1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/h264.h

1240 lines
38 KiB
C
Raw Normal View History

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264_H
#define AVCODEC_H264_H
#include "libavutil/intreadwrite.h"
#include "cabac.h"
#include "error_resilience.h"
#include "get_bits.h"
2013-01-19 05:34:47 +03:00
#include "h264chroma.h"
#include "h264dsp.h"
#include "h264pred.h"
#include "h264qpel.h"
#include "internal.h"
#include "mpegutils.h"
#include "parser.h"
#include "qpeldsp.h"
#include "rectangle.h"
#include "videodsp.h"
#define H264_MAX_PICTURE_COUNT 36
#define H264_MAX_THREADS 32
#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256
#define MAX_MMCO_COUNT 66
#define MAX_DELAYED_PIC_COUNT 16
#define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
/* Compiling in interlaced support reduces the speed
* of progressive decoding by about 2%. */
#define ALLOW_INTERLACE
#define FMO 0
/**
* The maximum number of slices supported by the decoder.
* must be a power of 2
*/
#define MAX_SLICES 32
#ifdef ALLOW_INTERLACE
#define MB_MBAFF(h) (h)->mb_mbaff
#define MB_FIELD(sl) (sl)->mb_field_decoding_flag
#define FRAME_MBAFF(h) (h)->mb_aff_frame
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
#define LEFT_MBS 2
#define LTOP 0
#define LBOT 1
#define LEFT(i) (i)
#else
#define MB_MBAFF(h) 0
#define MB_FIELD(sl) 0
#define FRAME_MBAFF(h) 0
#define FIELD_PICTURE(h) 0
#undef IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#define LEFT_MBS 1
#define LTOP 0
#define LBOT 0
#define LEFT(i) 0
#endif
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
#ifndef CABAC
#define CABAC(h) (h)->pps.cabac
#endif
#define CHROMA(h) ((h)->sps.chroma_format_idc)
#define CHROMA422(h) ((h)->sps.chroma_format_idc == 2)
#define CHROMA444(h) ((h)->sps.chroma_format_idc == 3)
#define EXTENDED_SAR 255
#define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
#define MB_TYPE_8x8DCT 0x01000000
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
#define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
/* NAL unit types */
enum {
NAL_SLICE = 1,
NAL_DPA = 2,
NAL_DPB = 3,
NAL_DPC = 4,
NAL_IDR_SLICE = 5,
NAL_SEI = 6,
NAL_SPS = 7,
NAL_PPS = 8,
NAL_AUD = 9,
NAL_END_SEQUENCE = 10,
NAL_END_STREAM = 11,
NAL_FILLER_DATA = 12,
NAL_SPS_EXT = 13,
NAL_AUXILIARY_SLICE = 19,
NAL_FF_IGNORE = 0xff0f001,
};
/**
* SEI message types
*/
typedef enum {
SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
SEI_TYPE_PIC_TIMING = 1, ///< picture timing
SEI_TYPE_USER_DATA_REGISTERED = 4, ///< registered user data as specified by Rec. ITU-T T.35
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation
SEI_TYPE_GREEN_METADATA = 56 ///< GreenMPEG information
} SEI_Type;
/**
* pic_struct in picture timing SEI message
*/
typedef enum {
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
} SEI_PicStructType;
/**
* frame_packing_arrangement types
*/
typedef enum {
SEI_FPA_TYPE_CHECKERBOARD = 0,
SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1,
SEI_FPA_TYPE_INTERLEAVE_ROW = 2,
SEI_FPA_TYPE_SIDE_BY_SIDE = 3,
SEI_FPA_TYPE_TOP_BOTTOM = 4,
SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
SEI_FPA_TYPE_2D = 6,
} SEI_FpaType;
/**
* Sequence parameter set
*/
typedef struct SPS {
unsigned int sps_id;
int profile_idc;
int level_idc;
int chroma_format_idc;
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
int poc_type; ///< pic_order_cnt_type
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
int delta_pic_order_always_zero_flag;
int offset_for_non_ref_pic;
int offset_for_top_to_bottom_field;
