ) ( xdia * ydia ) ;
2016-01-23 18:15:53 +02:00
mstd [ 0 ] = sum * scale ;
mstd [ 1 ] = sumsq * scale - mstd [ 0 ] * mstd [ 0 ] ;
mstd [ 3 ] = 0.0f ;
if ( mstd [ 1 ] < = FLT_EPSILON )
mstd [ 1 ] = mstd [ 2 ] = 0.0f ;
else {
mstd [ 1 ] = sqrt ( mstd [ 1 ] ) ;
mstd [ 2 ] = 1.0f / mstd [ 1 ] ;
}
}
static const float exp_lo = - 80.0f ;
static const float exp_hi = + 80.0f ;
static void e2_m16 ( float * s , const int n )
{
int i ;
for ( i = 0 ; i < n ; i + + )
s [ i ] = exp ( av_clipf ( s [ i ] , exp_lo , exp_hi ) ) ;
}
const float min_weight_sum = 1e-10 f ;
static void weighted_avg_elliott_mul5_m16 ( const float * w , const int n , float * mstd )
{
float vsum = 0.0f , wsum = 0.0f ;
int i ;
for ( i = 0 ; i < n ; i + + ) {
vsum + = w [ i ] * ( w [ n + i ] / ( 1.0f + FFABS ( w [ n + i ] ) ) ) ;
wsum + = w [ i ] ;
}
if ( wsum > min_weight_sum )
mstd [ 3 ] + = ( ( 5.0f * vsum ) / wsum ) * mstd [ 1 ] + mstd [ 0 ] ;
else
mstd [ 3 ] + = mstd [ 0 ] ;
}
static void evalfunc_1 ( NNEDIContext * s , FrameData * frame_data )
{
float * input = frame_data - > input ;
float * temp = frame_data - > temp ;
float * * weights1 = s - > weights1 ;
const int qual = s - > qual ;
const int asize = s - > asize ;
const int nns = s - > nns ;
const int xdia = s - > xdia ;
const int xdiad2m1 = ( xdia / 2 ) - 1 ;
const int ydia = s - > ydia ;
const float scale = 1.0f / ( float ) qual ;
int plane , y , x , i ;
for ( plane = 0 ; plane < s - > nb_planes ; plane + + ) {
const uint8_t * srcp = ( const uint8_t * ) frame_data - > paddedp [ plane ] ;
const int src_stride = frame_data - > padded_stride [ plane ] / sizeof ( uint8_t ) ;
const int width = frame_data - > padded_width [ plane ] ;
const int height = frame_data - > padded_height [ plane ] ;
uint8_t * dstp = ( uint8_t * ) frame_data - > dstp [ plane ] ;
const int dst_stride = frame_data - > dst_stride [ plane ] / sizeof ( uint8_t ) ;
const int ystart = frame_data - > field [ plane ] ;
const int ystop = height - 12 ;
2016-02-03 10:38:11 +02:00
uint8_t * srcpp ;
if ( ! ( s - > process_plane & ( 1 < < plane ) ) )
continue ;
2016-01-23 18:15:53 +02:00
srcp + = ( ystart + 6 ) * src_stride ;
dstp + = ystart * dst_stride - 32 ;
2016-02-03 10:38:11 +02:00
srcpp = srcp - ( ydia - 1 ) * src_stride - xdiad2m1 ;
2016-01-23 18:15:53 +02:00
for ( y = ystart ; y < ystop ; y + = 2 ) {
for ( x = 32 ; x < width - 32 ; x + + ) {
2016-02-03 10:38:11 +02:00
float mstd [ 4 ] ;
2016-02-11 02:16:52 +02:00
if ( dstp [ x ] ! = 255 )
2016-01-23 18:15:53 +02:00
continue ;
s - > extract ( ( const uint8_t * ) ( srcpp + x ) , src_stride , xdia , ydia , mstd , input ) ;
for ( i = 0 ; i < qual ; i + + ) {
s - > dot_prod ( s , input , weights1 [ i ] , temp , nns * 2 , asize , mstd + 2 ) ;
s - > expfunc ( temp , nns ) ;
s - > wae5 ( temp , nns , mstd ) ;
}
dstp [ x ] = FFMIN ( FFMAX ( ( int ) ( mstd [ 3 ] * scale + 0.5f ) , 0 ) , s - > max_value ) ;
}
srcpp + = src_stride * 2 ;
dstp + = dst_stride * 2 ;
}
}
}
# define NUM_NSIZE 7
# define NUM_NNS 5
static int roundds ( const double f )
