1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_mestimate.c

375 lines
14 KiB
C
Raw Normal View History

/**
* Copyright (c) 2016 Davinder Singh (DSM_) <ds.mudhar<@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "motion_estimation.h"
#include "libavcodec/mathops.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/motion_vector.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct MEContext {
const AVClass *class;
AVMotionEstContext me_ctx;
int method; ///< motion estimation method
int mb_size; ///< macroblock size
int search_param; ///< search parameter
int b_width, b_height, b_count;
int log2_mb_size;
AVFrame *prev, *cur, *next;
int (*mv_table[3])[2][2]; ///< motion vectors of current & prev 2 frames
} MEContext;
#define OFFSET(x) offsetof(MEContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
static const AVOption mestimate_options[] = {
{ "method", "motion estimation method", OFFSET(method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_ESA}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, "method" },
CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "method"),
CONST("tss", "three step search", AV_ME_METHOD_TSS, "method"),
CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "method"),
CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "method"),
CONST("fss", "four step search", AV_ME_METHOD_FSS, "method"),
CONST("ds", "diamond search", AV_ME_METHOD_DS, "method"),
CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "method"),
CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "method"),
CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "method"),
{ "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 8, INT_MAX, FLAGS },
{ "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 7}, 4, INT_MAX, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(mestimate);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int config_input(AVFilterLink *inlink)
{
MEContext *s = inlink->dst->priv;
int i;
s->log2_mb_size = av_ceil_log2_c(s->mb_size);
s->mb_size = 1 << s->log2_mb_size;
s->b_width = inlink->w >> s->log2_mb_size;
s->b_height = inlink->h >> s->log2_mb_size;
s->b_count = s->b_width * s->b_height;
if (s->b_count == 0)
return AVERROR(EINVAL);
for (i = 0; i < 3; i++) {
s->mv_table[i] = av_calloc(s->b_count, sizeof(*s->mv_table[0]));
if (!s->mv_table[i])
return AVERROR(ENOMEM);
}
ff_me_init_context(&s->me_ctx, s->mb_size, s->search_param, inlink->w, inlink->h, 0, (s->b_width - 1) << s->log2_mb_size, 0, (s->b_height - 1) << s->log2_mb_size);
return 0;
}
static void add_mv_data(AVMotionVector *mv, int mb_size,
int x, int y, int x_mv, int y_mv, int dir)
{
mv->w = mb_size;
mv->h = mb_size;
mv->dst_x = x + (mb_size >> 1);
mv->dst_y = y + (mb_size >> 1);
mv->src_x = x_mv + (mb_size >> 1);
mv->src_y = y_mv + (mb_size >> 1);
mv->source = dir ? 1 : -1;
mv->flags = 0;
}
#define SEARCH_MV(method)\
do {\
for (mb_y = 0; mb_y < s->b_height; mb_y++)\
for (mb_x = 0; mb_x < s->b_width; mb_x++) {\
const int x_mb = mb_x << s->log2_mb_size;\
const int y_mb = mb_y << s->log2_mb_size;\
int mv[2] = {x_mb, y_mb};\
ff_me_search_##method(me_ctx, x_mb, y_mb, mv);\
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir);\
}\
} while (0)
#define ADD_PRED(preds, px, py)\
do {\
preds.mvs[preds.nb][0] = px;\
preds.mvs[preds.nb][1] = py;\
preds.nb++;\
} while(0)
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
MEContext *s = ctx->priv;
AVMotionEstContext *me_ctx = &s->me_ctx;
AVFrameSideData *sd;
AVFrame *out;
int mb_x, mb_y, dir;
int32_t mv_count = 0;
int ret;
if (frame->pts == AV_NOPTS_VALUE) {
ret = ff_filter_frame(ctx->outputs[0], frame);
return ret;
}
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = frame;
s->mv_table[2] = memcpy(s->mv_table[2], s->mv_table[1], sizeof(*s->mv_table[1]) * s->b_count);
s->mv_table[1] = memcpy(s->mv_table[1], s->mv_table[0], sizeof(*s->mv_table[0]) * s->b_count);
if (!s->cur) {
s->cur = av_frame_clone(frame);
if (!s->cur)
return AVERROR(ENOMEM);
}
if (!s->prev)
return 0;
out = av_frame_clone(s->cur);
if (!out)
return AVERROR(ENOMEM);
sd = av_frame_new_side_data(out, AV_FRAME_DATA_MOTION_VECTORS, 2 * s->b_count * sizeof(AVMotionVector));
