1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/dxv.c

1277 lines
43 KiB
C
Raw Normal View History

/*
* Resolume DXV decoder
* Copyright (C) 2015 Vittorio Giovara <vittorio.giovara@gmail.com>
* Copyright (C) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include "libavutil/imgutils.h"
#include "mathops.h"
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "lzf.h"
#include "texturedsp.h"
#include "thread.h"
typedef struct DXVContext {
TextureDSPContext texdsp;
GetByteContext gbc;
uint8_t *tex_data; // Compressed texture
uint8_t *ctex_data; // Compressed texture
int tex_rat; // Compression ratio
int tex_step; // Distance between blocks
int ctex_step; // Distance between blocks
int64_t tex_size; // Texture size
int64_t ctex_size; // Texture size
/* Optimal number of slices for parallel decoding */
int slice_count;
uint8_t *op_data[4]; // Opcodes
int64_t op_size[4]; // Opcodes size
int texture_block_w;
int texture_block_h;
int ctexture_block_w;
int ctexture_block_h;
/* Pointer to the selected decompression function */
int (*tex_funct)(uint8_t *dst, ptrdiff_t stride, const uint8_t *block);
int (*tex_funct_planar[2])(uint8_t *plane0, ptrdiff_t stride0,
uint8_t *plane1, ptrdiff_t stride1,
const uint8_t *block);
} DXVContext;
static void decompress_indices(uint8_t *dst, const uint8_t *src)
{
int block, i;
for (block = 0; block < 2; block++) {
int tmp = AV_RL24(src);
/* Unpack 8x3 bit from last 3 byte block */
for (i = 0; i < 8; i++)
dst[i] = (tmp >> (i * 3)) & 0x7;
src += 3;
dst += 8;
}
}
static int extract_component(int yo0, int yo1, int code)
{
int yo;
if (yo0 == yo1) {
yo = yo0;
} else if (code == 0) {
yo = yo0;
} else if (code == 1) {
yo = yo1;
} else {
if (yo0 > yo1) {
yo = (uint8_t) (((8 - code) * yo0 +
(code - 1) * yo1) / 7);
} else {
if (code == 6) {
yo = 0;
} else if (code == 7) {
yo = 255;
} else {
yo = (uint8_t) (((6 - code) * yo0 +
(code - 1) * yo1) / 5);
}
}
}
return yo;
}
static int cocg_block(uint8_t *plane0, ptrdiff_t stride0,
uint8_t *plane1, ptrdiff_t stride1,
const uint8_t *block)
{
uint8_t co_indices[16];
uint8_t cg_indices[16];
uint8_t co0 = *(block);
uint8_t co1 = *(block + 1);
uint8_t cg0 = *(block + 8);
uint8_t cg1 = *(block + 9);
int x, y;
decompress_indices(co_indices, block + 2);
decompress_indices(cg_indices, block + 10);
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
int co_code = co_indices[x + y * 4];
int cg_code = cg_indices[x + y * 4];
plane0[x] = extract_component(cg0, cg1, cg_code);
plane1[x] = extract_component(co0, co1, co_code);
}
plane0 += stride0;
plane1 += stride1;
}
return 16;
}
static void yao_subblock(uint8_t *dst, uint8_t *yo_indices,
ptrdiff_t stride, const uint8_t *block)
{
uint8_t yo0 = *(block);
uint8_t yo1 = *(block + 1);
int x, y;
decompress_indices(yo_indices, block + 2);
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
int yo_code = yo_indices[x + y * 4];
dst[x] = extract_component(yo0, yo1, yo_code);
}
dst += stride;
}
}
static int yo_block(uint8_t *dst, ptrdiff_t stride,
uint8_t *unused0, ptrdiff_t unused1,
const uint8_t *block)
{
uint8_t yo_indices[16];
yao_subblock(dst, yo_indices, stride, block);
yao_subblock(dst + 4, yo_indices, stride, block + 8);
yao_subblock(dst + 8, yo_indices, stride, block + 16);
yao_subblock(dst + 12, yo_indices, stride, block + 24);
return 32;
}
static int yao_block(uint8_t *plane0, ptrdiff_t stride0,
uint8_t *plane3, ptrdiff_t stride1,
const uint8_t *block)
{
uint8_t yo_indices[16];
uint8_t a_indices[16];
yao_subblock(plane0, yo_indices, stride0, block);
yao_subblock(plane3, a_indices, stride1, block + 8);
yao_subblock(plane0 + 4, yo_indices, stride0, block + 16);
yao_subblock(plane3 + 4, a_indices, stride1, block + 24);