{
if ( f - floor ( f ) > = 0.5 )
return FFMIN ( ( int ) ceil ( f ) , 32767 ) ;
return FFMAX ( ( int ) floor ( f ) , - 32768 ) ;
}
static void select_functions ( NNEDIContext * s )
{
s - > copy_pad = copy_pad ;
s - > evalfunc_0 = evalfunc_0 ;
s - > evalfunc_1 = evalfunc_1 ;
// evalfunc_0
s - > process_line0 = process_line0 ;
if ( s - > pscrn < 2 ) { // original prescreener
if ( s - > fapprox & 1 ) { // int16 dot products
s - > readpixels = byte2word48 ;
s - > compute_network0 = compute_network0_i16 ;
} else {
s - > readpixels = pixel2float48 ;
s - > compute_network0 = compute_network0 ;
}
} else { // new prescreener
// only int16 dot products
s - > readpixels = byte2word64 ;
s - > compute_network0 = compute_network0new ;
}
// evalfunc_1
s - > wae5 = weighted_avg_elliott_mul5_m16 ;
if ( s - > fapprox & 2 ) { // use int16 dot products
s - > extract = extract_m8_i16 ;
s - > dot_prod = dot_prods ;
} else { // use float dot products
s - > extract = extract_m8 ;
s - > dot_prod = dot_prod ;
}
s - > expfunc = e2_m16 ;
}
static int modnpf ( const int m , const int n )
{
if ( ( m % n ) = = 0 )
return m ;
return m + n - ( m % n ) ;
}
static int get_frame ( AVFilterContext * ctx , int is_second )
{
NNEDIContext * s = ctx - > priv ;
AVFilterLink * outlink = ctx - > outputs [ 0 ] ;
AVFrame * src = s - > src ;
FrameData * frame_data ;
int effective_field = s - > field ;
size_t temp_size ;
int field_n ;
int plane ;
if ( effective_field > 1 )
effective_field - = 2 ;
else if ( effective_field < 0 )
effective_field + = 2 ;
if ( s - > field < 0 & & src - > interlaced_frame & & src - > top_field_first = = 0 )
effective_field = 0 ;
else if ( s - > field < 0 & & src - > interlaced_frame & & src - > top_field_first = = 1 )
effective_field = 1 ;
else
effective_field = ! effective_field ;
if ( s - > field > 1 | | s - > field = = - 2 ) {
if ( is_second ) {
field_n = ( effective_field = = 0 ) ;
} else {
field_n = ( effective_field = = 1 ) ;
}
} else {
field_n = effective_field ;
}
s - > dst = ff_get_video_buffer ( outlink , outlink - > w , outlink - > h ) ;
if ( ! s - > dst )
return AVERROR ( ENOMEM ) ;
av_frame_copy_props ( s - > dst , src ) ;
s - > dst - > interlaced_frame = 0 ;
frame_data = & s - > frame_data ;
for ( plane = 0 ; plane < s - > nb_planes ; plane + + ) {
int dst_height = s - > planeheight [ plane ] ;
int dst_width = s - > linesize [ plane ] ;
const int min_alignment = 16 ;
const int min_pad = 10 ;
if ( ! ( s - > process_plane & ( 1 < < plane ) ) ) {
av_image_copy_plane ( s - > dst - > data [ plane ] , s - > dst - > linesize [ plane ] ,
src - > data [ plane ] , src - > linesize [ plane ] ,
s - > linesize [ plane ] ,
s - > planeheight [ plane ] ) ;
continue ;
}
frame_data - > padded_width [ plane ] = dst_width + 64 ;
frame_data - > padded_height [ plane ] = dst_height + 12 ;
frame_data - > padded_stride [ plane ] = modnpf ( frame_data - > padded_width [ plane ] + min_pad , min_alignment ) ; // TODO: maybe min_pad is in pixels too?
