1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_dctdnoiz.c

835 lines
38 KiB
C
Raw Normal View History

2013-04-24 15:28:53 +02:00
/*
* Copyright (c) 2013-2014 Clément Bœsch
2013-04-24 15:28:53 +02:00
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* A simple, relatively efficient and slow DCT image denoiser.
*
2013-04-24 15:28:53 +02:00
* @see http://www.ipol.im/pub/art/2011/ys-dct/
*
* The DCT factorization used is based on "Fast and numerically stable
* algorithms for discrete cosine transforms" from Gerlind Plonkaa & Manfred
* Tasche (DOI: 10.1016/j.laa.2004.07.015).
2013-04-24 15:28:53 +02:00
*/
#include "libavutil/avassert.h"
2013-04-24 15:28:53 +02:00
#include "libavutil/eval.h"
#include "libavutil/mem_internal.h"
2013-04-24 15:28:53 +02:00
#include "libavutil/opt.h"
#include "internal.h"
static const char *const var_names[] = { "c", NULL };
enum { VAR_C, VAR_VARS_NB };
2014-08-10 21:49:55 +02:00
#define MAX_THREADS 8
typedef struct DCTdnoizContext {
2013-04-24 15:28:53 +02:00
const AVClass *class;
/* coefficient factor expression */
char *expr_str;
2014-08-10 21:49:55 +02:00
AVExpr *expr[MAX_THREADS];
double var_values[MAX_THREADS][VAR_VARS_NB];
2013-04-24 15:28:53 +02:00
2014-08-10 21:49:55 +02:00
int nb_threads;
2013-04-24 15:28:53 +02:00
int pr_width, pr_height; // width and height to process
float sigma; // used when no expression are st
float th; // threshold (3*sigma)
float *cbuf[2][3]; // two planar rgb color buffers
2014-08-10 21:49:55 +02:00
float *slices[MAX_THREADS]; // slices buffers (1 slice buffer per thread)
2013-04-24 15:28:53 +02:00
float *weights; // dct coeff are cumulated with overlapping; these values are used for averaging
int p_linesize; // line sizes for color and weights
int overlap; // number of block overlapping pixels
int step; // block step increment (blocksize - overlap)
int n; // 1<<n is the block size
int bsize; // block size, 1<<n
void (*filter_freq_func)(struct DCTdnoizContext *s,
const float *src, int src_linesize,
2014-08-10 21:49:55 +02:00
float *dst, int dst_linesize,
int thread_id);
void (*color_decorrelation)(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h);
void (*color_correlation)(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h);
2013-04-24 15:28:53 +02:00
} DCTdnoizContext;
#define MIN_NBITS 3 /* blocksize = 1<<3 = 8 */
#define MAX_NBITS 4 /* blocksize = 1<<4 = 16 */
#define DEFAULT_NBITS 3
2013-04-24 15:28:53 +02:00
#define OFFSET(x) offsetof(DCTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption dctdnoiz_options[] = {
{ "sigma", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
{ "s", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
{ "overlap", "set number of block overlapping pixels", OFFSET(overlap), AV_OPT_TYPE_INT, {.i64=-1}, -1, (1<<MAX_NBITS)-1, .flags = FLAGS },
2013-04-24 15:28:53 +02:00
{ "expr", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "e", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "n", "set the block size, expressed in bits", OFFSET(n), AV_OPT_TYPE_INT, {.i64=DEFAULT_NBITS}, MIN_NBITS, MAX_NBITS, .flags = FLAGS },
2013-04-24 15:28:53 +02:00
{ NULL }
};
AVFILTER_DEFINE_CLASS(dctdnoiz);
static void av_always_inline fdct8_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb)
{
int i;
for (i = 0; i < 8; i++) {
const float x00 = src[0*src_stridea] + src[7*src_stridea];