yao_subblock(plane0 + 8, yo_indices, stride0, block + 32);
yao_subblock(plane3 + 8, a_indices, stride1, block + 40);
yao_subblock(plane0 + 12, yo_indices, stride0, block + 48);
yao_subblock(plane3 + 12, a_indices, stride1, block + 56);
return 64;
}
static int decompress_texture_thread(AVCodecContext *avctx, void *arg,
int slice, int thread_nb)
{
const DXVContext *ctx = avctx->priv_data;
AVFrame *frame = arg;
const uint8_t *d = ctx->tex_data;
int w_block = avctx->coded_width / ctx->texture_block_w;
int h_block = avctx->coded_height / ctx->texture_block_h;
int x, y;
int start_slice, end_slice;
start_slice = h_block * slice / ctx->slice_count;
end_slice = h_block * (slice + 1) / ctx->slice_count;
if (ctx->tex_funct) {
for (y = start_slice; y < end_slice; y++) {
uint8_t *p = frame->data[0] + y * frame->linesize[0] * ctx->texture_block_h;
int off = y * w_block;
for (x = 0; x < w_block; x++) {
ctx->tex_funct(p + x * 4 * ctx->texture_block_w, frame->linesize[0],
d + (off + x) * ctx->tex_step);
}
}
} else {
const uint8_t *c = ctx->ctex_data;
for (y = start_slice; y < end_slice; y++) {
uint8_t *p0 = frame->data[0] + y * frame->linesize[0] * ctx->texture_block_h;
uint8_t *p3 = ctx->tex_step != 64 ? NULL : frame->data[3] + y * frame->linesize[3] * ctx->texture_block_h;
int off = y * w_block;
for (x = 0; x < w_block; x++) {
ctx->tex_funct_planar[0](p0 + x * ctx->texture_block_w, frame->linesize[0],
p3 != NULL ? p3 + x * ctx->texture_block_w : NULL, frame->linesize[3],
d + (off + x) * ctx->tex_step);
}
}
w_block = (avctx->coded_width / 2) / ctx->ctexture_block_w;
h_block = (avctx->coded_height / 2) / ctx->ctexture_block_h;
start_slice = h_block * slice / ctx->slice_count;
end_slice = h_block * (slice + 1) / ctx->slice_count;
for (y = start_slice; y < end_slice; y++) {
uint8_t *p0 = frame->data[1] + y * frame->linesize[1] * ctx->ctexture_block_h;
uint8_t *p1 = frame->data[2] + y * frame->linesize[2] * ctx->ctexture_block_h;
int off = y * w_block;
for (x = 0; x < w_block; x++) {
ctx->tex_funct_planar[1](p0 + x * ctx->ctexture_block_w, frame->linesize[1],
p1 + x * ctx->ctexture_block_w, frame->linesize[2],
c + (off + x) * ctx->ctex_step);
}
}
}
return 0;
}
/* This scheme addresses already decoded elements depending on 2-bit status:
* 0 -> copy new element
* 1 -> copy one element from position -x
* 2 -> copy one element from position -(get_byte() + 2) * x
* 3 -> copy one element from position -(get_16le() + 0x102) * x
* x is always 2 for dxt1 and 4 for dxt5. */
#define CHECKPOINT(x) \
do { \
if (state == 0) { \
if (bytestream2_get_bytes_left(gbc) < 4) \
return AVERROR_INVALIDDATA; \
value = bytestream2_get_le32(gbc); \
state = 16; \
} \
op = value & 0x3; \
value >>= 2; \
state--; \
switch (op) { \
case 1: \
idx = x; \
break; \
case 2: \
idx = (bytestream2_get_byte(gbc) + 2) * x; \
if (idx > pos) { \
av_log(avctx, AV_LOG_ERROR, "idx %d > %d\n", idx, pos); \
return AVERROR_INVALIDDATA; \
} \
break; \
case 3: \
idx = (bytestream2_get_le16(gbc) + 0x102) * x; \
if (idx > pos) { \
av_log(avctx, AV_LOG_ERROR, "idx %d > %d\n", idx, pos); \
return AVERROR_INVALIDDATA; \
} \
break; \
} \
} while(0)
static int dxv_decompress_dxt1(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gbc = &ctx->gbc;
uint32_t value, prev, op;
int idx = 0, state = 0;
int pos = 2;
/* Copy the first two elements */
AV_WL32(ctx->tex_data, bytestream2_get_le32(gbc));
AV_WL32(ctx->tex_data + 4, bytestream2_get_le32(gbc));
/* Process input until the whole texture has been filled */
while (pos + 2 <= ctx->tex_size / 4) {
CHECKPOINT(2);
/* Copy two elements from a previous offset or from the input buffer */
if (op) {
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