if ( ! frame_data - > paddedp [ plane ] ) {
frame_data - > paddedp [ plane ] = av_malloc_array ( frame_data - > padded_stride [ plane ] , frame_data - > padded_height [ plane ] ) ;
if ( ! frame_data - > paddedp [ plane ] )
return AVERROR ( ENOMEM ) ;
}
frame_data - > dstp [ plane ] = s - > dst - > data [ plane ] ;
frame_data - > dst_stride [ plane ] = s - > dst - > linesize [ plane ] ;
if ( ! frame_data - > lcount [ plane ] ) {
frame_data - > lcount [ plane ] = av_calloc ( dst_height , sizeof ( int32_t ) * 16 ) ;
if ( ! frame_data - > lcount [ plane ] )
return AVERROR ( ENOMEM ) ;
} else {
memset ( frame_data - > lcount [ plane ] , 0 , dst_height * sizeof ( int32_t ) * 16 ) ;
}
frame_data - > field [ plane ] = field_n ;
}
if ( ! frame_data - > input ) {
frame_data - > input = av_malloc ( 512 * sizeof ( float ) ) ;
if ( ! frame_data - > input )
return AVERROR ( ENOMEM ) ;
}
// evalfunc_0 requires at least padded_width[0] bytes.
// evalfunc_1 requires at least 512 floats.
if ( ! frame_data - > temp ) {
temp_size = FFMAX ( frame_data - > padded_width [ 0 ] , 512 * sizeof ( float ) ) ;
frame_data - > temp = av_malloc ( temp_size ) ;
if ( ! frame_data - > temp )
return AVERROR ( ENOMEM ) ;
}
// Copy src to a padded "frame" in frame_data and mirror the edges.
s - > copy_pad ( src , frame_data , s , field_n ) ;
// Handles prescreening and the cubic interpolation.
s - > evalfunc_0 ( s , frame_data ) ;
// The rest.
s - > evalfunc_1 ( s , frame_data ) ;
return 0 ;
}
static int filter_frame ( AVFilterLink * inlink , AVFrame * src )
{
AVFilterContext * ctx = inlink - > dst ;
AVFilterLink * outlink = ctx - > outputs [ 0 ] ;
NNEDIContext * s = ctx - > priv ;
int ret ;
if ( ( s - > field > 1 | |
s - > field = = - 2 ) & & ! s - > second ) {
goto second ;
} else if ( s - > field > 1 | |
s - > field = = - 2 ) {
AVFrame * dst ;
s - > src = s - > second ;
ret = get_frame ( ctx , 1 ) ;
if ( ret < 0 ) {
av_frame_free ( & s - > dst ) ;
av_frame_free ( & s - > src ) ;
av_frame_free ( & s - > second ) ;
return ret ;
}
dst = s - > dst ;
if ( src - > pts ! = AV_NOPTS_VALUE & &
dst - > pts ! = AV_NOPTS_VALUE )
dst - > pts + = src - > pts ;
else
dst - > pts = AV_NOPTS_VALUE ;
ret = ff_filter_frame ( outlink , dst ) ;
if ( ret < 0 )
return ret ;
if ( s - > eof )
return 0 ;
s - > cur_pts = s - > second - > pts ;
av_frame_free ( & s - > second ) ;
second :
if ( ( s - > deint & & src - > interlaced_frame & &
! ctx - > is_disabled ) | |
( ! s - > deint & & ! ctx - > is_disabled ) ) {
s - > second = src ;
}
}
if ( ( s - > deint & & ! src - > interlaced_frame ) | | ctx - > is_disabled ) {
AVFrame * dst = av_frame_clone ( src ) ;
if ( ! dst ) {
av_frame_free ( & src ) ;
