1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_huesaturation.c

480 lines
18 KiB
C
Raw Normal View History

2021-09-28 09:25:43 +02:00
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define REDS 0
#define YELLOWS 1
#define GREENS 2
#define CYANS 3
#define BLUES 4
#define MAGENTAS 5
#define RED (1 << REDS)
#define YELLOW (1 << YELLOWS)
#define GREEN (1 << GREENS)
#define CYAN (1 << CYANS)
#define BLUE (1 << BLUES)
#define MAGENTA (1 << MAGENTAS)
#define ALL 0x3F
typedef struct HueSaturationContext {
const AVClass *class;
float hue;
float saturation;
float intensity;
float strength;
float rlw, glw, blw;
int lightness;
int colors;
int depth;
int planewidth[4];
int planeheight[4];
float matrix[4][4];
int64_t imatrix[4][4];
int bpp;
int step;
uint8_t rgba_map[4];
int (*do_slice[2])(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} HueSaturationContext;
#define DENOM 0x10000
static inline void get_triplet(int64_t m[4][4], int *r, int *g, int *b)
{
const int ir = *r, ig = *g, ib = *b;
*r = (ir * m[0][0] + ig * m[1][0] + ib * m[2][0] /*+ m[3][0]*/) >> 16;
*g = (ir * m[0][1] + ig * m[1][1] + ib * m[2][1] /*+ m[3][1]*/) >> 16;
*b = (ir * m[0][2] + ig * m[1][2] + ib * m[2][2] /*+ m[3][2]*/) >> 16;
}
#define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
static inline int lerpi8(int v0, int v1, int f, int max)
{
return v0 + FAST_DIV255((v1 - v0) * f);
}
static inline int lerpi16(int v0, int v1, int f, int max)
{
return v0 + (v1 - v0) * (int64_t)f / max;
}
#define HUESATURATION(name, type, clip, xall) \
static int do_slice_##name##_##xall(AVFilterContext *ctx, \
void *arg, \
int jobnr, int nb_jobs) \
{ \
HueSaturationContext *s = ctx->priv; \
AVFrame *frame = arg; \
const int imax = (1 << name) - 1; \
const float strength = s->strength; \
const int colors = s->colors; \
const int step = s->step; \
const int width = frame->width; \
const int process_h = frame->height; \
const int slice_start = (process_h * jobnr ) / nb_jobs; \
const int slice_end = (process_h * (jobnr+1)) / nb_jobs; \
const int linesize = frame->linesize[0] / sizeof(type); \
type *row = (type *)frame->data[0] + linesize * slice_start; \
const uint8_t offset_r = s->rgba_map[R]; \
const uint8_t offset_g = s->rgba_map[G]; \
const uint8_t offset_b = s->rgba_map[B]; \
type *dst_r = row + offset_r; \
type *dst_g = row + offset_g; \
type *dst_b = row + offset_b; \
\
for (int y = slice_start; y < slice_end; y++) { \
for (int x = 0; x < width * step; x += step) { \
int ir, ig, ib, ro, go, bo; \
\
ir = ro = dst_r[x]; \
ig = go = dst_g[x]; \
ib = bo = dst_b[x]; \
\
if (xall) { \
get_triplet(s->imatrix, &ir, &ig, &ib); \
} else { \
const int min = FFMIN3(ir, ig, ib); \
const int max = FFMAX3(ir, ig, ib); \
const int flags = (ir == max) << REDS \
| (ir == min) << CYANS \
| (ig == max) << GREENS \
| (ig == min) << MAGENTAS \
| (ib == max) << BLUES \
| (ib == min) << YELLOWS; \
if (colors & flags) { \
int f = 0; \
\
if (colors & RED) \
f = FFMAX(f, ir - FFMAX(ig, ib)); \
if (colors & YELLOW) \
