1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/vp9block.c

1468 lines
59 KiB
C
Raw Normal View History

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "avcodec.h"
#include "internal.h"
#include "videodsp.h"
#include "vp56.h"
#include "vp9.h"
#include "vp9data.h"
#include "vp9dec.h"
static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
ptrdiff_t stride, int v)
{
switch (w) {
case 1:
do {
*ptr = v;
ptr += stride;
} while (--h);
break;
case 2: {
int v16 = v * 0x0101;
do {
AV_WN16A(ptr, v16);
ptr += stride;
} while (--h);
break;
}
case 4: {
uint32_t v32 = v * 0x01010101;
do {
AV_WN32A(ptr, v32);
ptr += stride;
} while (--h);
break;
}
case 8: {
#if HAVE_FAST_64BIT
uint64_t v64 = v * 0x0101010101010101ULL;
do {
AV_WN64A(ptr, v64);
ptr += stride;
} while (--h);
#else
uint32_t v32 = v * 0x01010101;
do {
AV_WN32A(ptr, v32);
AV_WN32A(ptr + 4, v32);
ptr += stride;
} while (--h);
#endif
break;
}
}
}
static void decode_mode(AVCodecContext *avctx)
{
static const uint8_t left_ctx[N_BS_SIZES] = {
0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
};
static const uint8_t above_ctx[N_BS_SIZES] = {
0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
};
static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
};
VP9Context *s = avctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col, row7 = s->row7;
enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
int bw4 = ff_vp9_bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
int bh4 = ff_vp9_bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
int have_a = row > 0, have_l = col > s->tile_col_start;
int vref, filter_id;
if (!s->s.h.segmentation.enabled) {
b->seg_id = 0;
} else if (s->s.h.keyframe || s->s.h.intraonly) {
b->seg_id = !s->s.h.segmentation.update_map ? 0 :
vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree, s->s.h.segmentation.prob);
} else if (!s->s.h.segmentation.update_map ||
(s->s.h.segmentation.temporal &&
vp56_rac_get_prob_branchy(&s->c,
s->s.h.segmentation.pred_prob[s->above_segpred_ctx[col] +
s->left_segpred_ctx[row7]]))) {
if (!s->s.h.errorres && s->s.frames[REF_FRAME_SEGMAP].segmentation_map) {
int pred = 8, x;
uint8_t *refsegmap = s->s.frames[REF_FRAME_SEGMAP].segmentation_map;
if (!s->s.frames[REF_FRAME_SEGMAP].uses_2pass)
ff_thread_await_progress(&s->s.frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
for (y = 0; y < h4; y++) {
int idx_base = (y + row) * 8 * s->sb_cols + col;
for (x = 0; x < w4; x++)
pred = FFMIN(pred, refsegmap[idx_base + x]);
}
av_assert1(pred < 8);
b->seg_id = pred;
} else {
b->seg_id = 0;
}
memset(&s->above_segpred_ctx[col], 1, w4);
memset(&s->left_segpred_ctx[row7], 1, h4);
} else {
b->seg_id = vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree,
s->s.h.segmentation.prob);
memset(&s->above_segpred_ctx[col], 0, w4);
memset(&s->left_segpred_ctx[row7], 0, h4);
}
if (s->s.h.segmentation.enabled &&
(s->s.h.segmentation.update_map || s->s.h.keyframe || s->s.h.intraonly)) {
setctx_2d(&s->s.frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
bw4, bh4, 8 * s->sb_cols, b->seg_id);
}
b->skip = s->s.h.segmentation.enabled &&
s->s.h.segmentation.feat[b->seg_id].skip_enabled;
if (!b->skip) {
int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
s->counts.skip[c][b->skip]++;
}
if (s->s.h.keyframe || s->s.h.intraonly) {
b->intra = 1;
} else if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
b->intra = !s->s.h.segmentation.feat[b->seg_id].ref_val;
} else {
int c, bit;
if (have_a && have_l) {
c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
c += (c == 2);
} else {
c = have_a ? 2 * s->above_intra_ctx[col] :
have_l ? 2 * s->left_intra_ctx[row7] : 0;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
s->counts.intra[c][bit]++;
b->intra = !bit;
}
if ((b->intra || !b->skip) && s->s.h.txfmmode == TX_SWITCHABLE) {
int c;
if (have_a) {
if (have_l) {
c = (s->above_skip_ctx[col] ? max_tx :
s->above_txfm_ctx[col]) +
(s->left_skip_ctx[row7] ? max_tx :
s->left_txfm_ctx[row7]) > max_tx;
} else {
c = s->above_skip_ctx[col] ? 1 :
(s->above_txfm_ctx[col] * 2 > max_tx);
}
} else if (have_l) {
c = s->left_skip_ctx[row7] ? 1 :
(s->left_txfm_ctx[row7] * 2 > max_tx);
} else {
c = 1;
}
switch (max_tx) {
case TX_32X32:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
if (b->tx) {