av_frame_free ( & s - > second ) ;
return AVERROR ( ENOMEM ) ;
}
if ( s - > field > 1 | | s - > field = = - 2 ) {
av_frame_free ( & s - > second ) ;
if ( ( s - > deint & & src - > interlaced_frame ) | |
( ! s - > deint ) )
s - > second = src ;
} else {
av_frame_free ( & src ) ;
}
if ( dst - > pts ! = AV_NOPTS_VALUE )
dst - > pts * = 2 ;
return ff_filter_frame ( outlink , dst ) ;
}
s - > src = src ;
ret = get_frame ( ctx , 0 ) ;
if ( ret < 0 ) {
av_frame_free ( & s - > dst ) ;
av_frame_free ( & s - > src ) ;
av_frame_free ( & s - > second ) ;
return ret ;
}
if ( src - > pts ! = AV_NOPTS_VALUE )
s - > dst - > pts = src - > pts * 2 ;
if ( s - > field < = 1 & & s - > field > - 2 ) {
av_frame_free ( & src ) ;
s - > src = NULL ;
}
return ff_filter_frame ( outlink , s - > dst ) ;
}
static int request_frame ( AVFilterLink * link )
{
AVFilterContext * ctx = link - > src ;
NNEDIContext * s = ctx - > priv ;
int ret ;
if ( s - > eof )
return AVERROR_EOF ;
ret = ff_request_frame ( ctx - > inputs [ 0 ] ) ;
if ( ret = = AVERROR_EOF & & s - > second ) {
AVFrame * next = av_frame_clone ( s - > second ) ;
if ( ! next )
return AVERROR ( ENOMEM ) ;
next - > pts = s - > second - > pts * 2 - s - > cur_pts ;
s - > eof = 1 ;
filter_frame ( ctx - > inputs [ 0 ] , next ) ;
} else if ( ret < 0 ) {
return ret ;
}
return 0 ;
}
static av_cold int init ( AVFilterContext * ctx )
{
NNEDIContext * s = ctx - > priv ;
FILE * weights_file = NULL ;
int64_t expected_size = 13574928 ;
int64_t weights_size ;
float * bdata ;
size_t bytes_read ;
const int xdia_table [ NUM_NSIZE ] = { 8 , 16 , 32 , 48 , 8 , 16 , 32 } ;
const int ydia_table [ NUM_NSIZE ] = { 6 , 6 , 6 , 6 , 4 , 4 , 4 } ;
const int nns_table [ NUM_NNS ] = { 16 , 32 , 64 , 128 , 256 } ;
const int dims0 = 49 * 4 + 5 * 4 + 9 * 4 ;
const int dims0new = 4 * 65 + 4 * 5 ;
const int dims1 = nns_table [ s - > nnsparam ] * 2 * ( xdia_table [ s - > nsize ] * ydia_table [ s - > nsize ] + 1 ) ;
int dims1tsize = 0 ;
int dims1offset = 0 ;
int ret = 0 , i , j , k ;
weights_file = fopen ( s - > weights_file , " rb " ) ;
if ( ! weights_file ) {
av_log ( ctx , AV_LOG_ERROR , " No weights file provided, aborting! \n " ) ;
return AVERROR ( EINVAL ) ;
}
if ( fseek ( weights_file , 0 , SEEK_END ) ) {
av_log ( ctx , AV_LOG_ERROR , " Couldn't seek to the end of weights file. \n " ) ;
fclose ( weights_file ) ;
return AVERROR ( EINVAL ) ;
}
weights_size = ftell ( weights_file ) ;
if ( weights_size = = - 1 ) {
fclose ( weights_file ) ;
av_log ( ctx , AV_LOG_ERROR , " Couldn't get size of weights file. \n " ) ;
return AVERROR ( EINVAL ) ;
} else if ( weights_size ! = expected_size ) {
fclose ( weights_file ) ;