f = FFMAX(f, FFMIN(ir, ig) - ib); \
if (colors & GREEN) \
f = FFMAX(f, ig - FFMAX(ir, ib)); \
if (colors & CYAN) \
f = FFMAX(f, FFMIN(ig, ib) - ir); \
if (colors & BLUE) \
f = FFMAX(f, ib - FFMAX(ir, ig)); \
if (colors & MAGENTA) \
f = FFMAX(f, FFMIN(ir, ib) - ig); \
f = FFMIN(f * strength, imax); \
get_triplet(s->imatrix, &ir, &ig, &ib); \
ir = lerpi##name(ro, ir, f, imax); \
ig = lerpi##name(go, ig, f, imax); \
ib = lerpi##name(bo, ib, f, imax); \
} \
} \
\
dst_r[x] = clip(ir); \
dst_g[x] = clip(ig); \
dst_b[x] = clip(ib); \
} \
\
dst_r += linesize; \
dst_g += linesize; \
dst_b += linesize; \
} \
\
return 0; \
}
HUESATURATION(8, uint8_t, av_clip_uint8, 0)
HUESATURATION(16, uint16_t, av_clip_uint16, 0)
HUESATURATION(8, uint8_t, av_clip_uint8, 1)
HUESATURATION(16, uint16_t, av_clip_uint16, 1)
static void identity_matrix(float matrix[4][4])
{
for (int y = 0; y < 4; y++)
for (int x = 0; x < 4; x++)
matrix[y][x] = y == x;
}
static void matrix_multiply(float a[4][4], float b[4][4], float c[4][4])
{
float temp[4][4];
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
temp[y][x] = b[y][0] * a[0][x]
+ b[y][1] * a[1][x]
+ b[y][2] * a[2][x]
+ b[y][3] * a[3][x];
}
}
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++)
c[y][x] = temp[y][x];
}
}
static void colorscale_matrix(float matrix[4][4], float r, float g, float b)
{
float temp[4][4];
temp[0][0] = r; temp[0][1] = 0.f; temp[0][2] = 0.f; temp[0][3] = 0.f;
temp[1][0] = 0.f; temp[1][1] = g; temp[1][2] = 0.f; temp[1][3] = 0.f;
temp[2][0] = 0.f; temp[2][1] = 0.f; temp[2][2] = b; temp[2][3] = 0.f;
temp[3][0] = 0.f; temp[3][1] = 0.f; temp[3][2] = 0.f; temp[3][3] = 1.f;
matrix_multiply(temp, matrix, matrix);
}
static void saturation_matrix(float matrix[4][4], float saturation,
float rlw, float glw, float blw)
{
float s = 1.f - saturation;
float a = s * rlw + saturation;
float b = s * rlw;
float c = s * rlw;
float d = s * glw;
float e = s * glw + saturation;
float f = s * glw;
float g = s * blw;
float h = s * blw;
float i = s * blw + saturation;
float m[4][4];
m[0][0] = a; m[0][1] = b; m[0][2] = c; m[0][3] = 0.f;
m[1][0] = d; m[1][1] = e; m[1][2] = f; m[1][3] = 0.f;
m[2][0] = g; m[2][1] = h; m[2][2] = i; m[2][3] = 0.f;
m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f;
matrix_multiply(m, matrix, matrix);
}
static void matrix2imatrix(float matrix[4][4], int64_t imatrix[4][4])
{
for (int y = 0; y < 4; y++)
for (int x = 0; x < 4; x++)
imatrix[y][x] = lrintf(matrix[y][x] * DENOM);
}
static void x_rotate_matrix(float matrix[4][4], float rs, float rc)
{
float m[4][4];
m[0][0] = 1.f; m[0][1] = 0.f; m[0][2] = 0.f; m[0][3] = 0.f;
m[1][0] = 0.f; m[1][1] = rc; m[1][2] = rs; m[1][3] = 0.f;
m[2][0] = 0.f; m[2][1] = -rs; m[2][2] = rc; m[2][3] = 0.f;
m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f;
matrix_multiply(m, matrix, matrix);
}
static void y_rotate_matrix(float matrix[4][4], float rs, float rc)
{
float m[4][4];
m[0][0] = rc; m[0][1] = 0.f; m[0][2] = -rs; m[0][3] = 0.f;
m[1][0] = 0.f; m[1][1] = 1.f; m[1][2] = 0.f; m[1][3] = 0.f;