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
if (b->tx == 2)
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
}
s->counts.tx32p[c][b->tx]++;
break;
case TX_16X16:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
if (b->tx)
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
s->counts.tx16p[c][b->tx]++;
break;
case TX_8X8:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
s->counts.tx8p[c][b->tx]++;
break;
case TX_4X4:
b->tx = TX_4X4;
break;
}
} else {
b->tx = FFMIN(max_tx, s->s.h.txfmmode);
}
if (s->s.h.keyframe || s->s.h.intraonly) {
uint8_t *a = &s->above_mode_ctx[col * 2];
uint8_t *l = &s->left_mode_ctx[(row7) << 1];
b->comp = 0;
if (b->bs > BS_8x8) {
// FIXME the memory storage intermediates here aren't really
// necessary, they're just there to make the code slightly
// simpler for now
b->mode[0] =
a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_ymode_probs[a[0]][l[0]]);
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
l[0] =
a[1] = b->mode[1];
} else {
l[0] =
a[1] =
b->mode[1] = b->mode[0];
}
if (b->bs != BS_4x8) {
b->mode[2] =
a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_ymode_probs[a[0]][l[1]]);
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
l[1] =
a[1] = b->mode[3];
} else {
l[1] =
a[1] =
b->mode[3] = b->mode[2];
}
} else {
b->mode[2] = b->mode[0];
l[1] =
a[1] =
b->mode[3] = b->mode[1];
}
} else {
b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_ymode_probs[*a][*l]);
b->mode[3] =
b->mode[2] =
b->mode[1] = b->mode[0];
// FIXME this can probably be optimized
memset(a, b->mode[0], ff_vp9_bwh_tab[0][b->bs][0]);
memset(l, b->mode[0], ff_vp9_bwh_tab[0][b->bs][1]);
}
b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
ff_vp9_default_kf_uvmode_probs[b->mode[3]]);
} else if (b->intra) {
b->comp = 0;
if (b->bs > BS_8x8) {
b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[0]]++;
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[1]]++;
} else {
b->mode[1] = b->mode[0];
}
if (b->bs != BS_4x8) {
b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[2]]++;
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[3]]++;
} else {
b->mode[3] = b->mode[2];
}
} else {
b->mode[2] = b->mode[0];
b->mode[3] = b->mode[1];
}
} else {
static const uint8_t size_group[10] = {
3, 3, 3, 3, 2, 2, 2, 1, 1, 1
};
int sz = size_group[b->bs];
b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.y_mode[sz]);
b->mode[1] =
b->mode[2] =
b->mode[3] = b->mode[0];
s->counts.y_mode[sz][b->mode[3]]++;
}
b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
s->prob.p.uv_mode[b->mode[3]]);
s->counts.uv_mode[b->mode[3]][b->uvmode]++;
} else {
static const uint8_t inter_mode_ctx_lut[14][14] = {
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
};
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
av_assert2(s->s.h.segmentation.feat[b->seg_id].ref_val != 0);
b->comp = 0;
b->ref[0] = s->s.h.segmentation.feat[b->seg_id].ref_val - 1;
} else {
// read comp_pred flag
if (s->s.h.comppredmode != PRED_SWITCHABLE) {
b->comp = s->s.h.comppredmode == PRED_COMPREF;
} else {
int c;
// FIXME add intra as ref=0xff (or -1) to make these easier?
if (have_a) {
if (have_l) {
if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
c = 4;
} else if (s->above_comp_ctx[col]) {
c = 2 + (s->left_intra_ctx[row7] ||
s->left_ref_ctx[row7] == s->s.h.fixcompref);
} else if (s->left_comp_ctx[row7]) {
c = 2 + (s->above_intra_ctx[col] ||
s->above_ref_ctx[col] == s->s.h.fixcompref);
} else {
c = (!s->above_intra_ctx[col] &&
s->above_ref_ctx[col] == s->s.h.fixcompref) ^
(!s->left_intra_ctx[row7] &&
s->left_ref_ctx[row & 7] == s->s.h.fixcompref);
}
} else {
c = s->above_comp_ctx[col] ? 3 :
(!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref);
}
} else if (have_l) {
c = s->left_comp_ctx[row7] ? 3 :
(!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->s.h.fixcompref);
} else {
c = 1;
}
b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
s->counts.comp[c][b->comp]++;
}
// read actual references
// FIXME probably cache a few variables here to prevent repetitive
// memory accesses below
if (b->comp) { /* two references */
int fix_idx = s->s.h.signbias[s->s.h.fixcompref], var_idx = !fix_idx, c, bit;
b->ref[fix_idx] = s->s.h.fixcompref;
// FIXME can this codeblob be replaced by some sort of LUT?