av_log ( ctx , AV_LOG_ERROR , " Unexpected weights file size. \n " ) ;
return AVERROR ( EINVAL ) ;
}
if ( fseek ( weights_file , 0 , SEEK_SET ) ) {
fclose ( weights_file ) ;
av_log ( ctx , AV_LOG_ERROR , " Couldn't seek to the start of weights file. \n " ) ;
return AVERROR ( EINVAL ) ;
}
bdata = ( float * ) av_malloc ( expected_size ) ;
if ( ! bdata ) {
fclose ( weights_file ) ;
return AVERROR ( ENOMEM ) ;
}
bytes_read = fread ( bdata , 1 , expected_size , weights_file ) ;
if ( bytes_read ! = ( size_t ) expected_size ) {
fclose ( weights_file ) ;
ret = AVERROR_INVALIDDATA ;
av_log ( ctx , AV_LOG_ERROR , " Couldn't read weights file. \n " ) ;
goto fail ;
}
fclose ( weights_file ) ;
for ( j = 0 ; j < NUM_NNS ; j + + ) {
for ( i = 0 ; i < NUM_NSIZE ; i + + ) {
if ( i = = s - > nsize & & j = = s - > nnsparam )
dims1offset = dims1tsize ;
dims1tsize + = nns_table [ j ] * 2 * ( xdia_table [ i ] * ydia_table [ i ] + 1 ) * 2 ;
}
}
s - > weights0 = av_malloc_array ( FFMAX ( dims0 , dims0new ) , sizeof ( float ) ) ;
if ( ! s - > weights0 ) {
ret = AVERROR ( ENOMEM ) ;
goto fail ;
}
for ( i = 0 ; i < 2 ; i + + ) {
s - > weights1 [ i ] = av_malloc_array ( dims1 , sizeof ( float ) ) ;
if ( ! s - > weights1 [ i ] ) {
ret = AVERROR ( ENOMEM ) ;
goto fail ;
}
}
// Adjust prescreener weights
if ( s - > pscrn > = 2 ) { // using new prescreener
const float * bdw ;
int16_t * ws ;
float * wf ;
double mean [ 4 ] = { 0.0 , 0.0 , 0.0 , 0.0 } ;
int * offt = av_calloc ( 4 * 64 , sizeof ( int ) ) ;
if ( ! offt ) {
ret = AVERROR ( ENOMEM ) ;
goto fail ;
}
for ( j = 0 ; j < 4 ; j + + )
for ( k = 0 ; k < 64 ; k + + )
offt [ j * 64 + k ] = ( ( k > > 3 ) < < 5 ) + ( ( j & 3 ) < < 3 ) + ( k & 7 ) ;
bdw = bdata + dims0 + dims0new * ( s - > pscrn - 2 ) ;
ws = ( int16_t * ) s - > weights0 ;
wf = ( float * ) & ws [ 4 * 64 ] ;
// Calculate mean weight of each first layer neuron
for ( j = 0 ; j < 4 ; j + + ) {
double cmean = 0.0 ;
for ( k = 0 ; k < 64 ; k + + )
cmean + = bdw [ offt [ j * 64 + k ] ] ;
mean [ j ] = cmean / 64.0 ;
}
// Factor mean removal and 1.0/127.5 scaling
// into first layer weights. scale to int16 range
for ( j = 0 ; j < 4 ; j + + ) {
double scale , mval = 0.0 ;
for ( k = 0 ; k < 64 ; k + + )
mval = FFMAX ( mval , FFABS ( ( bdw [ offt [ j * 64 + k ] ] - mean [ j ] ) / 127.5 ) ) ;
scale = 32767.0 / mval ;
for ( k = 0 ; k < 64 ; k + + )
ws [ offt [ j * 64 + k ] ] = roundds ( ( ( bdw [ offt [ j * 64 + k ] ] - mean [ j ] ) / 127.5 ) * scale ) ;
wf [ j ] = ( float ) ( mval / 32767.0 ) ;
}
memcpy ( wf + 4 , bdw + 4 * 64 , ( dims0new - 4 * 64 ) * sizeof ( float ) ) ;
av_free ( offt ) ;
} else { // using old prescreener
double mean [ 4 ] = { 0.0 , 0.0 , 0.0 , 0.0 } ;