} else {
CHECKPOINT(2);
if (op)
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
else
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
CHECKPOINT(2);
if (op)
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
else
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
}
}
return 0;
}
typedef struct OpcodeTable {
int16_t next;
uint8_t val1;
uint8_t val2;
} OpcodeTable;
static int fill_ltable(GetByteContext *gb, uint32_t *table, int *nb_elements)
{
unsigned half = 512, bits = 1023, left = 1024, input, mask;
int value, counter = 0, rshift = 10, lshift = 30;
mask = bytestream2_get_le32(gb) >> 2;
while (left) {
if (counter >= 256)
return AVERROR_INVALIDDATA;
value = bits & mask;
left -= bits & mask;
mask >>= rshift;
lshift -= rshift;
table[counter++] = value;
if (lshift < 16) {
if (bytestream2_get_bytes_left(gb) <= 0)
return AVERROR_INVALIDDATA;
input = bytestream2_get_le16(gb);
mask += input << lshift;
lshift += 16;
}
if (left < half) {
half >>= 1;
bits >>= 1;
rshift--;
}
}
for (; !table[counter - 1]; counter--)
if (counter <= 0)
return AVERROR_INVALIDDATA;
*nb_elements = counter;
if (counter < 256)
memset(&table[counter], 0, 4 * (256 - counter));
if (lshift >= 16)
bytestream2_seek(gb, -2, SEEK_CUR);
return 0;
}
static int fill_optable(unsigned *table0, OpcodeTable *table1, int nb_elements)
{
unsigned table2[256] = { 0 };
unsigned x = 0;
int val0, val1, i, j = 2, k = 0;
table2[0] = table0[0];
for (i = 0; i < nb_elements - 1; i++, table2[i] = val0) {
val0 = table0[i + 1] + table2[i];
}
if (!table2[0]) {
do {
k++;
} while (!table2[k]);
}
j = 2;
for (i = 1024; i > 0; i--) {
for (table1[x].val1 = k; k < 256 && j > table2[k]; k++);
x = (x - 383) & 0x3FF;
j++;
}
if (nb_elements > 0)
memcpy(&table2[0], table0, 4 * nb_elements);
for (i = 0; i < 1024; i++) {
val0 = table1[i].val1;
val1 = table2[val0];
table2[val0]++;
x = 31 - ff_clz(val1);
if (x > 10)
return AVERROR_INVALIDDATA;
table1[i].val2 = 10 - x;
table1[i].next = (val1 << table1[i].val2) - 1024;
}
return 0;
}
static int get_opcodes(GetByteContext *gb, uint32_t *table, uint8_t *dst, int op_size, int nb_elements)
{
OpcodeTable optable[1024];
int sum, x, val, lshift, rshift, ret, i, idx;
int64_t size_in_bits;
unsigned endoffset, newoffset, offset;
unsigned next;
const uint8_t *src = gb->buffer;
ret = fill_optable(table, optable, nb_elements);
if (ret < 0)
return ret;
size_in_bits = bytestream2_get_le32(gb);
endoffset = ((size_in_bits + 7) >> 3) - 4;
if (endoffset <= 0 || bytestream2_get_bytes_left(gb) < endoffset)
return AVERROR_INVALIDDATA;
offset = endoffset;
next = AV_RL32(src + endoffset);
rshift = (((size_in_bits & 0xFF) - 1) & 7) + 15;
lshift = 32 - rshift;
idx = (next >> rshift) & 0x3FF;
for (i = 0; i < op_size; i++) {
dst[i] = optable[idx].val1;
val = optable[idx].val2;
sum = val + lshift;
x = (next << lshift) >> 1 >> (31 - val);
newoffset = offset - (sum >> 3);
lshift = sum & 7;
idx = x + optable[idx].next;
offset = newoffset;
if (offset > endoffset)
return AVERROR_INVALIDDATA;
next = AV_RL32(src + offset);
}
bytestream2_skip(gb, (size_in_bits + 7 >> 3) - 4);
return 0;
}
static int dxv_decompress_opcodes(GetByteContext *gb, void *dstp, size_t op_size)
{
int pos = bytestream2_tell(gb);
int flag = bytestream2_peek_byte(gb);
if ((flag & 3) == 0) {
bytestream2_skip(gb, 1);
bytestream2_get_buffer(gb, dstp, op_size);
} else if ((flag & 3) == 1) {
bytestream2_skip(gb, 1);
memset(dstp, bytestream2_get_byte(gb), op_size);
} else {
uint32_t table[256];
int ret, elements = 0;
ret = fill_ltable(gb, table, &elements);
if (ret < 0)
return ret;
ret = get_opcodes(gb, table, dstp, op_size, elements);
if (ret < 0)
return ret;
}
return bytestream2_tell(gb) - pos;