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
int ref_frame_count; ///< num_ref_frames
int gaps_in_frame_num_allowed_flag;
int mb_width; ///< pic_width_in_mbs_minus1 + 1
int mb_height; ///< pic_height_in_map_units_minus1 + 1
int frame_mbs_only_flag;
int mb_aff; ///< mb_adaptive_frame_field_flag
int direct_8x8_inference_flag;
int crop; ///< frame_cropping_flag
/* those 4 are already in luma samples */
unsigned int crop_left; ///< frame_cropping_rect_left_offset
unsigned int crop_right; ///< frame_cropping_rect_right_offset
unsigned int crop_top; ///< frame_cropping_rect_top_offset
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
int vui_parameters_present_flag;
AVRational sar;
int video_signal_type_present_flag;
int full_range;
int colour_description_present_flag;
enum AVColorPrimaries color_primaries;
enum AVColorTransferCharacteristic color_trc;
enum AVColorSpace colorspace;
int timing_info_present_flag;
uint32_t num_units_in_tick;
uint32_t time_scale;
int fixed_frame_rate_flag;
short offset_for_ref_frame[256]; // FIXME dyn aloc?
int bitstream_restriction_flag;
int num_reorder_frames;
int scaling_matrix_present;
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[6][64];
int nal_hrd_parameters_present_flag;
int vcl_hrd_parameters_present_flag;
int pic_struct_present_flag;
int time_offset_length;
int cpb_cnt; ///< See H.264 E.1.2
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
int residual_color_transform_flag; ///< residual_colour_transform_flag
int constraint_set_flags; ///< constraint_set[0-3]_flag
int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
uint8_t data[4096];
size_t data_size;
} SPS;
/**
* Picture parameter set
*/
typedef struct PPS {
unsigned int sps_id;
int cabac; ///< entropy_coding_mode_flag
int pic_order_present; ///< pic_order_present_flag
int slice_group_count; ///< num_slice_groups_minus1 + 1
int mb_slice_group_map_type;
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
int weighted_pred; ///< weighted_pred_flag
int weighted_bipred_idc;
int init_qp; ///< pic_init_qp_minus26 + 26
int init_qs; ///< pic_init_qs_minus26 + 26
int chroma_qp_index_offset[2];
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
int constrained_intra_pred; ///< constrained_intra_pred_flag
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
int transform_8x8_mode; ///< transform_8x8_mode_flag
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[6][64];
uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
int chroma_qp_diff;
uint8_t data[4096];
size_t data_size;
} PPS;
/**
* Frame Packing Arrangement Type
*/
typedef struct FPA {
int frame_packing_arrangement_id;
int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
SEI_FpaType frame_packing_arrangement_type;
int frame_packing_arrangement_repetition_period;
int content_interpretation_type;
int quincunx_sampling_flag;
} FPA;
/**
* Green MetaData Information Type
*/
typedef struct GreenMetaData {
uint8_t green_metadata_type;
uint8_t period_type;
uint16_t num_seconds;
uint16_t num_pictures;
uint8_t percent_non_zero_macroblocks;
uint8_t percent_intra_coded_macroblocks;
uint8_t percent_six_tap_filtering;
uint8_t percent_alpha_point_deblocking_instance;
uint8_t xsd_metric_type;
uint16_t xsd_metric_value;
} GreenMetaData;
/**
* Memory management control operation opcode.
*/
typedef enum MMCOOpcode {
MMCO_END = 0,
MMCO_SHORT2UNUSED,
MMCO_LONG2UNUSED,
MMCO_SHORT2LONG,
MMCO_SET_MAX_LONG,
MMCO_RESET,
MMCO_LONG,
} MMCOOpcode;
/**
* Memory management control operation.