const float x01 = src[1*src_stridea] + src[6*src_stridea];
const float x02 = src[2*src_stridea] + src[5*src_stridea];
const float x03 = src[3*src_stridea] + src[4*src_stridea];
const float x04 = src[0*src_stridea] - src[7*src_stridea];
const float x05 = src[1*src_stridea] - src[6*src_stridea];
const float x06 = src[2*src_stridea] - src[5*src_stridea];
const float x07 = src[3*src_stridea] - src[4*src_stridea];
const float x08 = x00 + x03;
const float x09 = x01 + x02;
const float x0a = x00 - x03;
const float x0b = x01 - x02;
const float x0c = 1.38703984532215f*x04 + 0.275899379282943f*x07;
const float x0d = 1.17587560241936f*x05 + 0.785694958387102f*x06;
const float x0e = -0.785694958387102f*x05 + 1.17587560241936f*x06;
const float x0f = 0.275899379282943f*x04 - 1.38703984532215f*x07;
const float x10 = 0.353553390593274f * (x0c - x0d);
const float x11 = 0.353553390593274f * (x0e - x0f);
dst[0*dst_stridea] = 0.353553390593274f * (x08 + x09);
dst[1*dst_stridea] = 0.353553390593274f * (x0c + x0d);
dst[2*dst_stridea] = 0.461939766255643f*x0a + 0.191341716182545f*x0b;
dst[3*dst_stridea] = 0.707106781186547f * (x10 - x11);
dst[4*dst_stridea] = 0.353553390593274f * (x08 - x09);
dst[5*dst_stridea] = 0.707106781186547f * (x10 + x11);
dst[6*dst_stridea] = 0.191341716182545f*x0a - 0.461939766255643f*x0b;
dst[7*dst_stridea] = 0.353553390593274f * (x0e + x0f);
dst += dst_strideb;
src += src_strideb;
}
}
static void av_always_inline idct8_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb,
int add)
{
int i;
for (i = 0; i < 8; i++) {
const float x00 = 1.4142135623731f *src[0*src_stridea];
const float x01 = 1.38703984532215f *src[1*src_stridea] + 0.275899379282943f*src[7*src_stridea];
const float x02 = 1.30656296487638f *src[2*src_stridea] + 0.541196100146197f*src[6*src_stridea];
const float x03 = 1.17587560241936f *src[3*src_stridea] + 0.785694958387102f*src[5*src_stridea];
const float x04 = 1.4142135623731f *src[4*src_stridea];
const float x05 = -0.785694958387102f*src[3*src_stridea] + 1.17587560241936f*src[5*src_stridea];
const float x06 = 0.541196100146197f*src[2*src_stridea] - 1.30656296487638f*src[6*src_stridea];
const float x07 = -0.275899379282943f*src[1*src_stridea] + 1.38703984532215f*src[7*src_stridea];
const float x09 = x00 + x04;
const float x0a = x01 + x03;
const float x0b = 1.4142135623731f*x02;
const float x0c = x00 - x04;
const float x0d = x01 - x03;
const float x0e = 0.353553390593274f * (x09 - x0b);
const float x0f = 0.353553390593274f * (x0c + x0d);
const float x10 = 0.353553390593274f * (x0c - x0d);
const float x11 = 1.4142135623731f*x06;
const float x12 = x05 + x07;
const float x13 = x05 - x07;
const float x14 = 0.353553390593274f * (x11 + x12);
const float x15 = 0.353553390593274f * (x11 - x12);
const float x16 = 0.5f*x13;
dst[0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.25f * (x09 + x0b) + 0.353553390593274f*x0a;
dst[1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x0f + x15);
dst[2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x0f - x15);
dst[3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x0e + x16);
dst[4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x0e - x16);
dst[5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x10 - x14);
dst[6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x10 + x14);
dst[7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.25f * (x09 + x0b) - 0.353553390593274f*x0a;