if (have_a) {
if (have_l) {
if (s->above_intra_ctx[col]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else {
c = 1 + 2 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
}
} else if (s->left_intra_ctx[row7]) {
c = 1 + 2 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
} else {
int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
if (refl == refa && refa == s->s.h.varcompref[1]) {
c = 0;
} else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
if ((refa == s->s.h.fixcompref && refl == s->s.h.varcompref[0]) ||
(refl == s->s.h.fixcompref && refa == s->s.h.varcompref[0])) {
c = 4;
} else {
c = (refa == refl) ? 3 : 1;
}
} else if (!s->left_comp_ctx[row7]) {
if (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) {
c = 1;
} else {
c = (refl == s->s.h.varcompref[1] &&
refa != s->s.h.varcompref[1]) ? 2 : 4;
}
} else if (!s->above_comp_ctx[col]) {
if (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) {
c = 1;
} else {
c = (refa == s->s.h.varcompref[1] &&
refl != s->s.h.varcompref[1]) ? 2 : 4;
}
} else {
c = (refl == refa) ? 4 : 2;
}
}
} else {
if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 4 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
} else {
c = 3 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
}
}
} else if (have_l) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 4 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
} else {
c = 3 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
b->ref[var_idx] = s->s.h.varcompref[bit];
s->counts.comp_ref[c][bit]++;
} else /* single reference */ {
int bit, c;
if (have_a && !s->above_intra_ctx[col]) {
if (have_l && !s->left_intra_ctx[row7]) {
if (s->left_comp_ctx[row7]) {
if (s->above_comp_ctx[col]) {
c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7] ||
!s->above_ref_ctx[col]);
} else {
c = (3 * !s->above_ref_ctx[col]) +
(!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
}
} else if (s->above_comp_ctx[col]) {
c = (3 * !s->left_ref_ctx[row7]) +
(!s->s.h.fixcompref || !s->above_ref_ctx[col]);
} else {
c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
}
} else if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 1 + (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
} else {
c = 4 * (!s->above_ref_ctx[col]);
}
} else if (have_l && !s->left_intra_ctx[row7]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
} else {
c = 4 * (!s->left_ref_ctx[row7]);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
s->counts.single_ref[c][0][bit]++;
if (!bit) {
b->ref[0] = 0;
} else {
// FIXME can this codeblob be replaced by some sort of LUT?
if (have_a) {
if (have_l) {
if (s->left_intra_ctx[row7]) {
if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 1 + 2 * (s->s.h.fixcompref == 1 ||
s->above_ref_ctx[col] == 1);
} else if (!s->above_ref_ctx[col]) {
c = 3;
} else {
c = 4 * (s->above_ref_ctx[col] == 1);
}
} else if (s->above_intra_ctx[col]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 1 + 2 * (s->s.h.fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else if (!s->left_ref_ctx[row7]) {
c = 3;
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else if (s->above_comp_ctx[col]) {
if (s->left_comp_ctx[row7]) {
if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
c = 3 * (s->s.h.fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else {
c = 2;
}
} else if (!s->left_ref_ctx[row7]) {
c = 1 + 2 * (s->s.h.fixcompref == 1 ||
s->above_ref_ctx[col] == 1);
} else {
c = 3 * (s->left_ref_ctx[row7] == 1) +
(s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
}
} else if (s->left_comp_ctx[row7]) {
if (!s->above_ref_ctx[col]) {
c = 1 + 2 * (s->s.h.fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else {
c = 3 * (s->above_ref_ctx[col] == 1) +
(s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
}
} else if (!s->above_ref_ctx[col]) {
if (!s->left_ref_ctx[row7]) {
c = 3;
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else if (!s->left_ref_ctx[row7]) {
c = 4 * (s->above_ref_ctx[col] == 1);
} else {
c = 2 * (s->left_ref_ctx[row7] == 1) +
2 * (s->above_ref_ctx[col] == 1);
}
} else {
if (s->above_intra_ctx[col] ||
(!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 3 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
} else {
c = 4 * (s->above_ref_ctx[col] == 1);
}
}
} else if (have_l) {
if (s->left_intra_ctx[row7] ||
(!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 3 * (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
s->counts.single_ref[c][1][bit]++;
b->ref[0] = 1 + bit;
}
}
}
if (b->bs <= BS_8x8) {
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled) {
b->mode[0] =
b->mode[1] =
b->mode[2] =