}
static int dxv_decompress_cgo(DXVContext *ctx, GetByteContext *gb,
uint8_t *tex_data, int tex_size,
uint8_t *op_data, int *oindex,
int op_size,
uint8_t **dstp, int *statep,
uint8_t **tab0, uint8_t **tab1,
int offset)
{
uint8_t *dst = *dstp;
uint8_t *tptr0, *tptr1, *tptr3;
int oi = *oindex;
int state = *statep;
int opcode, v, vv;
if (state <= 0) {
if (oi >= op_size)
return AVERROR_INVALIDDATA;
opcode = op_data[oi++];
if (!opcode) {
v = bytestream2_get_byte(gb);
if (v == 255) {
do {
if (bytestream2_get_bytes_left(gb) <= 0)
return AVERROR_INVALIDDATA;
opcode = bytestream2_get_le16(gb);
v += opcode;
} while (opcode == 0xFFFF);
}
AV_WL32(dst, AV_RL32(dst - (8 + offset)));
AV_WL32(dst + 4, AV_RL32(dst - (4 + offset)));
state = v + 4;
goto done;
}
switch (opcode) {
case 1:
AV_WL32(dst, AV_RL32(dst - (8 + offset)));
AV_WL32(dst + 4, AV_RL32(dst - (4 + offset)));
break;
case 2:
vv = (8 + offset) * (bytestream2_get_le16(gb) + 1);
if (vv < 0 || vv > dst - tex_data)
return AVERROR_INVALIDDATA;
tptr0 = dst - vv;
v = AV_RL32(tptr0);
AV_WL32(dst, AV_RL32(tptr0));
AV_WL32(dst + 4, AV_RL32(tptr0 + 4));
tab0[0x9E3779B1 * (uint16_t)v >> 24] = dst;
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 3:
AV_WL32(dst, bytestream2_get_le32(gb));
AV_WL32(dst + 4, bytestream2_get_le32(gb));
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 4:
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, bytestream2_get_le16(gb));
AV_WL16(dst + 2, AV_RL16(tptr3));
dst[4] = tptr3[2];
AV_WL16(dst + 5, bytestream2_get_le16(gb));
dst[7] = bytestream2_get_byte(gb);
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
break;
case 5:
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, bytestream2_get_le16(gb));
AV_WL16(dst + 2, bytestream2_get_le16(gb));
dst[4] = bytestream2_get_byte(gb);
AV_WL16(dst + 5, AV_RL16(tptr3));
dst[7] = tptr3[2];
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 6:
tptr0 = tab1[bytestream2_get_byte(gb)];
if (!tptr0)
return AVERROR_INVALIDDATA;
tptr1 = tab1[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
AV_WL16(dst, bytestream2_get_le16(gb));
AV_WL16(dst + 2, AV_RL16(tptr0));
dst[4] = tptr0[2];
AV_WL16(dst + 5, AV_RL16(tptr1));
dst[7] = tptr1[2];
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
break;
case 7:
v = (8 + offset) * (bytestream2_get_le16(gb) + 1);
if (v < 0 || v > dst - tex_data)
return AVERROR_INVALIDDATA;
tptr0 = dst - v;
AV_WL16(dst, bytestream2_get_le16(gb));
AV_WL16(dst + 2, AV_RL16(tptr0 + 2));
AV_WL32(dst + 4, AV_RL32(tptr0 + 4));
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 8:
tptr1 = tab0[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(tptr1));
AV_WL16(dst + 2, bytestream2_get_le16(gb));
AV_WL32(dst + 4, bytestream2_get_le32(gb));
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 9:
tptr1 = tab0[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(tptr1));
AV_WL16(dst + 2, AV_RL16(tptr3));
dst[4] = tptr3[2];
AV_WL16(dst + 5, bytestream2_get_le16(gb));
dst[7] = bytestream2_get_byte(gb);
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 10:
tptr1 = tab0[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(tptr1));
AV_WL16(dst + 2, bytestream2_get_le16(gb));
dst[4] = bytestream2_get_byte(gb);
AV_WL16(dst + 5, AV_RL16(tptr3));
dst[7] = tptr3[2];
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 11:
tptr0 = tab0[bytestream2_get_byte(gb)];
if (!tptr0)
return AVERROR_INVALIDDATA;
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
tptr1 = tab1[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(tptr0));
AV_WL16(dst + 2, AV_RL16(tptr3));
dst[4] = tptr3[2];
AV_WL16(dst + 5, AV_RL16(tptr1));
dst[7] = tptr1[2];
break;
case 12:
tptr1 = tab0[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
v = (8 + offset) * (bytestream2_get_le16(gb) + 1);
if (v < 0 || v > dst - tex_data)
return AVERROR_INVALIDDATA;
tptr0 = dst - v;
AV_WL16(dst, AV_RL16(tptr1));
AV_WL16(dst + 2, AV_RL16(tptr0 + 2));
AV_WL32(dst + 4, AV_RL32(tptr0 + 4));
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 13:
AV_WL16(dst, AV_RL16(dst - (8 + offset)));
AV_WL16(dst + 2, bytestream2_get_le16(gb));
AV_WL32(dst + 4, bytestream2_get_le32(gb));
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 14:
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(dst - (8 + offset)));
AV_WL16(dst + 2, AV_RL16(tptr3));
dst[4] = tptr3[2];
AV_WL16(dst + 5, bytestream2_get_le16(gb));
dst[7] = bytestream2_get_byte(gb);
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 15:
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(dst - (8 + offset)));
AV_WL16(dst + 2, bytestream2_get_le16(gb));
dst[4] = bytestream2_get_byte(gb);
AV_WL16(dst + 5, AV_RL16(tptr3));
dst[7] = tptr3[2];
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
case 16:
tptr3 = tab1[bytestream2_get_byte(gb)];
if (!tptr3)
return AVERROR_INVALIDDATA;
tptr1 = tab1[bytestream2_get_byte(gb)];
if (!tptr1)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(dst - (8 + offset)));
AV_WL16(dst + 2, AV_RL16(tptr3));
dst[4] = tptr3[2];
AV_WL16(dst + 5, AV_RL16(tptr1));
dst[7] = tptr1[2];
break;
case 17:
v = (8 + offset) * (bytestream2_get_le16(gb) + 1);
if (v < 0 || v > dst - tex_data)
return AVERROR_INVALIDDATA;
AV_WL16(dst, AV_RL16(dst - (8 + offset)));
AV_WL16(dst + 2, AV_RL16(&dst[-v + 2]));
AV_WL32(dst + 4, AV_RL32(&dst[-v + 4]));
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFFu) >> 24] = dst + 2;
break;
default:
break;
}
} else {
done:
AV_WL32(dst, AV_RL32(dst - (8 + offset)));
AV_WL32(dst + 4, AV_RL32(dst - (4 + offset)));
state--;
}
if (dst - tex_data + 8 > tex_size)
return AVERROR_INVALIDDATA;
dst += 8;
*oindex = oi;
*dstp = dst;
*statep = state;
return 0;
}
static int dxv_decompress_cocg(DXVContext *ctx, GetByteContext *gb,
uint8_t *tex_data, int tex_size,
uint8_t *op_data0, uint8_t *op_data1,
int max_op_size0, int max_op_size1)
{
uint8_t *dst, *tab2[256] = { 0 }, *tab0[256] = { 0 }, *tab3[256] = { 0 }, *tab1[256] = { 0 };
int op_offset = bytestream2_get_le32(gb);
unsigned op_size0 = bytestream2_get_le32(gb);
unsigned op_size1 = bytestream2_get_le32(gb);
int data_start = bytestream2_tell(gb);
int skip0, skip1, oi0 = 0, oi1 = 0;
int ret, state0 = 0, state1 = 0;
if (op_offset < 12 || op_offset - 12 > bytestream2_get_bytes_left(gb))
return AVERROR_INVALIDDATA;
dst = tex_data;
bytestream2_skip(gb, op_offset - 12);
if (op_size0 > max_op_size0)
return AVERROR_INVALIDDATA;
skip0 = dxv_decompress_opcodes(gb, op_data0, op_size0);
if (skip0 < 0)
return skip0;
if (op_size1 > max_op_size1)
return AVERROR_INVALIDDATA;
skip1 = dxv_decompress_opcodes(gb, op_data1, op_size1);
if (skip1 < 0)
return skip1;
bytestream2_seek(gb, data_start, SEEK_SET);
AV_WL32(dst, bytestream2_get_le32(gb));
AV_WL32(dst + 4, bytestream2_get_le32(gb));
AV_WL32(dst + 8, bytestream2_get_le32(gb));
AV_WL32(dst + 12, bytestream2_get_le32(gb));
tab0[0x9E3779B1 * AV_RL16(dst) >> 24] = dst;
tab1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFF) >> 24] = dst + 2;
tab2[0x9E3779B1 * AV_RL16(dst + 8) >> 24] = dst + 8;
tab3[0x9E3779B1 * (AV_RL32(dst + 10) & 0xFFFFFF) >> 24] = dst + 10;
dst += 16;
while (dst + 10 < tex_data + tex_size) {
ret = dxv_decompress_cgo(ctx, gb, tex_data, tex_size, op_data0, &oi0, op_size0,
&dst, &state0, tab0, tab1, 8);
if (ret < 0)
return ret;
ret = dxv_decompress_cgo(ctx, gb, tex_data, tex_size, op_data1, &oi1, op_size1,
&dst, &state1, tab2, tab3, 8);