dst += dst_strideb;
src += src_strideb;
}
}
static void av_always_inline fdct16_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb)
2013-04-24 15:28:53 +02:00
{
int i;
2013-04-24 15:28:53 +02:00
for (i = 0; i < 16; i++) {
const float x00 = src[ 0*src_stridea] + src[15*src_stridea];
const float x01 = src[ 1*src_stridea] + src[14*src_stridea];
const float x02 = src[ 2*src_stridea] + src[13*src_stridea];
const float x03 = src[ 3*src_stridea] + src[12*src_stridea];
const float x04 = src[ 4*src_stridea] + src[11*src_stridea];
const float x05 = src[ 5*src_stridea] + src[10*src_stridea];
const float x06 = src[ 6*src_stridea] + src[ 9*src_stridea];
const float x07 = src[ 7*src_stridea] + src[ 8*src_stridea];
const float x08 = src[ 0*src_stridea] - src[15*src_stridea];
const float x09 = src[ 1*src_stridea] - src[14*src_stridea];
const float x0a = src[ 2*src_stridea] - src[13*src_stridea];
const float x0b = src[ 3*src_stridea] - src[12*src_stridea];
const float x0c = src[ 4*src_stridea] - src[11*src_stridea];
const float x0d = src[ 5*src_stridea] - src[10*src_stridea];
const float x0e = src[ 6*src_stridea] - src[ 9*src_stridea];
const float x0f = src[ 7*src_stridea] - src[ 8*src_stridea];
const float x10 = x00 + x07;
const float x11 = x01 + x06;
const float x12 = x02 + x05;
const float x13 = x03 + x04;
const float x14 = x00 - x07;
const float x15 = x01 - x06;
const float x16 = x02 - x05;
const float x17 = x03 - x04;
const float x18 = x10 + x13;
const float x19 = x11 + x12;
const float x1a = x10 - x13;
const float x1b = x11 - x12;
const float x1c = 1.38703984532215f*x14 + 0.275899379282943f*x17;
const float x1d = 1.17587560241936f*x15 + 0.785694958387102f*x16;
const float x1e = -0.785694958387102f*x15 + 1.17587560241936f *x16;
const float x1f = 0.275899379282943f*x14 - 1.38703984532215f *x17;
const float x20 = 0.25f * (x1c - x1d);
const float x21 = 0.25f * (x1e - x1f);
const float x22 = 1.40740373752638f *x08 + 0.138617169199091f*x0f;
const float x23 = 1.35331800117435f *x09 + 0.410524527522357f*x0e;
const float x24 = 1.24722501298667f *x0a + 0.666655658477747f*x0d;
const float x25 = 1.09320186700176f *x0b + 0.897167586342636f*x0c;
const float x26 = -0.897167586342636f*x0b + 1.09320186700176f *x0c;
const float x27 = 0.666655658477747f*x0a - 1.24722501298667f *x0d;
const float x28 = -0.410524527522357f*x09 + 1.35331800117435f *x0e;
const float x29 = 0.138617169199091f*x08 - 1.40740373752638f *x0f;
const float x2a = x22 + x25;
const float x2b = x23 + x24;
const float x2c = x22 - x25;
const float x2d = x23 - x24;
const float x2e = 0.25f * (x2a - x2b);
const float x2f = 0.326640741219094f*x2c + 0.135299025036549f*x2d;
const float x30 = 0.135299025036549f*x2c - 0.326640741219094f*x2d;
const float x31 = x26 + x29;
const float x32 = x27 + x28;
const float x33 = x26 - x29;
const float x34 = x27 - x28;
const float x35 = 0.25f * (x31 - x32);
const float x36 = 0.326640741219094f*x33 + 0.135299025036549f*x34;
const float x37 = 0.135299025036549f*x33 - 0.326640741219094f*x34;
dst[ 0*dst_stridea] = 0.25f * (x18 + x19);
dst[ 1*dst_stridea] = 0.25f * (x2a + x2b);
dst[ 2*dst_stridea] = 0.25f * (x1c + x1d);
dst[ 3*dst_stridea] = 0.707106781186547f * (x2f - x37);
dst[ 4*dst_stridea] = 0.326640741219094f*x1a + 0.135299025036549f*x1b;
dst[ 5*dst_stridea] = 0.707106781186547f * (x2f + x37);