*/
typedef struct MMCO {
MMCOOpcode opcode;
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
int long_arg; ///< index, pic_num, or num long refs depending on opcode
} MMCO;
typedef struct H264Picture {
2015-04-17 12:09:50 +02:00
AVFrame *f;
ThreadFrame tf;
AVBufferRef *qscale_table_buf;
int8_t *qscale_table;
AVBufferRef *motion_val_buf[2];
int16_t (*motion_val[2])[2];
AVBufferRef *mb_type_buf;
uint32_t *mb_type;
AVBufferRef *hwaccel_priv_buf;
void *hwaccel_picture_private; ///< hardware accelerator private data
AVBufferRef *ref_index_buf[2];
int8_t *ref_index[2];
int field_poc[2]; ///< top/bottom POC
int poc; ///< frame POC
int frame_num; ///< frame_num (raw frame_num from slice header)
int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
not mix pictures before and after MMCO_RESET. */
int pic_id; /**< pic_num (short -> no wrap version of pic_num,
pic_num & max_pic_num; long -> long_pic_num) */
int long_ref; ///< 1->long term reference 0->short term reference
int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
int field_picture; ///< whether or not picture was encoded in separate fields
int reference;
int recovered; ///< picture at IDR or recovery point + recovery count
int invalid_gap;
int sei_recovery_frame_cnt;
int crop;
int crop_left;
int crop_top;
} H264Picture;
typedef struct H264Ref {
uint8_t *data[3];
int linesize[3];
int reference;
int poc;
int pic_id;
H264Picture *parent;
} H264Ref;
typedef struct H264SliceContext {
struct H264Context *h264;
GetBitContext gb;
ERContext er;
int slice_num;
int slice_type;
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
int slice_type_fixed;
int qscale;
int chroma_qp[2]; // QPc
int qp_thresh; ///< QP threshold to skip loopfilter
int last_qscale_diff;
// deblock
int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
int slice_alpha_c0_offset;
int slice_beta_offset;
// Weighted pred stuff
int use_weight;
int use_weight_chroma;
int luma_log2_weight_denom;
int chroma_log2_weight_denom;
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
// The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
int luma_weight[48][2][2];
int chroma_weight[48][2][2][2];
int implicit_weight[48][48][2];
int prev_mb_skipped;
int next_mb_skipped;
int chroma_pred_mode;
int intra16x16_pred_mode;
int8_t intra4x4_pred_mode_cache[5 * 8];
int8_t(*intra4x4_pred_mode);
int topleft_mb_xy;
int top_mb_xy;
int topright_mb_xy;
int left_mb_xy[LEFT_MBS];
int topleft_type;
int top_type;
int topright_type;
int left_type[LEFT_MBS];
const uint8_t *left_block;
int topleft_partition;
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
ptrdiff_t linesize, uvlinesize;
ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
ptrdiff_t mb_uvlinesize;
int mb_x, mb_y;
int mb_xy;
int resync_mb_x;
int resync_mb_y;
// index of the first MB of the next slice
int next_slice_idx;
int mb_skip_run;
int is_complex;
int mb_field_decoding_flag;
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
int redundant_pic_count;
/**
* number of neighbors (top and/or left) that used 8x8 dct
*/
int neighbor_transform_size;
int direct_spatial_mv_pred;
int col_parity;
int col_fieldoff;
int cbp;
int top_cbp;
int left_cbp;
int dist_scale_factor[32];
int dist_scale_factor_field[2][32];
int map_col_to_list0[2][16 + 32];
int map_col_to_list0_field[2][2][16 + 32];
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
* Reordered version of default_ref_list
* according to picture reordering in slice header */
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
const uint8_t *intra_pcm_ptr;
int16_t *dc_val_base;
uint8_t *bipred_scratchpad;
uint8_t *edge_emu_buffer;
uint8_t (*top_borders[2])[(16 * 3) * 2];
int bipred_scratchpad_allocated;
int edge_emu_buffer_allocated;
int top_borders_allocated[2];
/**
* non zero coeff count cache.
* is 64 if not available.
*/
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
/**
* Motion vector cache.
