1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavfilter/vf_bilateral.c

521 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (c) 2017 Ming Yang
* Copyright (c) 2019 Paul B Mahol
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct BilateralContext {
const AVClass *class;
float sigmaS;
float sigmaR;
int planes;
int nb_threads;
int nb_planes;
int depth;
int planewidth[4];
int planeheight[4];
float alpha;
float range_table[65536];
float *img_out_f[4];
float *img_temp[4];
float *map_factor_a[4];
float *map_factor_b[4];
float *slice_factor_a[4];
float *slice_factor_b[4];
float *line_factor_a[4];
float *line_factor_b[4];
} BilateralContext;
#define OFFSET(x) offsetof(BilateralContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption bilateral_options[] = {
{ "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
{ "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS },
{ "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(bilateral);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static int config_params(AVFilterContext *ctx)
{
BilateralContext *s = ctx->priv;
float inv_sigma_range;
inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
//compute a lookup table
for (int i = 0; i < (1 << s->depth); i++)
s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
return 0;
}
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
config_params(ctx);
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = ff_filter_get_nb_threads(ctx);
for (int p = 0; p < s->nb_planes; p++) {
const int w = s->planewidth[p];
const int h = s->planeheight[p];
s->img_out_f[p] = av_calloc(w * h, sizeof(float));
s->img_temp[p] = av_calloc(w * h, sizeof(float));
s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
s->slice_factor_a[p] = av_calloc(w, sizeof(float));
s->slice_factor_b[p] = av_calloc(w, sizeof(float));
s->line_factor_a[p] = av_calloc(w, sizeof(float));
s->line_factor_b[p] = av_calloc(w, sizeof(float));
if (!s->img_out_f[p] ||
!s->img_temp[p] ||
!s->map_factor_a[p] ||
!s->map_factor_b[p] ||
!s->slice_factor_a[p] ||
!s->slice_factor_a[p] ||
!s->line_factor_a[p] ||
!s->line_factor_a[p])
return AVERROR(ENOMEM);
}
return 0;
}
#define BILATERAL_H(type, name) \
static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
const int src_linesize = in->linesize[plane] / sizeof(type); \
const type *src = (const type *)in->data[plane]; \
float *img_temp = s->img_temp[plane]; \
float *map_factor_a = s->map_factor_a[plane]; \
const float *const range_table = s->range_table; \
const float alpha = s->alpha; \
float ypr, ycr, fp, fc; \
const float inv_alpha_ = 1.f - alpha; \
\
for (int y = slice_start; y < slice_end; y++) { \
float *temp_factor_x, *temp_x = &img_temp[y * width]; \
const type *in_x = &src[y * src_linesize]; \
const type *texture_x = &src[y * src_linesize]; \
type tpr; \
\
*temp_x++ = ypr = *in_x++; \
tpr = *texture_x++; \
\
temp_factor_x = &map_factor_a[y * width]; \
*temp_factor_x++ = fp = 1; \
\
for (int x = 1; x < width; x++) { \
float alpha_; \
int range_dist; \
type tcr = *texture_x++; \
type dr = abs(tcr - tpr); \
\
range_dist = dr; \
alpha_ = range_table[range_dist]; \
*temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
tpr = tcr; \
ypr = ycr; \
*temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
fp = fc; \
} \
--temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
tpr = *--texture_x; \
ypr = *in_x; \
\
--temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
fp = 1; \
\
for (int x = width - 2; x >= 0; x--) { \
type tcr = *--texture_x; \
type dr = abs(tcr - tpr); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
--temp_x; *temp_x = ((*temp_x) + ycr); \
tpr = tcr; \
ypr = ycr; \
\
fc = inv_alpha_ + alpha_*fp; \
--temp_factor_x; \
*temp_factor_x = ((*temp_factor_x) + fc); \
fp = fc; \
} \
} \
}
BILATERAL_H(uint8_t, byte)
BILATERAL_H(uint16_t, word)
#define BILATERAL_V(type, name) \
static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (width * jobnr) / nb_jobs; \
const int slice_end = (width * (jobnr+1)) / nb_jobs; \
const int src_linesize = in->linesize[plane] / sizeof(type); \
const type *src = (const type *)in->data[plane] + slice_start; \
float *img_out_f = s->img_out_f[plane] + slice_start; \
float *img_temp = s->img_temp[plane] + slice_start; \
float *map_factor_a = s->map_factor_a[plane] + slice_start; \
float *map_factor_b = s->map_factor_b[plane] + slice_start; \