dst[ 6*dst_stridea] = 0.707106781186547f * (x20 - x21);
dst[ 7*dst_stridea] = 0.707106781186547f * (x2e + x35);
dst[ 8*dst_stridea] = 0.25f * (x18 - x19);
dst[ 9*dst_stridea] = 0.707106781186547f * (x2e - x35);
dst[10*dst_stridea] = 0.707106781186547f * (x20 + x21);
dst[11*dst_stridea] = 0.707106781186547f * (x30 - x36);
dst[12*dst_stridea] = 0.135299025036549f*x1a - 0.326640741219094f*x1b;
dst[13*dst_stridea] = 0.707106781186547f * (x30 + x36);
dst[14*dst_stridea] = 0.25f * (x1e + x1f);
dst[15*dst_stridea] = 0.25f * (x31 + x32);
dst += dst_strideb;
src += src_strideb;
2013-04-24 15:28:53 +02:00
}
}
static void av_always_inline idct16_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb,
int add)
{
int i;
2013-04-24 15:28:53 +02:00
for (i = 0; i < 16; i++) {
const float x00 = 1.4142135623731f *src[ 0*src_stridea];
const float x01 = 1.40740373752638f *src[ 1*src_stridea] + 0.138617169199091f*src[15*src_stridea];
const float x02 = 1.38703984532215f *src[ 2*src_stridea] + 0.275899379282943f*src[14*src_stridea];
const float x03 = 1.35331800117435f *src[ 3*src_stridea] + 0.410524527522357f*src[13*src_stridea];
const float x04 = 1.30656296487638f *src[ 4*src_stridea] + 0.541196100146197f*src[12*src_stridea];
const float x05 = 1.24722501298667f *src[ 5*src_stridea] + 0.666655658477747f*src[11*src_stridea];
const float x06 = 1.17587560241936f *src[ 6*src_stridea] + 0.785694958387102f*src[10*src_stridea];
const float x07 = 1.09320186700176f *src[ 7*src_stridea] + 0.897167586342636f*src[ 9*src_stridea];
const float x08 = 1.4142135623731f *src[ 8*src_stridea];
const float x09 = -0.897167586342636f*src[ 7*src_stridea] + 1.09320186700176f*src[ 9*src_stridea];
const float x0a = 0.785694958387102f*src[ 6*src_stridea] - 1.17587560241936f*src[10*src_stridea];
const float x0b = -0.666655658477747f*src[ 5*src_stridea] + 1.24722501298667f*src[11*src_stridea];
const float x0c = 0.541196100146197f*src[ 4*src_stridea] - 1.30656296487638f*src[12*src_stridea];
const float x0d = -0.410524527522357f*src[ 3*src_stridea] + 1.35331800117435f*src[13*src_stridea];
const float x0e = 0.275899379282943f*src[ 2*src_stridea] - 1.38703984532215f*src[14*src_stridea];
const float x0f = -0.138617169199091f*src[ 1*src_stridea] + 1.40740373752638f*src[15*src_stridea];
const float x12 = x00 + x08;
const float x13 = x01 + x07;
const float x14 = x02 + x06;
const float x15 = x03 + x05;
const float x16 = 1.4142135623731f*x04;
const float x17 = x00 - x08;
const float x18 = x01 - x07;
const float x19 = x02 - x06;
const float x1a = x03 - x05;
const float x1d = x12 + x16;
const float x1e = x13 + x15;
const float x1f = 1.4142135623731f*x14;
const float x20 = x12 - x16;
const float x21 = x13 - x15;
const float x22 = 0.25f * (x1d - x1f);
const float x23 = 0.25f * (x20 + x21);
const float x24 = 0.25f * (x20 - x21);
const float x25 = 1.4142135623731f*x17;
const float x26 = 1.30656296487638f*x18 + 0.541196100146197f*x1a;
const float x27 = 1.4142135623731f*x19;
const float x28 = -0.541196100146197f*x18 + 1.30656296487638f*x1a;
const float x29 = 0.176776695296637f * (x25 + x27) + 0.25f*x26;
const float x2a = 0.25f * (x25 - x27);
const float x2b = 0.176776695296637f * (x25 + x27) - 0.25f*x26;
const float x2c = 0.353553390593274f*x28;
const float x1b = 0.707106781186547f * (x2a - x2c);
const float x1c = 0.707106781186547f * (x2a + x2c);
const float x2d = 1.4142135623731f*x0c;