b->mode[3] = ZEROMV;
} else {
static const uint8_t off[10] = {
3, 0, 0, 1, 0, 0, 0, 0, 0, 0
};
// FIXME this needs to use the LUT tables from find_ref_mvs
// because not all are -1,0/0,-1
int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
[s->left_mode_ctx[row7 + off[b->bs]]];
b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
b->mode[1] =
b->mode[2] =
b->mode[3] = b->mode[0];
s->counts.mv_mode[c][b->mode[0] - 10]++;
}
}
if (s->s.h.filtermode == FILTER_SWITCHABLE) {
int c;
if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
s->left_filter_ctx[row7] : 3;
} else {
c = s->above_filter_ctx[col];
}
} else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
c = s->left_filter_ctx[row7];
} else {
c = 3;
}
filter_id = vp8_rac_get_tree(&s->c, ff_vp9_filter_tree,
s->prob.p.filter[c]);
s->counts.filter[c][filter_id]++;
b->filter = ff_vp9_filter_lut[filter_id];
} else {
b->filter = s->s.h.filtermode;
}
if (b->bs > BS_8x8) {
int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[0] - 10]++;
ff_vp9_fill_mv(s, b->mv[0], b->mode[0], 0);
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[1] - 10]++;
ff_vp9_fill_mv(s, b->mv[1], b->mode[1], 1);
} else {
b->mode[1] = b->mode[0];
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
}
if (b->bs != BS_4x8) {
b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[2] - 10]++;
ff_vp9_fill_mv(s, b->mv[2], b->mode[2], 2);
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[3] - 10]++;
ff_vp9_fill_mv(s, b->mv[3], b->mode[3], 3);
} else {
b->mode[3] = b->mode[2];
AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
}
} else {
b->mode[2] = b->mode[0];
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
b->mode[3] = b->mode[1];
AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
}
} else {
ff_vp9_fill_mv(s, b->mv[0], b->mode[0], -1);
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
}
vref = b->ref[b->comp ? s->s.h.signbias[s->s.h.varcompref[0]] : 0];
}
#if HAVE_FAST_64BIT
#define SPLAT_CTX(var, val, n) \
switch (n) { \
case 1: var = val; break; \
case 2: AV_WN16A(&var, val * 0x0101); break; \
case 4: AV_WN32A(&var, val * 0x01010101); break; \
case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
case 16: { \
uint64_t v64 = val * 0x0101010101010101ULL; \
AV_WN64A( &var, v64); \
AV_WN64A(&((uint8_t *) &var)[8], v64); \
break; \
} \
}
#else
#define SPLAT_CTX(var, val, n) \
switch (n) { \
case 1: var = val; break; \
case 2: AV_WN16A(&var, val * 0x0101); break; \
case 4: AV_WN32A(&var, val * 0x01010101); break; \
case 8: { \
uint32_t v32 = val * 0x01010101; \
AV_WN32A( &var, v32); \
AV_WN32A(&((uint8_t *) &var)[4], v32); \
break; \
} \
case 16: { \
uint32_t v32 = val * 0x01010101; \
AV_WN32A( &var, v32); \
AV_WN32A(&((uint8_t *) &var)[4], v32); \
AV_WN32A(&((uint8_t *) &var)[8], v32); \
AV_WN32A(&((uint8_t *) &var)[12], v32); \
break; \
} \
}
#endif
switch (ff_vp9_bwh_tab[1][b->bs][0]) {
#define SET_CTXS(dir, off, n) \
do { \
SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
if (!s->s.h.keyframe && !s->s.h.intraonly) { \
SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
if (!b->intra) { \
SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
if (s->s.h.filtermode == FILTER_SWITCHABLE) { \
SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
} \
} \
} \
} while (0)
case 1: SET_CTXS(above, col, 1); break;
case 2: SET_CTXS(above, col, 2); break;
case 4: SET_CTXS(above, col, 4); break;
case 8: SET_CTXS(above, col, 8); break;
}
switch (ff_vp9_bwh_tab[1][b->bs][1]) {
case 1: SET_CTXS(left, row7, 1); break;
case 2: SET_CTXS(left, row7, 2); break;
case 4: SET_CTXS(left, row7, 4); break;
case 8: SET_CTXS(left, row7, 8); break;
}
#undef SPLAT_CTX
#undef SET_CTXS
if (!s->s.h.keyframe && !s->s.h.intraonly) {
if (b->bs > BS_8x8) {
int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
} else {
int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
for (n = 0; n < w4 * 2; n++) {
AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
}
for (n = 0; n < h4 * 2; n++) {
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
}
}
}
// FIXME kinda ugly
for (y = 0; y < h4; y++) {
int x, o = (row + y) * s->sb_cols * 8 + col;
VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[o];
if (b->intra) {
for (x = 0; x < w4; x++) {
mv[x].ref[0] =
mv[x].ref[1] = -1;
}
} else if (b->comp) {
for (x = 0; x < w4; x++) {
mv[x].ref[0] = b->ref[0];
mv[x].ref[1] = b->ref[1];
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
}
} else {
for (x = 0; x < w4; x++) {
mv[x].ref[0] = b->ref[0];
mv[x].ref[1] = -1;
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
}
}
}
}
// FIXME merge cnt/eob arguments?