m[2][0] = rs; m[2][1] = 0.f; m[2][2] = rc; m[2][3] = 0.f;
m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f;
matrix_multiply(m, matrix, matrix);
}
static void z_rotate_matrix(float matrix[4][4], float rs, float rc)
{
float m[4][4];
m[0][0] = rc; m[0][1] = rs; m[0][2] = 0.f; m[0][3] = 0.f;
m[1][0] = -rs; m[1][1] = rc; m[1][2] = 0.f; m[1][3] = 0.f;
m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = 1.f; m[2][3] = 0.f;
m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f;
matrix_multiply(m, matrix, matrix);
}
static void z_shear_matrix(float matrix[4][4], float dx, float dy)
{
float m[4][4];
m[0][0] = 1.f; m[0][1] = 0.f; m[0][2] = dx; m[0][3] = 0.f;
m[1][0] = 0.f; m[1][1] = 1.f; m[1][2] = dy; m[1][3] = 0.f;
m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = 1.f; m[2][3] = 0.f;
m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f;
matrix_multiply(m, matrix, matrix);
}
static void transform_point(float matrix[4][4],
float x, float y, float z,
float *tx, float *ty, float *tz)
{
x = y;
*tx = x * matrix[0][0] + y * matrix[1][0] + z * matrix[2][0] + matrix[3][0];
*ty = x * matrix[0][1] + y * matrix[1][1] + z * matrix[2][1] + matrix[3][1];
*tz = x * matrix[0][2] + y * matrix[1][2] + z * matrix[2][2] + matrix[3][2];
}
static void hue_rotate_matrix(float matrix[4][4], float rotation,
float rlw, float glw, float blw)
{
float mag, lx, ly, lz;
float xrs, xrc;
float yrs, yrc;
float zrs, zrc;
float zsx, zsy;
mag = M_SQRT2;
xrs = 1.f / mag;
xrc = 1.f / mag;
x_rotate_matrix(matrix, xrs, xrc);
mag = sqrtf(3.f);
yrs = -1.f / mag;
yrc = M_SQRT2 / mag;
y_rotate_matrix(matrix, yrs, yrc);
transform_point(matrix, rlw, glw, blw, &lx, &ly, &lz);
zsx = lx / lz;
zsy = ly / lz;
z_shear_matrix(matrix, zsx, zsy);
zrs = sinf(rotation * M_PI / 180.f);
zrc = cosf(rotation * M_PI / 180.f);
z_rotate_matrix(matrix, zrs, zrc);
z_shear_matrix(matrix, -zsx, -zsy);
y_rotate_matrix(matrix, -yrs, yrc);
x_rotate_matrix(matrix, -xrs, xrc);
}
static void shue_rotate_matrix(float m[4][4], float rotation)
{
float xrs, xrc, yrs, yrc, zrs, zrc, mag;
mag = M_SQRT2;
xrs = 1.f / mag;
xrc = 1.f / mag;
x_rotate_matrix(m, xrs, xrc);
mag = sqrtf(3.f);
yrs = -1.f / mag;
yrc = M_SQRT2 / mag;
y_rotate_matrix(m, yrs, yrc);
zrs = sinf(rotation * M_PI / 180.f);
zrc = cosf(rotation * M_PI / 180.f);
z_rotate_matrix(m, zrs, zrc);
y_rotate_matrix(m, -yrs, yrc);
x_rotate_matrix(m, -xrs, xrc);
}
static void init_matrix(HueSaturationContext *s)
{
float i = 1.f + s->intensity;
float saturation = 1.f + s->saturation;
float hue = s->hue;
identity_matrix(s->matrix);
colorscale_matrix(s->matrix, i, i, i);
saturation_matrix(s->matrix, saturation,
s->rlw, s->glw, s->blw);
if (s->lightness)
hue_rotate_matrix(s->matrix, hue,
s->rlw, s->glw, s->blw);
else
shue_rotate_matrix(s->matrix, hue);
matrix2imatrix(s->matrix, s->imatrix);
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
HueSaturationContext *s = ctx->priv;
init_matrix(s);
ff_filter_execute(ctx, s->do_slice[(s->strength >= 99.f) && (s->colors == ALL)], frame, NULL,