*/
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
uint8_t direct_cache[5 * 8];
DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
///< as a dct coefficient is int32_t in high depth, we need to reserve twice the space.
DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
///< check that i is not too large or ensure that there is some unused stuff after mb
int16_t mb_padding[256 * 2];
uint8_t (*mvd_table[2])[2];
/**
* Cabac
*/
CABACContext cabac;
uint8_t cabac_state[1024];
int cabac_init_idc;
// rbsp buffer used for this slice
uint8_t *rbsp_buffer;
unsigned int rbsp_buffer_size;
} H264SliceContext;
/**
* H264Context
*/
typedef struct H264Context {
AVClass *av_class;
AVCodecContext *avctx;
VideoDSPContext vdsp;
H264DSPContext h264dsp;
2013-01-19 05:34:47 +03:00
H264ChromaContext h264chroma;
H264QpelContext h264qpel;
GetBitContext gb;
H264Picture DPB[H264_MAX_PICTURE_COUNT];
H264Picture *cur_pic_ptr;
H264Picture cur_pic;
H264Picture last_pic_for_ec;
H264SliceContext *slice_ctx;
int nb_slice_ctx;
int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
/* coded dimensions -- 16 * mb w/h */
int width, height;
int chroma_x_shift, chroma_y_shift;
/**
* Backup frame properties: needed, because they can be different
* between returned frame and last decoded frame.
**/
int backup_width;
int backup_height;
enum AVPixelFormat backup_pix_fmt;
int droppable;
int coded_picture_number;
int low_delay;
int context_initialized;
int flags;
int workaround_bugs;
int8_t(*intra4x4_pred_mode);
H264PredContext hpc;
uint8_t (*non_zero_count)[48];
#define LIST_NOT_USED -1 // FIXME rename?
#define PART_NOT_AVAILABLE -2
/**
* block_offset[ 0..23] for frame macroblocks
* block_offset[24..47] for field macroblocks
*/
int block_offset[2 * (16 * 3)];
uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
uint32_t *mb2br_xy;
int b_stride; // FIXME use s->b4_stride
unsigned current_sps_id; ///< id of the current SPS
SPS sps; ///< current sps
2014-02-13 02:44:11 +03:00
PPS pps; ///< current pps
int au_pps_id; ///< pps_id of current access unit
uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
uint32_t(*dequant4_coeff[6])[16];
uint32_t(*dequant8_coeff[6])[64];
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
// interlacing specific flags
int mb_aff_frame;
int picture_structure;
int first_field;
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
uint16_t *cbp_table;
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
uint8_t *chroma_pred_mode_table;
uint8_t (*mvd_table[2])[2];
uint8_t *direct_table;
uint8_t zigzag_scan[16];
uint8_t zigzag_scan8x8[64];
uint8_t zigzag_scan8x8_cavlc[64];
uint8_t field_scan[16];
uint8_t field_scan8x8[64];
uint8_t field_scan8x8_cavlc[64];
uint8_t zigzag_scan_q0[16];
uint8_t zigzag_scan8x8_q0[64];
uint8_t zigzag_scan8x8_cavlc_q0[64];
uint8_t field_scan_q0[16];
uint8_t field_scan8x8_q0[64];
uint8_t field_scan8x8_cavlc_q0[64];
int x264_build;
int mb_y;
int mb_height, mb_width;
int mb_stride;
int mb_num;
// =============================================================
// Things below are not used in the MB or more inner code
int nal_ref_idc;
int nal_unit_type;
/**
* Used to parse AVC variant of h264
*/
int is_avc; ///< this flag is != 0 if codec is avc1
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int bit_depth_luma; ///< luma bit depth from sps to detect changes
int chroma_format_idc; ///< chroma format from sps to detect changes
SPS *sps_buffers[MAX_SPS_COUNT];
PPS *pps_buffers[MAX_PPS_COUNT];
int dequant_coeff_pps; ///< reinit tables when pps changes
uint16_t *slice_table_base;
// POC stuff
int poc_lsb;
int poc_msb;
int delta_poc_bottom;
int delta_poc[2];
int frame_num;
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
int frame_num_offset; ///< for POC type 2
int prev_frame_num_offset; ///< for POC type 2
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
/**
* frame_num for frames or 2 * frame_num + 1 for field pics.