if (ret < 0)
return ret;
}
bytestream2_seek(gb, data_start - 12 + op_offset + skip0 + skip1, SEEK_SET);
return 0;
}
static int dxv_decompress_yo(DXVContext *ctx, GetByteContext *gb,
uint8_t *tex_data, int tex_size,
uint8_t *op_data, int max_op_size)
{
int op_offset = bytestream2_get_le32(gb);
unsigned op_size = bytestream2_get_le32(gb);
int data_start = bytestream2_tell(gb);
uint8_t *dst, *table0[256] = { 0 }, *table1[256] = { 0 };
int ret, state = 0, skip, oi = 0, v, vv;
if (op_offset < 8 || op_offset - 8 > bytestream2_get_bytes_left(gb))
return AVERROR_INVALIDDATA;
dst = tex_data;
bytestream2_skip(gb, op_offset - 8);
if (op_size > max_op_size)
return AVERROR_INVALIDDATA;
skip = dxv_decompress_opcodes(gb, op_data, op_size);
if (skip < 0)
return skip;
bytestream2_seek(gb, data_start, SEEK_SET);
v = bytestream2_get_le32(gb);
AV_WL32(dst, v);
vv = bytestream2_get_le32(gb);
table0[0x9E3779B1 * (uint16_t)v >> 24] = dst;
AV_WL32(dst + 4, vv);
table1[0x9E3779B1 * (AV_RL32(dst + 2) & 0xFFFFFF) >> 24] = dst + 2;
dst += 8;
while (dst < tex_data + tex_size) {
ret = dxv_decompress_cgo(ctx, gb, tex_data, tex_size, op_data, &oi, op_size,
&dst, &state, table0, table1, 0);
if (ret < 0)
return ret;
}
bytestream2_seek(gb, data_start + op_offset + skip - 8, SEEK_SET);
return 0;
}
static int dxv_decompress_ycg6(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gb = &ctx->gbc;
int ret;
ret = dxv_decompress_yo(ctx, gb, ctx->tex_data, ctx->tex_size,
ctx->op_data[0], ctx->op_size[0]);
if (ret < 0)
return ret;
return dxv_decompress_cocg(ctx, gb, ctx->ctex_data, ctx->ctex_size,
ctx->op_data[1], ctx->op_data[2],
ctx->op_size[1], ctx->op_size[2]);
}
static int dxv_decompress_yg10(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gb = &ctx->gbc;
int ret;
ret = dxv_decompress_cocg(ctx, gb, ctx->tex_data, ctx->tex_size,
ctx->op_data[0], ctx->op_data[3],
ctx->op_size[0], ctx->op_size[3]);
if (ret < 0)
return ret;
return dxv_decompress_cocg(ctx, gb, ctx->ctex_data, ctx->ctex_size,
ctx->op_data[1], ctx->op_data[2],
ctx->op_size[1], ctx->op_size[2]);
}
static int dxv_decompress_dxt5(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gbc = &ctx->gbc;
uint32_t value, op, prev;
int idx, state = 0;
int pos = 4;
int run = 0;
int probe, check;
/* Copy the first four elements */
AV_WL32(ctx->tex_data + 0, bytestream2_get_le32(gbc));
AV_WL32(ctx->tex_data + 4, bytestream2_get_le32(gbc));
AV_WL32(ctx->tex_data + 8, bytestream2_get_le32(gbc));
AV_WL32(ctx->tex_data + 12, bytestream2_get_le32(gbc));
/* Process input until the whole texture has been filled */
while (pos + 2 <= ctx->tex_size / 4) {
if (run) {
run--;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
} else {
if (bytestream2_get_bytes_left(gbc) < 1)
return AVERROR_INVALIDDATA;
if (state == 0) {
value = bytestream2_get_le32(gbc);
state = 16;
}
op = value & 0x3;
value >>= 2;
state--;
switch (op) {
case 0:
/* Long copy */
check = bytestream2_get_byte(gbc) + 1;
if (check == 256) {
do {
probe = bytestream2_get_le16(gbc);
check += probe;
} while (probe == 0xFFFF);
}
while (check && pos + 4 <= ctx->tex_size / 4) {
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
check--;
}
/* Restart (or exit) the loop */
continue;
break;
case 1:
/* Load new run value */
run = bytestream2_get_byte(gbc);
if (run == 255) {
do {
probe = bytestream2_get_le16(gbc);
run += probe;
} while (probe == 0xFFFF);
}
/* Copy two dwords from previous data */
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - 4));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
break;
case 2:
/* Copy two dwords from a previous index */
idx = 8 + bytestream2_get_le16(gbc);
if (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4)
