1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/magicyuv.c

466 lines
14 KiB
C
Raw Normal View History

/*
* MagicYUV decoder
* Copyright (c) 2016 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "libavutil/qsort.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "huffyuvdsp.h"
#include "internal.h"
#include "thread.h"
typedef struct Slice {
uint32_t start;
uint32_t size;
} Slice;
typedef enum Prediction {
LEFT = 1,
GRADIENT,
MEDIAN,
} Prediction;
typedef struct MagicYUVContext {
AVFrame *p;
int slice_height;
int nb_slices;
int planes; // number of encoded planes in bitstream
int decorrelate; // postprocessing work
int interlaced; // video is interlaced
uint8_t *buf; // pointer to AVPacket->data
int hshift[4];
int vshift[4];
Slice *slices[4]; // slice positions and size in bitstream for each plane
int slices_size[4];
uint8_t len[4][256]; // table of code lengths for each plane
VLC vlc[4]; // VLC for each plane
HuffYUVDSPContext hdsp;
} MagicYUVContext;
static av_cold int decode_init(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
ff_huffyuvdsp_init(&s->hdsp);
return 0;
}
typedef struct HuffEntry {
uint8_t sym;
uint8_t len;
uint32_t code;
} HuffEntry;
static int ff_magy_huff_cmp_len(const void *a, const void *b)
{
const HuffEntry *aa = a, *bb = b;
return (aa->len - bb->len) * 256 + aa->sym - bb->sym;
}
static int build_huff(VLC *vlc, uint8_t *len)
{
HuffEntry he[256];
uint32_t codes[256];
uint8_t bits[256];
uint8_t syms[256];
uint32_t code;
int i;
for (i = 0; i < 256; i++) {
he[i].sym = 255 - i;
he[i].len = len[i];
}
AV_QSORT(he, 256, HuffEntry, ff_magy_huff_cmp_len);
code = 1;
for (i = 255; i >= 0; i--) {
codes[i] = code >> (32 - he[i].len);
bits[i] = he[i].len;
syms[i] = he[i].sym;
code += 0x80000000u >> (he[i].len - 1);
}
ff_free_vlc(vlc);
return ff_init_vlc_sparse(vlc, FFMIN(he[255].len, 12), 256,
bits, sizeof(*bits), sizeof(*bits),
codes, sizeof(*codes), sizeof(*codes),
syms, sizeof(*syms), sizeof(*syms), 0);
}
static int decode_slice(AVCodecContext *avctx, void *tdata,
int j, int threadnr)
{
MagicYUVContext *s = avctx->priv_data;
int interlaced = s->interlaced;
AVFrame *p = s->p;
int i, k, x, ret;
GetBitContext b;
uint8_t *dst;
for (i = 0; i < s->planes; i++) {
int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
int fake_stride = p->linesize[i] * (1 + interlaced);
int stride = p->linesize[i];
int pred;
if ((ret = init_get_bits8(&b, s->buf + s->slices[i][j].start, s->slices[i][j].size)) < 0)
return ret;
pred = get_bits(&b, 16);
dst = p->data[i] + j * sheight * stride;
for (k = 0; k < height; k++) {
for (x = 0; x < width; x++) {
int pix;
if (get_bits_left(&b) <= 0) {
return AVERROR_INVALIDDATA;
}
pix = get_vlc2(&b, s->vlc[i].table, s->vlc[i].bits, 3);
if (pix < 0) {
return AVERROR_INVALIDDATA;
}
dst[x] = 255 - pix;
}
dst += stride;
}
if (pred == LEFT) {
dst = p->data[i] + j * sheight * stride;
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
if (interlaced) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, dst[-fake_stride]);
dst += stride;
}
} else if (pred == GRADIENT) {
int left, lefttop, top;
dst = p->data[i] + j * sheight * stride;
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
left = lefttop = 0;
dst += stride;
if (interlaced) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
left = lefttop = 0;
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
top = dst[-fake_stride];
left = top + dst[0];
dst[0] = left;
for (x = 1; x < width; x++) {
top = dst[x - fake_stride];
lefttop = dst[x - (fake_stride + 1)];
left += top - lefttop + dst[x];
dst[x] = left;
}
dst += stride;
}
} else if (pred == MEDIAN) {
int left, lefttop;
dst = p->data[i] + j * sheight * stride;
lefttop = left = dst[0];
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
if (interlaced) {
lefttop = left = dst[0];
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
s->hdsp.add_hfyu_median_pred(dst, dst - fake_stride, dst, width, &left, &lefttop);
lefttop = left = dst[0];
dst += stride;
}
} else {
avpriv_request_sample(avctx, "unknown prediction: %d", pred);
}
}
if (s->decorrelate) {
int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
int width = avctx->coded_width;
uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
for (i = 0; i < height; i++) {
s->hdsp.add_bytes(b, g, width);
s->hdsp.add_bytes(r, g, width);
b += p->linesize[0];
g += p->linesize[1];
r += p->linesize[2];
}
}
return 0;
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
uint32_t first_offset, offset, next_offset, header_size, slice_width;
int ret, format, version, table_size;
MagicYUVContext *s = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *p = data;
GetByteContext gb;
GetBitContext b;
int i, j, k;
bytestream2_init(&gb, avpkt->data, avpkt->size);
if (bytestream2_get_le32(&gb) != MKTAG('M','A','G','Y'))
return AVERROR_INVALIDDATA;
header_size = bytestream2_get_le32(&gb);
if (header_size < 32 || header_size >= avpkt->size)
return AVERROR_INVALIDDATA;