float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
float *line_factor_a = s->line_factor_a[plane] + slice_start; \
float *line_factor_b = s->line_factor_b[plane] + slice_start; \
const float *const range_table = s->range_table; \
const float alpha = s->alpha; \
float *ycy, *ypy, *xcy; \
const float inv_alpha_ = 1.f - alpha; \
float *ycf, *ypf, *xcf, *in_factor; \
const type *tcy, *tpy; \
int h1; \
\
memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
\
in_factor = map_factor_a; \
memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
for (int y = 1; y < height; y++) { \
tpy = &src[(y - 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ypy = &img_out_f[(y - 1) * width]; \
ycy = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ypf = &map_factor_b[(y - 1) * width]; \
ycf = &map_factor_b[y * width]; \
for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
*ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
*ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
} \
} \
h1 = height - 1; \
ycf = line_factor_a; \
ypf = line_factor_b; \
memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
\
ycy = slice_factor_a; \
ypy = slice_factor_b; \
memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
int idx = h1 * width + x; \
img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
} \
\
for (int y = h1 - 1; y >= 0; y--) { \
float *ycf_, *ypf_, *factor_; \
float *ycy_, *ypy_, *out_; \
\
tpy = &src[(y + 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ycy_ = ycy; \
ypy_ = ypy; \
out_ = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ycf_ = ycf; \
ypf_ = ypf; \
factor_ = &map_factor_b[y * width]; \
for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
\
*ycf_++ = fcc; \
*factor_ = (*factor_ + fcc); \
\
ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
*ycy_++ = ycc; \
*out_ = (*out_ + ycc) / (*factor_); \
out_++; \
factor_++; \
} \
\
ypy = ycy; \
ypf = ycf; \
} \
}
BILATERAL_V(uint8_t, byte)
BILATERAL_V(uint16_t, word)
#define BILATERAL_O(type, name) \
static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
const int dst_linesize = out->linesize[plane] / sizeof(type); \
\
for (int i = slice_start; i < slice_end; i++) { \
type *dst = (type *)out->data[plane] + i * dst_linesize; \
const float *const img_out_f = s->img_out_f[plane] + i * width; \
for (int j = 0; j < width; j++) \
dst[j] = lrintf(img_out_f[j]); \
} \
}
BILATERAL_O(uint8_t, byte)
BILATERAL_O(uint16_t, word)
static int bilateralh_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralv_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralo_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane))) {
if (out != in) {
const int height = s->planeheight[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
const int width = s->planewidth[plane];
const int linesize = in->linesize[plane];
const int dst_linesize = out->linesize[plane];
const uint8_t *src = in->data[plane];
uint8_t *dst = out->data[plane];
av_image_copy_plane(dst + slice_start * dst_linesize,
dst_linesize,
src + slice_start * linesize,
linesize,
width * ((s->depth + 7) / 8),
slice_end - slice_start);
}
continue;
}
if (s->depth <= 8)
bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
ThreadData td;
AVFrame *out;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BilateralContext *s = ctx->priv;
for (int p = 0; p < s->nb_planes; p++) {
av_freep(&s->img_out_f[p]);
av_freep(&s->img_temp[p]);
av_freep(&s->map_factor_a[p]);
av_freep(&s->map_factor_b[p]);
av_freep(&s->slice_factor_a[p]);
av_freep(&s->slice_factor_b[p]);
av_freep(&s->line_factor_a[p]);
av_freep(&s->line_factor_b[p]);
}
}
static int process_command(AVFilterContext *ctx,
const char *cmd,
const char *arg,
char *res,
int res_len,
int flags)
{
int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
if (ret < 0)
return ret;
return config_params(ctx);
}
static const AVFilterPad bilateral_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
};
static const AVFilterPad bilateral_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_bilateral = {
.name = "bilateral",
.description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
.priv_size = sizeof(BilateralContext),
.priv_class = &bilateral_class,
.uninit = uninit,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(bilateral_inputs),
FILTER_OUTPUTS(bilateral_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};