static av_always_inline int
decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
unsigned (*eob)[6][2], uint8_t (*p)[6][11],
int nnz, const int16_t *scan, const int16_t (*nb)[2],
const int16_t *band_counts, const int16_t *qmul)
{
int i = 0, band = 0, band_left = band_counts[band];
uint8_t *tp = p[0][nnz];
uint8_t cache[1024];
do {
int val, rc;
val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
eob[band][nnz][val]++;
if (!val)
break;
skip_eob:
if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
cnt[band][nnz][0]++;
if (!--band_left)
band_left = band_counts[++band];
cache[scan[i]] = 0;
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
tp = p[band][nnz];
if (++i == n_coeffs)
break; //invalid input; blocks should end with EOB
goto skip_eob;
}
rc = scan[i];
if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
cnt[band][nnz][1]++;
val = 1;
cache[rc] = 1;
} else {
// fill in p[3-10] (model fill) - only once per frame for each pos
if (!tp[3])
memcpy(&tp[3], ff_vp9_model_pareto8[tp[2]], 8);
cnt[band][nnz][2]++;
if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
if (!vp56_rac_get_prob_branchy(c, tp[4])) {
cache[rc] = val = 2;
} else {
val = 3 + vp56_rac_get_prob(c, tp[5]);
cache[rc] = 3;
}
} else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
cache[rc] = 4;
if (!vp56_rac_get_prob_branchy(c, tp[7])) {
val = vp56_rac_get_prob(c, 159) + 5;
} else {
val = (vp56_rac_get_prob(c, 165) << 1) + 7;
val += vp56_rac_get_prob(c, 145);
}
} else { // cat 3-6
cache[rc] = 5;
if (!vp56_rac_get_prob_branchy(c, tp[8])) {
if (!vp56_rac_get_prob_branchy(c, tp[9])) {
val = 11 + (vp56_rac_get_prob(c, 173) << 2);
val += (vp56_rac_get_prob(c, 148) << 1);
val += vp56_rac_get_prob(c, 140);
} else {
val = 19 + (vp56_rac_get_prob(c, 176) << 3);
val += (vp56_rac_get_prob(c, 155) << 2);
val += (vp56_rac_get_prob(c, 140) << 1);
val += vp56_rac_get_prob(c, 135);
}
} else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
val = (vp56_rac_get_prob(c, 180) << 4) + 35;
val += (vp56_rac_get_prob(c, 157) << 3);
val += (vp56_rac_get_prob(c, 141) << 2);
val += (vp56_rac_get_prob(c, 134) << 1);
val += vp56_rac_get_prob(c, 130);
} else {
val = 67;
if (!is8bitsperpixel) {
if (bpp == 12) {
val += vp56_rac_get_prob(c, 255) << 17;
val += vp56_rac_get_prob(c, 255) << 16;
}
val += (vp56_rac_get_prob(c, 255) << 15);
val += (vp56_rac_get_prob(c, 255) << 14);
}
val += (vp56_rac_get_prob(c, 254) << 13);
val += (vp56_rac_get_prob(c, 254) << 12);
val += (vp56_rac_get_prob(c, 254) << 11);
val += (vp56_rac_get_prob(c, 252) << 10);
val += (vp56_rac_get_prob(c, 249) << 9);
val += (vp56_rac_get_prob(c, 243) << 8);
val += (vp56_rac_get_prob(c, 230) << 7);
val += (vp56_rac_get_prob(c, 196) << 6);
val += (vp56_rac_get_prob(c, 177) << 5);
val += (vp56_rac_get_prob(c, 153) << 4);
val += (vp56_rac_get_prob(c, 140) << 3);
val += (vp56_rac_get_prob(c, 133) << 2);
val += (vp56_rac_get_prob(c, 130) << 1);
val += vp56_rac_get_prob(c, 129);
}
}
}
#define STORE_COEF(c, i, v) do { \
if (is8bitsperpixel) { \
c[i] = v; \
} else { \
AV_WN32A(&c[i * 2], v); \
} \
} while (0)
if (!--band_left)
band_left = band_counts[++band];
if (is_tx32x32)
STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
else
STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
tp = p[band][nnz];
} while (++i < n_coeffs);
return i;
}
static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
const int16_t (*nb)[2], const int16_t *band_counts,
const int16_t *qmul)
{
return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
nnz, scan, nb, band_counts, qmul);
}
static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
const int16_t (*nb)[2], const int16_t *band_counts,
const int16_t *qmul)
{
return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
nnz, scan, nb, band_counts, qmul);
}
static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
const int16_t (*nb)[2], const int16_t *band_counts,
const int16_t *qmul)
{
return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->s.h.bpp, cnt, eob, p,
nnz, scan, nb, band_counts, qmul);