// Calculate mean weight of each first layer neuron
for ( j = 0 ; j < 4 ; j + + ) {
double cmean = 0.0 ;
for ( k = 0 ; k < 48 ; k + + )
cmean + = bdata [ j * 48 + k ] ;
mean [ j ] = cmean / 48.0 ;
}
if ( s - > fapprox & 1 ) { // use int16 dot products in first layer
int16_t * ws = ( int16_t * ) s - > weights0 ;
float * wf = ( float * ) & ws [ 4 * 48 ] ;
// Factor mean removal and 1.0/127.5 scaling
// into first layer weights. scale to int16 range
for ( j = 0 ; j < 4 ; j + + ) {
2016-02-03 10:38:11 +02:00
double scale , mval = 0.0 ;
2016-01-23 18:15:53 +02:00
for ( k = 0 ; k < 48 ; k + + )
mval = FFMAX ( mval , FFABS ( ( bdata [ j * 48 + k ] - mean [ j ] ) / 127.5 ) ) ;
2016-02-03 10:38:11 +02:00
scale = 32767.0 / mval ;
2016-01-23 18:15:53 +02:00
for ( k = 0 ; k < 48 ; k + + )
ws [ j * 48 + k ] = roundds ( ( ( bdata [ j * 48 + k ] - mean [ j ] ) / 127.5 ) * scale ) ;
wf [ j ] = ( float ) ( mval / 32767.0 ) ;
}
memcpy ( wf + 4 , bdata + 4 * 48 , ( dims0 - 4 * 48 ) * sizeof ( float ) ) ;
} else { // use float dot products in first layer
double half = ( 1 < < 8 ) - 1 ;
half / = 2 ;
// Factor mean removal and 1.0/half scaling
// into first layer weights.
for ( j = 0 ; j < 4 ; j + + )
for ( k = 0 ; k < 48 ; k + + )
s - > weights0 [ j * 48 + k ] = ( float ) ( ( bdata [ j * 48 + k ] - mean [ j ] ) / half ) ;
memcpy ( s - > weights0 + 4 * 48 , bdata + 4 * 48 , ( dims0 - 4 * 48 ) * sizeof ( float ) ) ;
}
}
// Adjust prediction weights
for ( i = 0 ; i < 2 ; i + + ) {
const float * bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s - > etype + dims1offset + i * dims1 ;
const int nnst = nns_table [ s - > nnsparam ] ;
const int asize = xdia_table [ s - > nsize ] * ydia_table [ s - > nsize ] ;
const int boff = nnst * 2 * asize ;
double * mean = ( double * ) av_calloc ( asize + 1 + nnst * 2 , sizeof ( double ) ) ;
if ( ! mean ) {
ret = AVERROR ( ENOMEM ) ;
goto fail ;
}
// Calculate mean weight of each neuron (ignore bias)
for ( j = 0 ; j < nnst * 2 ; j + + ) {
double cmean = 0.0 ;
for ( k = 0 ; k < asize ; k + + )
cmean + = bdataT [ j * asize + k ] ;
mean [ asize + 1 + j ] = cmean / ( double ) asize ;
}
// Calculate mean softmax neuron
for ( j = 0 ; j < nnst ; j + + ) {
for ( k = 0 ; k < asize ; k + + )
mean [ k ] + = bdataT [ j * asize + k ] - mean [ asize + 1 + j ] ;
mean [ asize ] + = bdataT [ boff + j ] ;
}
for ( j = 0 ; j < asize + 1 ; j + + )
mean [ j ] / = ( double ) ( nnst ) ;
if ( s - > fapprox & 2 ) { // use int16 dot products
int16_t * ws = ( int16_t * ) s - > weights1 [ i ] ;
float * wf = ( float * ) & ws [ nnst * 2 * asize ] ;
// Factor mean removal into weights, remove global offset from
// softmax neurons, and scale weights to int16 range.