*/
int curr_pic_num;
/**
* max_frame_num or 2 * max_frame_num for field pics.
*/
int max_pic_num;
H264Ref default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
H264Picture *short_ref[32];
H264Picture *long_ref[32];
H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
int last_pocs[MAX_DELAYED_PIC_COUNT];
H264Picture *next_output_pic;
int next_outputed_poc;
/**
* memory management control operations buffer.
*/
MMCO mmco[MAX_MMCO_COUNT];
int mmco_index;
int mmco_reset;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
/**
* @name Members for slice based multithreading
* @{
*/
/**
* current slice number, used to initialize slice_num of each thread/context
*/
int current_slice;
/**
* Max number of threads / contexts.
* This is equal to AVCodecContext.thread_count unless
* multithreaded decoding is impossible, in which case it is
* reduced to 1.
*/
int max_contexts;
int slice_context_count;
/**
* 1 if the single thread fallback warning has already been
* displayed, 0 otherwise.
*/
int single_decode_warning;
enum AVPictureType pict_type;
int last_slice_type;
unsigned int last_ref_count[2];
/** @} */
/**
* pic_struct in picture timing SEI message
*/
SEI_PicStructType sei_pic_struct;
/**
* Complement sei_pic_struct
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
* However, soft telecined frames may have these values.
* This is used in an attempt to flag soft telecine progressive.
*/
int prev_interlaced_frame;
/**
* frame_packing_arrangment SEI message
*/
int sei_frame_packing_present;
int frame_packing_arrangement_type;
int content_interpretation_type;
int quincunx_subsampling;
/**
* display orientation SEI message
*/
int sei_display_orientation_present;
int sei_anticlockwise_rotation;
int sei_hflip, sei_vflip;
/**
* User data registered by Rec. ITU-T T.35 SEI
*/
int sei_reguserdata_afd_present;
uint8_t active_format_description;
int a53_caption_size;
uint8_t *a53_caption;
/**
* Bit set of clock types for fields/frames in picture timing SEI message.
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
* interlaced).
*/
int sei_ct_type;
/**
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
*/
int sei_dpb_output_delay;
/**
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
*/
int sei_cpb_removal_delay;
/**
* recovery_frame_cnt from SEI message
*
* Set to -1 if no recovery point SEI message found or to number of frames
* before playback synchronizes. Frames having recovery point are key
* frames.
*/
int sei_recovery_frame_cnt;
/**
* Are the SEI recovery points looking valid.
*/
int valid_recovery_point;
FPA sei_fpa;
/**
* recovery_frame is the frame_num at which the next frame should
* be fully constructed.
*
* Set to -1 when not expecting a recovery point.
*/
int recovery_frame;
/**
* We have seen an IDR, so all the following frames in coded order are correctly
* decodable.
*/
#define FRAME_RECOVERED_IDR (1 << 0)
/**
* Sufficient number of frames have been decoded since a SEI recovery point,
* so all the following frames in presentation order are correct.