return AVERROR_INVALIDDATA;
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
break;
case 3:
/* Copy two dwords from input */
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
break;
}
}
CHECKPOINT(4);
if (pos + 2 > ctx->tex_size / 4)
return AVERROR_INVALIDDATA;
/* Copy two elements from a previous offset or from the input buffer */
if (op) {
if (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4)
return AVERROR_INVALIDDATA;
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
} else {
CHECKPOINT(4);
if (op && (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4))
return AVERROR_INVALIDDATA;
if (op)
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
else
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
CHECKPOINT(4);
if (op)
prev = AV_RL32(ctx->tex_data + 4 * (pos - idx));
else
prev = bytestream2_get_le32(gbc);
AV_WL32(ctx->tex_data + 4 * pos, prev);
pos++;
}
}
return 0;
}
static int dxv_decompress_lzf(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
return ff_lzf_uncompress(&ctx->gbc, &ctx->tex_data, &ctx->tex_size);
}
static int dxv_decompress_raw(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gbc = &ctx->gbc;
if (bytestream2_get_bytes_left(gbc) < ctx->tex_size)
return AVERROR_INVALIDDATA;
bytestream2_get_buffer(gbc, ctx->tex_data, ctx->tex_size);
return 0;
}
static int dxv_decode(AVCodecContext *avctx, AVFrame *frame,
int *got_frame, AVPacket *avpkt)
{
DXVContext *ctx = avctx->priv_data;
GetByteContext *gbc = &ctx->gbc;
int (*decompress_tex)(AVCodecContext *avctx);
const char *msgcomp, *msgtext;
uint32_t tag;
int version_major, version_minor = 0;
int size = 0, old_type = 0;
int ret;
bytestream2_init(gbc, avpkt->data, avpkt->size);
ctx->texture_block_h = 4;
ctx->texture_block_w = 4;
avctx->pix_fmt = AV_PIX_FMT_RGBA;
avctx->colorspace = AVCOL_SPC_RGB;
ctx->tex_funct = NULL;
ctx->tex_funct_planar[0] = NULL;
ctx->tex_funct_planar[1] = NULL;
tag = bytestream2_get_le32(gbc);
switch (tag) {
case MKBETAG('D', 'X', 'T', '1'):
decompress_tex = dxv_decompress_dxt1;
ctx->tex_funct = ctx->texdsp.dxt1_block;
ctx->tex_rat = 8;
ctx->tex_step = 8;
msgcomp = "DXTR1";
msgtext = "DXT1";
break;
case MKBETAG('D', 'X', 'T', '5'):
decompress_tex = dxv_decompress_dxt5;
ctx->tex_funct = ctx->texdsp.dxt5_block;
ctx->tex_rat = 4;
ctx->tex_step = 16;
msgcomp = "DXTR5";
msgtext = "DXT5";
break;
case MKBETAG('Y', 'C', 'G', '6'):
decompress_tex = dxv_decompress_ycg6;
ctx->tex_funct_planar[0] = yo_block;
ctx->tex_funct_planar[1] = cocg_block;
ctx->tex_rat = 8;
ctx->tex_step = 32;
ctx->ctex_step = 16;
msgcomp = "YOCOCG6";
msgtext = "YCG6";
ctx->ctex_size = avctx->coded_width * avctx->coded_height / 4;
ctx->texture_block_h = 4;
ctx->texture_block_w = 16;
ctx->ctexture_block_h = 4;
ctx->ctexture_block_w = 4;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_YCOCG;
break;
case MKBETAG('Y', 'G', '1', '0'):
decompress_tex = dxv_decompress_yg10;
ctx->tex_funct_planar[0] = yao_block;
ctx->tex_funct_planar[1] = cocg_block;
ctx->tex_rat = 4;
ctx->tex_step = 64;
ctx->ctex_step = 16;
msgcomp = "YAOCOCG10";
msgtext = "YG10";
ctx->ctex_size = avctx->coded_width * avctx->coded_height / 4;
ctx->texture_block_h = 4;
ctx->texture_block_w = 16;
ctx->ctexture_block_h = 4;
ctx->ctexture_block_w = 4;
avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
avctx->colorspace = AVCOL_SPC_YCOCG;
break;
default:
/* Old version does not have a real header, just size and type. */
size = tag & 0x00FFFFFF;
old_type = tag >> 24;
version_major = (old_type & 0x0F) - 1;
if (old_type & 0x80) {
msgcomp = "RAW";
decompress_tex = dxv_decompress_raw;
} else {
msgcomp = "LZF";
decompress_tex = dxv_decompress_lzf;
}
if (old_type & 0x40) {
msgtext = "DXT5";