if (!sd) {
av_frame_free(&out);
return AVERROR(ENOMEM);
}
me_ctx->data_cur = s->cur->data[0];
me_ctx->linesize = s->cur->linesize[0];
for (dir = 0; dir < 2; dir++) {
me_ctx->data_ref = (dir ? s->next : s->prev)->data[0];
if (s->method == AV_ME_METHOD_DS)
SEARCH_MV(ds);
else if (s->method == AV_ME_METHOD_ESA)
SEARCH_MV(esa);
else if (s->method == AV_ME_METHOD_FSS)
SEARCH_MV(fss);
else if (s->method == AV_ME_METHOD_NTSS)
SEARCH_MV(ntss);
else if (s->method == AV_ME_METHOD_TDLS)
SEARCH_MV(tdls);
else if (s->method == AV_ME_METHOD_TSS)
SEARCH_MV(tss);
else if (s->method == AV_ME_METHOD_HEXBS)
SEARCH_MV(hexbs);
else if (s->method == AV_ME_METHOD_UMH) {
for (mb_y = 0; mb_y < s->b_height; mb_y++)
for (mb_x = 0; mb_x < s->b_width; mb_x++) {
const int mb_i = mb_x + mb_y * s->b_width;
const int x_mb = mb_x << s->log2_mb_size;
const int y_mb = mb_y << s->log2_mb_size;
int mv[2] = {x_mb, y_mb};
AVMotionEstPredictor *preds = me_ctx->preds;
preds[0].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]);
if (mb_y > 0) {
//top mb in current frame
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]);
//top-right mb in current frame
if (mb_x + 1 < s->b_width)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]);
//top-left mb in current frame
else if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width - 1][dir][0], s->mv_table[0][mb_i - s->b_width - 1][dir][1]);
}
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
ff_me_search_umh(me_ctx, x_mb, y_mb, mv);
s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir);
}
} else if (s->method == AV_ME_METHOD_EPZS) {
for (mb_y = 0; mb_y < s->b_height; mb_y++)
for (mb_x = 0; mb_x < s->b_width; mb_x++) {
const int mb_i = mb_x + mb_y * s->b_width;
const int x_mb = mb_x << s->log2_mb_size;
const int y_mb = mb_y << s->log2_mb_size;
int mv[2] = {x_mb, y_mb};
AVMotionEstPredictor *preds = me_ctx->preds;
preds[0].nb = 0;
preds[1].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]);
//top mb in current frame
if (mb_y > 0)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]);
//top-right mb in current frame
if (mb_y > 0 && mb_x + 1 < s->b_width)
ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]);
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
//collocated mb in prev frame
ADD_PRED(preds[0], s->mv_table[1][mb_i][dir][0], s->mv_table[1][mb_i][dir][1]);
//accelerator motion vector of collocated block in prev frame
ADD_PRED(preds[1], s->mv_table[1][mb_i][dir][0] + (s->mv_table[1][mb_i][dir][0] - s->mv_table[2][mb_i][dir][0]),
s->mv_table[1][mb_i][dir][1] + (s->mv_table[1][mb_i][dir][1] - s->mv_table[2][mb_i][dir][1]));
//left mb in prev frame
if (mb_x > 0)
ADD_PRED(preds[1], s->mv_table[1][mb_i - 1][dir][0], s->mv_table[1][mb_i - 1][dir][1]);
//top mb in prev frame
if (mb_y > 0)
ADD_PRED(preds[1], s->mv_table[1][mb_i - s->b_width][dir][0], s->mv_table[1][mb_i - s->b_width][dir][1]);
//right mb in prev frame
if (mb_x + 1 < s->b_width)
ADD_PRED(preds[1], s->mv_table[1][mb_i + 1][dir][0], s->mv_table[1][mb_i + 1][dir][1]);
//bottom mb in prev frame
if (mb_y + 1 < s->b_height)
ADD_PRED(preds[1], s->mv_table[1][mb_i + s->b_width][dir][0], s->mv_table[1][mb_i + s->b_width][dir][1]);
ff_me_search_epzs(me_ctx, x_mb, y_mb, mv);
s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
add_mv_data(((AVMotionVector *) sd->data) + mv_count++, s->mb_size, x_mb, y_mb, mv[0], mv[1], dir);
}
}
}
return ff_filter_frame(ctx->outputs[0], out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
MEContext *s = ctx->priv;
int i;
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
for (i = 0; i < 3; i++)
av_freep(&s->mv_table[i]);
}
static const AVFilterPad mestimate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad mestimate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_mestimate = {
.name = "mestimate",
.description = NULL_IF_CONFIG_SMALL("Generate motion vectors."),
.priv_size = sizeof(MEContext),
.priv_class = &mestimate_class,
.uninit = uninit,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(mestimate_inputs),
FILTER_OUTPUTS(mestimate_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(query_formats),
};