version = bytestream2_get_byte(&gb);
if (version != 7) {
avpriv_request_sample(avctx, "unsupported version: %d", version);
return AVERROR_PATCHWELCOME;
}
s->hshift[1] = s->vshift[1] = 0;
s->hshift[2] = s->vshift[2] = 0;
s->decorrelate = 0;
format = bytestream2_get_byte(&gb);
switch (format) {
case 0x65:
avctx->pix_fmt = AV_PIX_FMT_GBRP;
s->decorrelate = 1;
s->planes = 3;
break;
case 0x66:
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
s->decorrelate = 1;
s->planes = 4;
break;
case 0x67:
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
s->planes = 3;
break;
case 0x68:
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
s->planes = 3;
s->hshift[1] = s->hshift[2] = 1;
break;
case 0x69:
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
s->planes = 3;
s->hshift[1] = s->vshift[1] = 1;
s->hshift[2] = s->vshift[2] = 1;
break;
case 0x6a:
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
s->planes = 4;
break;
case 0x6b:
avctx->pix_fmt = AV_PIX_FMT_GRAY8;
s->planes = 1;
break;
default:
avpriv_request_sample(avctx, "unsupported format: 0x%X", format);
return AVERROR_PATCHWELCOME;
}
bytestream2_skip(&gb, 2);
s->interlaced = !!(bytestream2_get_byte(&gb) & 2);
bytestream2_skip(&gb, 3);
avctx->coded_width = bytestream2_get_le32(&gb);
avctx->coded_height = bytestream2_get_le32(&gb);
slice_width = bytestream2_get_le32(&gb);
if (slice_width != avctx->coded_width) {
avpriv_request_sample(avctx, "unsupported slice width: %d", slice_width);
return AVERROR_PATCHWELCOME;
}
s->slice_height = bytestream2_get_le32(&gb);
if ((s->slice_height <= 0) || (s->slice_height > INT_MAX - avctx->coded_height)) {
av_log(avctx, AV_LOG_ERROR, "invalid slice height: %d\n", s->slice_height);
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gb, 4);
s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
if (s->nb_slices > INT_MAX / sizeof(Slice)) {
av_log(avctx, AV_LOG_ERROR, "invalid number of slices: %d\n", s->nb_slices);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < s->planes; i++) {
av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
if (!s->slices[i])
return AVERROR(ENOMEM);
offset = bytestream2_get_le32(&gb);
if (offset >= avpkt->size - header_size)
return AVERROR_INVALIDDATA;
if (i == 0)
first_offset = offset;
for (j = 0; j < s->nb_slices - 1; j++) {
s->slices[i][j].start = offset + header_size;
next_offset = bytestream2_get_le32(&gb);
s->slices[i][j].size = next_offset - offset;
offset = next_offset;
if (offset >= avpkt->size - header_size)
return AVERROR_INVALIDDATA;
}
s->slices[i][j].start = offset + header_size;
s->slices[i][j].size = avpkt->size - offset;
}
if (bytestream2_get_byte(&gb) != s->planes)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, s->nb_slices * s->planes);
table_size = header_size + first_offset - bytestream2_tell(&gb);
if (table_size < 2)
return AVERROR_INVALIDDATA;
if ((ret = init_get_bits8(&b, avpkt->data + bytestream2_tell(&gb), table_size)) < 0)
return ret;
memset(s->len, 0, sizeof(s->len));
j = i = 0;
while (get_bits_left(&b) >= 8) {
int l = get_bits(&b, 4);
int x = get_bits(&b, 4);
int L = get_bitsz(&b, l) + 1;
for (k = 0; k < L; k++) {
if (j + k < 256)
s->len[i][j + k] = x;
}
j += L;
if (j == 256) {
j = 0;
if (build_huff(&s->vlc[i], s->len[i])) {
av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return AVERROR_INVALIDDATA;
}
i++;
if (i == s->planes) {
break;
}
} else if (j > 256) {
return AVERROR_INVALIDDATA;
}
}
if (i != s->planes) {
av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
return AVERROR_INVALIDDATA;
}
p->pict_type = AV_PICTURE_TYPE_I;
p->key_frame = 1;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
s->buf = avpkt->data;
s->p = p;
avctx->execute2(avctx, decode_slice, NULL, NULL, s->nb_slices);
if (avctx->pix_fmt == AV_PIX_FMT_GBRP ||
avctx->pix_fmt == AV_PIX_FMT_GBRAP) {
FFSWAP(uint8_t*, p->data[0], p->data[1]);
FFSWAP(int, p->linesize[0], p->linesize[1]);
}
*got_frame = 1;
if (ret < 0)
return ret;
return avpkt->size;
}
#if HAVE_THREADS
static int decode_init_thread_copy(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
s->slices[0] = 0;
s->slices[1] = 0;
s->slices[2] = 0;
s->slices[3] = 0;
s->slices_size[0] = 0;
s->slices_size[1] = 0;
s->slices_size[2] = 0;
s->slices_size[3] = 0;
return 0;
}
#endif
static av_cold int decode_end(AVCodecContext *avctx)
{
MagicYUVContext * const s = avctx->priv_data;
av_freep(&s->slices[0]);
av_freep(&s->slices[1]);
av_freep(&s->slices[2]);
av_freep(&s->slices[3]);
s->slices_size[0] = 0;
s->slices_size[1] = 0;
s->slices_size[2] = 0;
s->slices_size[3] = 0;
ff_free_vlc(&s->vlc[0]);
ff_free_vlc(&s->vlc[1]);
ff_free_vlc(&s->vlc[2]);
ff_free_vlc(&s->vlc[3]);
return 0;
}
AVCodec ff_magicyuv_decoder = {
.name = "magicyuv",
.long_name = NULL_IF_CONFIG_SMALL("MagicYUV Lossless Video"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_MAGICYUV,
.priv_data_size = sizeof(MagicYUVContext),
.init = decode_init,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS,
};