}
static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
const int16_t (*nb)[2], const int16_t *band_counts,
const int16_t *qmul)
{
return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->s.h.bpp, cnt, eob, p,
nnz, scan, nb, band_counts, qmul);
}
static av_always_inline int decode_coeffs(AVCodecContext *avctx, int is8bitsperpixel)
{
VP9Context *s = avctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col;
uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1;
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int n, pl, x, y, ret;
int16_t (*qmul)[2] = s->s.h.segmentation.feat[b->seg_id].qmul;
int tx = 4 * s->s.h.lossless + b->tx;
const int16_t * const *yscans = ff_vp9_scans[tx];
const int16_t (* const *ynbs)[2] = ff_vp9_scans_nb[tx];
const int16_t *uvscan = ff_vp9_scans[b->uvtx][DCT_DCT];
const int16_t (*uvnb)[2] = ff_vp9_scans_nb[b->uvtx][DCT_DCT];
uint8_t *a = &s->above_y_nnz_ctx[col * 2];
uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
static const int16_t band_counts[4][8] = {
{ 1, 2, 3, 4, 3, 16 - 13 },
{ 1, 2, 3, 4, 11, 64 - 21 },
{ 1, 2, 3, 4, 11, 256 - 21 },
{ 1, 2, 3, 4, 11, 1024 - 21 },
};
const int16_t *y_band_counts = band_counts[b->tx];
const int16_t *uv_band_counts = band_counts[b->uvtx];
int bytesperpixel = is8bitsperpixel ? 1 : 2;
int total_coeff = 0;
#define MERGE(la, end, step, rd) \
for (n = 0; n < end; n += step) \
la[n] = !!rd(&la[n])
#define MERGE_CTX(step, rd) \
do { \
MERGE(l, end_y, step, rd); \
MERGE(a, end_x, step, rd); \
} while (0)
#define DECODE_Y_COEF_LOOP(step, mode_index, v) \
for (n = 0, y = 0; y < end_y; y += step) { \
for (x = 0; x < end_x; x += step, n += step * step) { \
enum TxfmType txtp = ff_vp9_intra_txfm_type[b->mode[mode_index]]; \
ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
(s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
c, e, p, a[x] + l[y], yscans[txtp], \
ynbs[txtp], y_band_counts, qmul[0]); \
a[x] = l[y] = !!ret; \
total_coeff |= !!ret; \
if (step >= 4) { \
AV_WN16A(&s->eob[n], ret); \
} else { \
s->eob[n] = ret; \
} \
} \
}
#define SPLAT(la, end, step, cond) \
if (step == 2) { \
for (n = 1; n < end; n += step) \
la[n] = la[n - 1]; \
} else if (step == 4) { \
if (cond) { \
for (n = 0; n < end; n += step) \
AV_WN32A(&la[n], la[n] * 0x01010101); \
} else { \
for (n = 0; n < end; n += step) \
memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
} \
} else /* step == 8 */ { \
if (cond) { \
if (HAVE_FAST_64BIT) { \
for (n = 0; n < end; n += step) \
AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
} else { \
for (n = 0; n < end; n += step) { \
uint32_t v32 = la[n] * 0x01010101; \
AV_WN32A(&la[n], v32); \
AV_WN32A(&la[n + 4], v32); \
} \
} \
} else { \
for (n = 0; n < end; n += step) \
memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
} \
}
#define SPLAT_CTX(step) \
do { \
SPLAT(a, end_x, step, end_x == w4); \
SPLAT(l, end_y, step, end_y == h4); \
} while (0)
/* y tokens */
switch (b->tx) {
case TX_4X4:
DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
break;
case TX_8X8:
MERGE_CTX(2, AV_RN16A);
DECODE_Y_COEF_LOOP(2, 0,);
SPLAT_CTX(2);
break;
case TX_16X16:
MERGE_CTX(4, AV_RN32A);
DECODE_Y_COEF_LOOP(4, 0,);
SPLAT_CTX(4);
break;
case TX_32X32:
MERGE_CTX(8, AV_RN64A);
DECODE_Y_COEF_LOOP(8, 0, 32);
SPLAT_CTX(8);
break;
}
#define DECODE_UV_COEF_LOOP(step, v) \
for (n = 0, y = 0; y < end_y; y += step) { \
for (x = 0; x < end_x; x += step, n += step * step) { \
ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
(s, s->uvblock[pl] + 16 * n * bytesperpixel, \
16 * step * step, c, e, p, a[x] + l[y], \
uvscan, uvnb, uv_band_counts, qmul[1]); \
a[x] = l[y] = !!ret; \
total_coeff |= !!ret; \
if (step >= 4) { \
AV_WN16A(&s->uveob[pl][n], ret); \
} else { \
s->uveob[pl][n] = ret; \
} \
} \
}
p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
w4 >>= s->ss_h;
end_x >>= s->ss_h;
h4 >>= s->ss_v;
end_y >>= s->ss_v;
for (pl = 0; pl < 2; pl++) {
a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
switch (b->uvtx) {
case TX_4X4:
DECODE_UV_COEF_LOOP(1,);
break;
case TX_8X8:
MERGE_CTX(2, AV_RN16A);
DECODE_UV_COEF_LOOP(2,);
SPLAT_CTX(2);
break;
case TX_16X16:
MERGE_CTX(4, AV_RN32A);
DECODE_UV_COEF_LOOP(4,);
SPLAT_CTX(4);
break;
case TX_32X32:
MERGE_CTX(8, AV_RN64A);
DECODE_UV_COEF_LOOP(8, 32);
SPLAT_CTX(8);
break;
}
}
return total_coeff;
}
static int decode_coeffs_8bpp(AVCodecContext *avctx)
{
return decode_coeffs(avctx, 1);
}
static int decode_coeffs_16bpp(AVCodecContext *avctx)
{
return decode_coeffs(avctx, 0);
}
static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
int row_and_7, int col_and_7,
int w, int h, int col_end, int row_end,
enum TxfmMode tx, int skip_inter)
{
static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
// FIXME I'm pretty sure all loops can be replaced by a single LUT if
// we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
// and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
// use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
// the intended behaviour of the vp9 loopfilter is to work on 8-pixel
// edges. This means that for UV, we work on two subsampled blocks at
// a time, and we only use the topleft block's mode information to set
// things like block strength. Thus, for any block size smaller than
// 16x16, ignore the odd portion of the block.
if (tx == TX_4X4 && (ss_v | ss_h)) {
if (h == ss_v) {
if (row_and_7 & 1)
return;
if (!row_end)
h += 1;
}
if (w == ss_h) {
if (col_and_7 & 1)
return;
if (!col_end)
w += 1;
}
}
if (tx == TX_4X4 && !skip_inter) {
int t = 1 << col_and_7, m_col = (t << w) - t, y;
// on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
for (y = row_and_7; y < h + row_and_7; y++) {
int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
mask[0][y][1] |= m_row_8;
mask[0][y][2] |= m_row_4;
// for odd lines, if the odd col is not being filtered,
// skip odd row also:
// .---. <-- a
// | |
// |___| <-- b
// ^ ^
// c d
//
// if a/c are even row/col and b/d are odd, and d is skipped,
// e.g. right edge of size-66x66.webm, then skip b also (bug)
if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
} else {
mask[1][y][col_mask_id] |= m_col;
}
if (!ss_h)
mask[0][y][3] |= m_col;
if (!ss_v) {
if (ss_h && (col_end & 1))
mask[1][y][3] |= (t << (w - 1)) - t;
else
mask[1][y][3] |= m_col;
}
}
} else {
int y, t = 1 << col_and_7, m_col = (t << w) - t;
if (!skip_inter) {
int mask_id = (tx == TX_8X8);
int l2 = tx + ss_h - 1, step1d;
static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
int m_row = m_col & masks[l2];
// at odd UV col/row edges tx16/tx32 loopfilter edges, force
// 8wd loopfilter to prevent going off the visible edge.
if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
int m_row_8 = m_row - m_row_16;
for (y = row_and_7; y < h + row_and_7; y++) {
mask[0][y][0] |= m_row_16;
mask[0][y][1] |= m_row_8;
}
} else {
for (y = row_and_7; y < h + row_and_7; y++)
mask[0][y][mask_id] |= m_row;
}
l2 = tx + ss_v - 1;
step1d = 1 << l2;
if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
mask[1][y][0] |= m_col;
if (y - row_and_7 == h - 1)
mask[1][y][1] |= m_col;
} else {
for (y = row_and_7; y < h + row_and_7; y += step1d)
mask[1][y][mask_id] |= m_col;
}
} else if (tx != TX_4X4) {
int mask_id;
mask_id = (tx == TX_8X8) || (h == ss_v);
mask[1][row_and_7][mask_id] |= m_col;
mask_id = (tx == TX_8X8) || (w == ss_h);
for (y = row_and_7; y < h + row_and_7; y++)
mask[0][y][mask_id] |= t;
} else {
int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
for (y = row_and_7; y < h + row_and_7; y++) {
mask[0][y][2] |= t4;
mask[0][y][1] |= t8;
}
mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
}
}
}
void ff_vp9_decode_block(AVCodecContext *avctx, int row, int col,
VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
enum BlockLevel bl, enum BlockPartition bp)
{
VP9Context *s = avctx->priv_data;
VP9Block *b = s->b;
enum BlockSize bs = bl * 3 + bp;
int bytesperpixel = s->bytesperpixel;
int w4 = ff_vp9_bwh_tab[1][bs][0], h4 = ff_vp9_bwh_tab[1][bs][1], lvl;
int emu[2];
AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
s->row = row;
s->row7 = row & 7;
s->col = col;