for ( j = 0 ; j < nnst ; j + + ) { // softmax neurons
double scale , mval = 0.0 ;
for ( k = 0 ; k < asize ; k + + )
mval = FFMAX ( mval , FFABS ( bdataT [ j * asize + k ] - mean [ asize + 1 + j ] - mean [ k ] ) ) ;
scale = 32767.0 / mval ;
for ( k = 0 ; k < asize ; k + + )
ws [ j * asize + k ] = roundds ( ( bdataT [ j * asize + k ] - mean [ asize + 1 + j ] - mean [ k ] ) * scale ) ;
wf [ ( j > > 2 ) * 8 + ( j & 3 ) ] = ( float ) ( mval / 32767.0 ) ;
wf [ ( j > > 2 ) * 8 + ( j & 3 ) + 4 ] = ( float ) ( bdataT [ boff + j ] - mean [ asize ] ) ;
}
for ( j = nnst ; j < nnst * 2 ; j + + ) { // elliott neurons
double scale , mval = 0.0 ;
for ( k = 0 ; k < asize ; k + + )
mval = FFMAX ( mval , FFABS ( bdataT [ j * asize + k ] - mean [ asize + 1 + j ] ) ) ;
scale = 32767.0 / mval ;
for ( k = 0 ; k < asize ; k + + )
ws [ j * asize + k ] = roundds ( ( bdataT [ j * asize + k ] - mean [ asize + 1 + j ] ) * scale ) ;
wf [ ( j > > 2 ) * 8 + ( j & 3 ) ] = ( float ) ( mval / 32767.0 ) ;
wf [ ( j > > 2 ) * 8 + ( j & 3 ) + 4 ] = bdataT [ boff + j ] ;
}
} else { // use float dot products
// Factor mean removal into weights, and remove global
// offset from softmax neurons.
for ( j = 0 ; j < nnst * 2 ; j + + ) {
for ( k = 0 ; k < asize ; k + + ) {
const double q = j < nnst ? mean [ k ] : 0.0 ;
s - > weights1 [ i ] [ j * asize + k ] = ( float ) ( bdataT [ j * asize + k ] - mean [ asize + 1 + j ] - q ) ;
}
s - > weights1 [ i ] [ boff + j ] = ( float ) ( bdataT [ boff + j ] - ( j < nnst ? mean [ asize ] : 0.0 ) ) ;
}
}
av_free ( mean ) ;
}
s - > nns = nns_table [ s - > nnsparam ] ;
s - > xdia = xdia_table [ s - > nsize ] ;
s - > ydia = ydia_table [ s - > nsize ] ;
s - > asize = xdia_table [ s - > nsize ] * ydia_table [ s - > nsize ] ;
s - > max_value = 65535 > > 8 ;
select_functions ( s ) ;
s - > fdsp = avpriv_float_dsp_alloc ( 0 ) ;
if ( ! s - > fdsp )
2016-02-09 14:02:40 +02:00
ret = AVERROR ( ENOMEM ) ;
2016-01-23 18:15:53 +02:00
fail :
av_free ( bdata ) ;
return ret ;
}
static av_cold void uninit ( AVFilterContext * ctx )
{
NNEDIContext * s = ctx - > priv ;
int i ;
av_freep ( & s - > weights0 ) ;
for ( i = 0 ; i < 2 ; i + + )
av_freep ( & s - > weights1 [ i ] ) ;
for ( i = 0 ; i < s - > nb_planes ; i + + ) {
av_freep ( & s - > frame_data . paddedp [ i ] ) ;
av_freep ( & s - > frame_data . lcount [ i ] ) ;
}
av_freep ( & s - > frame_data . input ) ;
av_freep ( & s - > frame_data . temp ) ;
av_frame_free ( & s - > second ) ;
}
static const AVFilterPad inputs [ ] = {
{
. name = " default " ,
. type = AVMEDIA_TYPE_VIDEO ,
. filter_frame = filter_frame ,
. config_props = config_input ,
} ,
{ NULL }
} ;
static const AVFilterPad outputs [ ] = {
{
. name = " default " ,
. type = AVMEDIA_TYPE_VIDEO ,
. config_props = config_output ,
. request_frame = request_frame ,
} ,
{ NULL }
} ;
AVFilter ff_vf_nnedi = {
. name = " nnedi " ,
. description = NULL_IF_CONFIG_SMALL ( " Apply neural network edge directed interpolation intra-only deinterlacer. " ) ,
. priv_size = sizeof ( NNEDIContext ) ,
. priv_class = & nnedi_class ,
. init = init ,
. uninit = uninit ,
. query_formats = query_formats ,
. inputs = inputs ,
. outputs = outputs ,
. flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL ,
} ;