ctx->tex_funct = ctx->texdsp.dxt5_block;
ctx->tex_step = 16;
} else if (old_type & 0x20 || version_major == 1) {
msgtext = "DXT1";
ctx->tex_funct = ctx->texdsp.dxt1_block;
ctx->tex_step = 8;
} else {
av_log(avctx, AV_LOG_ERROR, "Unsupported header (0x%08"PRIX32")\n.", tag);
return AVERROR_INVALIDDATA;
}
ctx->tex_rat = 1;
break;
}
ctx->slice_count = av_clip(avctx->thread_count, 1,
avctx->coded_height / FFMAX(ctx->texture_block_h,
ctx->ctexture_block_h));
/* New header is 12 bytes long. */
if (!old_type) {
version_major = bytestream2_get_byte(gbc) - 1;
version_minor = bytestream2_get_byte(gbc);
/* Encoder copies texture data when compression is not advantageous. */
if (bytestream2_get_byte(gbc)) {
msgcomp = "RAW";
ctx->tex_rat = 1;
decompress_tex = dxv_decompress_raw;
}
bytestream2_skip(gbc, 1); // unknown
size = bytestream2_get_le32(gbc);
}
av_log(avctx, AV_LOG_DEBUG,
"%s compression with %s texture (version %d.%d)\n",
msgcomp, msgtext, version_major, version_minor);
if (size != bytestream2_get_bytes_left(gbc)) {
2015-09-22 13:58:00 +02:00
av_log(avctx, AV_LOG_ERROR,
"Incomplete or invalid file (header %d, left %u).\n",
size, bytestream2_get_bytes_left(gbc));
return AVERROR_INVALIDDATA;
}
ctx->tex_size = avctx->coded_width * avctx->coded_height * 4 / ctx->tex_rat;
ret = av_reallocp(&ctx->tex_data, ctx->tex_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (ret < 0)
return ret;
if (ctx->ctex_size) {
int i;
ctx->op_size[0] = avctx->coded_width * avctx->coded_height / 16;
ctx->op_size[1] = avctx->coded_width * avctx->coded_height / 32;
ctx->op_size[2] = avctx->coded_width * avctx->coded_height / 32;
ctx->op_size[3] = avctx->coded_width * avctx->coded_height / 16;
ret = av_reallocp(&ctx->ctex_data, ctx->ctex_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (ret < 0)
return ret;
for (i = 0; i < 4; i++) {
ret = av_reallocp(&ctx->op_data[i], ctx->op_size[i]);
if (ret < 0)
return ret;
}
}
/* Decompress texture out of the intermediate compression. */
ret = decompress_tex(avctx);
if (ret < 0)
return ret;
{
int w_block = avctx->coded_width / ctx->texture_block_w;
int h_block = avctx->coded_height / ctx->texture_block_h;
if (w_block * h_block * ctx->tex_step > ctx->tex_size * 8LL)
return AVERROR_INVALIDDATA;
}
ret = ff_thread_get_buffer(avctx, frame, 0);
if (ret < 0)
return ret;
/* Now decompress the texture with the standard functions. */
avctx->execute2(avctx, decompress_texture_thread,
frame, NULL, ctx->slice_count);
/* Frame is ready to be output. */
frame->pict_type = AV_PICTURE_TYPE_I;
frame->flags |= AV_FRAME_FLAG_KEY;
*got_frame = 1;
return avpkt->size;
}
static int dxv_init(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
int ret = av_image_check_size(avctx->width, avctx->height, 0, avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Invalid image size %dx%d.\n",
avctx->width, avctx->height);
return ret;
}
/* Codec requires 16x16 alignment. */
avctx->coded_width = FFALIGN(avctx->width, 16);
avctx->coded_height = FFALIGN(avctx->height, 16);
ff_texturedsp_init(&ctx->texdsp);
return 0;
}
static int dxv_close(AVCodecContext *avctx)
{
DXVContext *ctx = avctx->priv_data;
av_freep(&ctx->tex_data);
av_freep(&ctx->ctex_data);
av_freep(&ctx->op_data[0]);
av_freep(&ctx->op_data[1]);
av_freep(&ctx->op_data[2]);
av_freep(&ctx->op_data[3]);
return 0;
}
const FFCodec ff_dxv_decoder = {
.p.name = "dxv",
CODEC_LONG_NAME("Resolume DXV"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DXV,
.init = dxv_init,
FF_CODEC_DECODE_CB(dxv_decode),
.close = dxv_close,
.priv_data_size = sizeof(DXVContext),
.p.capabilities = AV_CODEC_CAP_DR1 |
AV_CODEC_CAP_SLICE_THREADS |
AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};