s->col7 = col & 7;
s->min_mv.x = -(128 + col * 64);
s->min_mv.y = -(128 + row * 64);
s->max_mv.x = 128 + (s->cols - col - w4) * 64;
s->max_mv.y = 128 + (s->rows - row - h4) * 64;
if (s->pass < 2) {
b->bs = bs;
b->bl = bl;
b->bp = bp;
decode_mode(avctx);
b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
(s->ss_v && h4 * 2 == (1 << b->tx)));
if (!b->skip) {
int has_coeffs;
if (bytesperpixel == 1) {
has_coeffs = decode_coeffs_8bpp(avctx);
} else {
has_coeffs = decode_coeffs_16bpp(avctx);
}
if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
b->skip = 1;
memset(&s->above_skip_ctx[col], 1, w4);
memset(&s->left_skip_ctx[s->row7], 1, h4);
}
} else {
int row7 = s->row7;
#define SPLAT_ZERO_CTX(v, n) \
switch (n) { \
case 1: v = 0; break; \
case 2: AV_ZERO16(&v); break; \
case 4: AV_ZERO32(&v); break; \
case 8: AV_ZERO64(&v); break; \
case 16: AV_ZERO128(&v); break; \
}
#define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
do { \
SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
if (s->ss_##dir2) { \
SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
} else { \
SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
} \
} while (0)
switch (w4) {
case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
}
switch (h4) {
case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
}
}
if (s->pass == 1) {
s->b++;
s->block += w4 * h4 * 64 * bytesperpixel;
s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
s->eob += 4 * w4 * h4;
s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
return;
}
}
// emulated overhangs if the stride of the target buffer can't hold. This
// makes it possible to support emu-edge and so on even if we have large block
// overhangs
emu[0] = (col + w4) * 8 * bytesperpixel > f->linesize[0] ||
(row + h4) > s->rows;
emu[1] = ((col + w4) * 8 >> s->ss_h) * bytesperpixel > f->linesize[1] ||
(row + h4) > s->rows;
if (emu[0]) {
s->dst[0] = s->tmp_y;
s->y_stride = 128;
} else {
s->dst[0] = f->data[0] + yoff;
s->y_stride = f->linesize[0];
}
if (emu[1]) {
s->dst[1] = s->tmp_uv[0];
s->dst[2] = s->tmp_uv[1];
s->uv_stride = 128;
} else {
s->dst[1] = f->data[1] + uvoff;
s->dst[2] = f->data[2] + uvoff;
s->uv_stride = f->linesize[1];
}
if (b->intra) {
if (s->s.h.bpp > 8) {
ff_vp9_intra_recon_16bpp(avctx, yoff, uvoff);
} else {
ff_vp9_intra_recon_8bpp(avctx, yoff, uvoff);
}
} else {
if (s->s.h.bpp > 8) {
ff_vp9_inter_recon_16bpp(avctx);
} else {
ff_vp9_inter_recon_8bpp(avctx);
}
}
if (emu[0]) {
int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
for (n = 0; o < w; n++) {
int bw = 64 >> n;
av_assert2(n <= 4);
if (w & bw) {
s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o * bytesperpixel, f->linesize[0],
s->tmp_y + o * bytesperpixel, 128, h, 0, 0);
o += bw;
}
}
}
if (emu[1]) {
int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
for (n = s->ss_h; o < w; n++) {
int bw = 64 >> n;
av_assert2(n <= 4);
if (w & bw) {
s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o * bytesperpixel, f->linesize[1],
s->tmp_uv[0] + o * bytesperpixel, 128, h, 0, 0);
s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o * bytesperpixel, f->linesize[2],
s->tmp_uv[1] + o * bytesperpixel, 128, h, 0, 0);
o += bw;
}
}
}
// pick filter level and find edges to apply filter to
if (s->s.h.filter.level &&
(lvl = s->s.h.segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
[b->mode[3] != ZEROMV]) > 0) {
int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
if (s->ss_h || s->ss_v)
mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
b->uvtx, skip_inter);
if (!s->filter_lut.lim_lut[lvl]) {
int sharp = s->s.h.filter.sharpness;
int limit = lvl;
if (sharp > 0) {
limit >>= (sharp + 3) >> 2;
limit = FFMIN(limit, 9 - sharp);
}
limit = FFMAX(limit, 1);
s->filter_lut.lim_lut[lvl] = limit;
s->filter_lut.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
}
}
if (s->pass == 2) {
s->b++;
s->block += w4 * h4 * 64 * bytesperpixel;
s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
s->eob += 4 * w4 * h4;
s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
}
}