*/
#define FRAME_RECOVERED_SEI (1 << 1)
int frame_recovered; ///< Initial frame has been completely recovered
int has_recovery_point;
int missing_fields;
/* for frame threading, this is set to 1
* after finish_setup() has been called, so we cannot modify
* some context properties (which are supposed to stay constant between
* slices) anymore */
int setup_finished;
// Timestamp stuff
int sei_buffering_period_present; ///< Buffering period SEI flag
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
int cur_chroma_format_idc;
int cur_bit_depth_luma;
int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
uint8_t parse_history[6];
int parse_history_count;
int parse_last_mb;
int enable_er;
AVBufferPool *qscale_table_pool;
AVBufferPool *mb_type_pool;
AVBufferPool *motion_val_pool;
AVBufferPool *ref_index_pool;
/* Motion Estimation */
qpel_mc_func (*qpel_put)[16];
qpel_mc_func (*qpel_avg)[16];
/*Green Metadata */
GreenMetaData sei_green_metadata;
} H264Context;
extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
extern const uint16_t ff_h264_mb_sizes[4];
/**
* Decode SEI
*/
int ff_h264_decode_sei(H264Context *h);
/**
* Decode SPS
*/
int ff_h264_decode_seq_parameter_set(H264Context *h, int ignore_truncation);
/**
* compute profile from sps
*/
int ff_h264_get_profile(SPS *sps);
/**
* Decode PPS
*/
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
/**
* Decode a network abstraction layer unit.
* @param consumed is the number of bytes used as input
* @param length is the length of the array
* @param dst_length is the number of decoded bytes FIXME here
* or a decode rbsp tailing?
* @return decoded bytes, might be src+1 if no escapes
*/
const uint8_t *ff_h264_decode_nal(H264Context *h, H264SliceContext *sl, const uint8_t *src,
int *dst_length, int *consumed, int length);
/**
* Free any data that may have been allocated in the H264 context
* like SPS, PPS etc.
*/
void ff_h264_free_context(H264Context *h);
/**
* Reconstruct bitstream slice_type.
*/
int ff_h264_get_slice_type(const H264SliceContext *sl);
/**
* Allocate tables.
* needs width/height
*/
int ff_h264_alloc_tables(H264Context *h);
/**
* Fill the default_ref_list.
*/
int ff_h264_fill_default_ref_list(H264Context *h, H264SliceContext *sl);
int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl);
void ff_h264_fill_mbaff_ref_list(H264Context *h, H264SliceContext *sl);
void ff_h264_remove_all_refs(H264Context *h);
/**
* Execute the reference picture marking (memory management control operations).
*/
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
int first_slice);
int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
/**
* Check if the top & left blocks are available if needed & change the
* dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(const H264Context *h, H264SliceContext *sl);
/**
* Check if the top & left blocks are available if needed & change the
* dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(const H264Context *h, H264SliceContext *sl,
int mode, int is_chroma);
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
int ff_h264_decode_init(AVCodecContext *avctx);
void ff_h264_decode_init_vlc(void);
/**
* Decode a macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
/**
* Decode a CABAC coded macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
void ff_h264_init_dequant_tables(H264Context *h);
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type);
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
/**
* Reset SEI values at the beginning of the frame.
*
* @param h H.264 context.
*/
void ff_h264_reset_sei(H264Context *h);
/**
* Get stereo_mode string from the h264 frame_packing_arrangement
* @param h H.264 context.
*/
const char* ff_h264_sei_stereo_mode(H264Context *h);
/*
* o-o o-o
* / / /
* o-o o-o
* ,---'
* o-o o-o
* / / /
* o-o o-o
*/
/* Scan8 organization:
* 0 1 2 3 4 5 6 7
* 0 DY y y y y y
* 1 y Y Y Y Y
* 2 y Y Y Y Y
* 3 y Y Y Y Y
* 4 y Y Y Y Y
* 5 DU u u u u u
* 6 u U U U U
* 7 u U U U U
* 8 u U U U U
* 9 u U U U U
* 10 DV v v v v v
* 11 v V V V V
* 12 v V V V V
* 13 v V V V V
* 14 v V V V V
* DY/DU/DV are for luma/chroma DC.
*/
#define LUMA_DC_BLOCK_INDEX 48
#define CHROMA_DC_BLOCK_INDEX 49
// This table must be here because scan8[constant] must be known at compiletime
static const uint8_t scan8[16 * 3 + 3] = {
4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
};
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
{
#if HAVE_BIGENDIAN
return (b & 0xFFFF) + (a << 16);
#else
return (a & 0xFFFF) + (b << 16);
#endif
}
static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
{
#if HAVE_BIGENDIAN
return (b & 0xFF) + (a << 8);
#else
return (a & 0xFF) + (b << 8);
#endif
}
/**
* Get the chroma qp.