FFMIN(s->planeheight[1], ff_filter_get_nb_threads(ctx)));
return ff_filter_frame(ctx->outputs[0], frame);
}
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ABGR, AV_PIX_FMT_ARGB,
AV_PIX_FMT_0BGR, AV_PIX_FMT_0RGB,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_NONE
};
static av_cold int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
HueSaturationContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
s->bpp = s->depth >> 3;
s->step = av_get_padded_bits_per_pixel(desc) >> (3 + (s->bpp == 2));
ff_fill_rgba_map(s->rgba_map, inlink->format);
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->do_slice[0] = s->depth <= 8 ? do_slice_8_0 : do_slice_16_0;
s->do_slice[1] = s->depth <= 8 ? do_slice_8_1 : do_slice_16_1;
return 0;
}
static const AVFilterPad huesaturation_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad huesaturation_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
#define OFFSET(x) offsetof(HueSaturationContext, x)
#define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption huesaturation_options[] = {
{ "hue", "set the hue shift", OFFSET(hue), AV_OPT_TYPE_FLOAT, {.dbl=0},-180, 180, VF },
{ "saturation", "set the saturation shift", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, VF },
{ "intensity", "set the intensity shift", OFFSET(intensity), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, VF },
{ "colors", "set colors range", OFFSET(colors), AV_OPT_TYPE_FLAGS, {.i64=ALL}, 0,ALL,VF, "colors" },
{ "r", "set reds", 0, AV_OPT_TYPE_CONST, {.i64=RED}, 0, 0, VF, "colors" },
{ "y", "set yellows", 0, AV_OPT_TYPE_CONST, {.i64=YELLOW}, 0, 0, VF, "colors" },
{ "g", "set greens", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, VF, "colors" },
{ "c", "set cyans", 0, AV_OPT_TYPE_CONST, {.i64=CYAN}, 0, 0, VF, "colors" },
{ "b", "set blues", 0, AV_OPT_TYPE_CONST, {.i64=BLUE}, 0, 0, VF, "colors" },
{ "m", "set magentas", 0, AV_OPT_TYPE_CONST, {.i64=MAGENTA}, 0, 0, VF, "colors" },
{ "a", "set all colors", 0, AV_OPT_TYPE_CONST, {.i64=ALL}, 0, 0, VF, "colors" },
{ "strength", "set the filtering strength", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0,100,VF },
{ "rw", "set the red weight", OFFSET(rlw), AV_OPT_TYPE_FLOAT, {.dbl=.333}, 0, 1, VF },
{ "gw", "set the green weight", OFFSET(glw), AV_OPT_TYPE_FLOAT, {.dbl=.334}, 0, 1, VF },
{ "bw", "set the blue weight", OFFSET(blw), AV_OPT_TYPE_FLOAT, {.dbl=.333}, 0, 1, VF },
{ "lightness", "set the preserve lightness", OFFSET(lightness), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
{ NULL }
};
AVFILTER_DEFINE_CLASS(huesaturation);
const AVFilter ff_vf_huesaturation = {
.name = "huesaturation",
.description = NULL_IF_CONFIG_SMALL("Apply hue-saturation-intensity adjustments."),
.priv_size = sizeof(HueSaturationContext),
.priv_class = &huesaturation_class,
FILTER_INPUTS(huesaturation_inputs),
FILTER_OUTPUTS(huesaturation_outputs),
FILTER_PIXFMTS_ARRAY(pixel_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};