*/
static av_always_inline int get_chroma_qp(const H264Context *h, int t, int qscale)
{
return h->pps.chroma_qp_table[t][qscale];
}
/**
* Get the predicted intra4x4 prediction mode.
*/
static av_always_inline int pred_intra_mode(const H264Context *h,
H264SliceContext *sl, int n)
{
const int index8 = scan8[n];
const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
const int min = FFMIN(left, top);
ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
if (min < 0)
return DC_PRED;
else
return min;
}
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
H264SliceContext *sl)
{
int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
i4x4[4] = i4x4_cache[7 + 8 * 3];
i4x4[5] = i4x4_cache[7 + 8 * 2];
i4x4[6] = i4x4_cache[7 + 8 * 1];
}
static av_always_inline void write_back_non_zero_count(const H264Context *h,
H264SliceContext *sl)
{
const int mb_xy = sl->mb_xy;
uint8_t *nnz = h->non_zero_count[mb_xy];
uint8_t *nnz_cache = sl->non_zero_count_cache;
AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
if (!h->chroma_y_shift) {
AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
}
}
static av_always_inline void write_back_motion_list(const H264Context *h,
H264SliceContext *sl,
int b_stride,
int b_xy, int b8_xy,
int mb_type, int list)
{
int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
if (CABAC(h)) {
uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
: h->mb2br_xy[sl->mb_xy]];
uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
if (IS_SKIP(mb_type)) {
AV_ZERO128(mvd_dst);
} else {
AV_COPY64(mvd_dst, mvd_src + 8 * 3);
AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
}
}
{
int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
int8_t *ref_cache = sl->ref_cache[list];
ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
}
}
static av_always_inline void write_back_motion(const H264Context *h,
H264SliceContext *sl,
int mb_type)
{
const int b_stride = h->b_stride;
const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
const int b8_xy = 4 * sl->mb_xy;
if (USES_LIST(mb_type, 0)) {
write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
} else {
fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
}
if (USES_LIST(mb_type, 1))
write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
if (IS_8X8(mb_type)) {
uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
direct_table[1] = sl->sub_mb_type[1] >> 1;
direct_table[2] = sl->sub_mb_type[2] >> 1;
direct_table[3] = sl->sub_mb_type[3] >> 1;
}
}
}
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
{
if (h->sps.direct_8x8_inference_flag)
return !(AV_RN64A(sl->sub_mb_type) &
((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
0x0001000100010001ULL));
else
return !(AV_RN64A(sl->sub_mb_type) &
((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
0x0001000100010001ULL));
}
static inline int find_start_code(const uint8_t *buf, int buf_size,
int buf_index, int next_avc)
{
uint32_t state = -1;
buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
return FFMIN(buf_index, buf_size);
}
static inline int get_avc_nalsize(H264Context *h, const uint8_t *buf,
int buf_size, int *buf_index)
{
int i, nalsize = 0;
if (*buf_index >= buf_size - h->nal_length_size) {
// the end of the buffer is reached, refill it.
return AVERROR(EAGAIN);
}
for (i = 0; i < h->nal_length_size; i++)
nalsize = ((unsigned)nalsize << 8) | buf[(*buf_index)++];
if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
av_log(h->avctx, AV_LOG_ERROR,
"AVC: nal size %d\n", nalsize);
return AVERROR_INVALIDDATA;
}
return nalsize;
}
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
int ff_pred_weight_table(H264Context *h, H264SliceContext *sl);
int ff_set_ref_count(H264Context *h, H264SliceContext *sl);
int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl);
#define SLICE_SINGLETHREAD 1
#define SLICE_SKIPED 2
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
int ff_h264_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src);
void ff_h264_flush_change(H264Context *h);
void ff_h264_free_tables(H264Context *h);
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
#endif /* AVCODEC_H264_H */