const float x2e = x0b + x0d;
const float x2f = x0a + x0e;
const float x30 = x09 + x0f;
const float x31 = x09 - x0f;
const float x32 = x0a - x0e;
const float x33 = x0b - x0d;
const float x37 = 1.4142135623731f*x2d;
const float x38 = 1.30656296487638f*x2e + 0.541196100146197f*x30;
const float x39 = 1.4142135623731f*x2f;
const float x3a = -0.541196100146197f*x2e + 1.30656296487638f*x30;
const float x3b = 0.176776695296637f * (x37 + x39) + 0.25f*x38;
const float x3c = 0.25f * (x37 - x39);
const float x3d = 0.176776695296637f * (x37 + x39) - 0.25f*x38;
const float x3e = 0.353553390593274f*x3a;
const float x34 = 0.707106781186547f * (x3c - x3e);
const float x35 = 0.707106781186547f * (x3c + x3e);
const float x3f = 1.4142135623731f*x32;
const float x40 = x31 + x33;
const float x41 = x31 - x33;
const float x42 = 0.25f * (x3f + x40);
const float x43 = 0.25f * (x3f - x40);
const float x44 = 0.353553390593274f*x41;
dst[ 0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) + 0.25f*x1e;
dst[ 1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x29 + x3d);
dst[ 2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x29 - x3d);
dst[ 3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x23 - x43);
dst[ 4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x23 + x43);
dst[ 5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x1b - x35);
dst[ 6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x1b + x35);
dst[ 7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.707106781186547f * (x22 + x44);
dst[ 8*dst_stridea] = (add ? dst[ 8*dst_stridea] : 0) + 0.707106781186547f * (x22 - x44);
dst[ 9*dst_stridea] = (add ? dst[ 9*dst_stridea] : 0) + 0.707106781186547f * (x1c + x34);
dst[10*dst_stridea] = (add ? dst[10*dst_stridea] : 0) + 0.707106781186547f * (x1c - x34);
dst[11*dst_stridea] = (add ? dst[11*dst_stridea] : 0) + 0.707106781186547f * (x24 + x42);
dst[12*dst_stridea] = (add ? dst[12*dst_stridea] : 0) + 0.707106781186547f * (x24 - x42);
dst[13*dst_stridea] = (add ? dst[13*dst_stridea] : 0) + 0.707106781186547f * (x2b - x3b);
dst[14*dst_stridea] = (add ? dst[14*dst_stridea] : 0) + 0.707106781186547f * (x2b + x3b);
dst[15*dst_stridea] = (add ? dst[15*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) - 0.25f*x1e;
dst += dst_strideb;
src += src_strideb;
2013-04-24 15:28:53 +02:00
}
}
2013-04-24 15:28:53 +02:00
#define DEF_FILTER_FREQ_FUNCS(bsize) \
static av_always_inline void filter_freq_##bsize(const float *src, int src_linesize, \
float *dst, int dst_linesize, \
AVExpr *expr, double *var_values, \
int sigma_th) \
{ \
unsigned i; \
DECLARE_ALIGNED(32, float, tmp_block1)[bsize * bsize]; \
DECLARE_ALIGNED(32, float, tmp_block2)[bsize * bsize]; \
\
/* forward DCT */ \
fdct##bsize##_1d(tmp_block1, src, 1, bsize, 1, src_linesize); \
fdct##bsize##_1d(tmp_block2, tmp_block1, bsize, 1, bsize, 1); \
\
for (i = 0; i < bsize*bsize; i++) { \
float *b = &tmp_block2[i]; \
/* frequency filtering */ \
if (expr) { \
var_values[VAR_C] = fabsf(*b); \
*b *= av_expr_eval(expr, var_values, NULL); \
} else { \
if (fabsf(*b) < sigma_th) \
*b = 0; \
} \
} \
\
/* inverse DCT */ \
idct##bsize##_1d(tmp_block1, tmp_block2, 1, bsize, 1, bsize, 0); \
idct##bsize##_1d(dst, tmp_block1, dst_linesize, 1, bsize, 1, 1); \
} \
\
static void filter_freq_sigma_##bsize(DCTdnoizContext *s, \
const float *src, int src_linesize, \
2014-08-10 21:49:55 +02:00
float *dst, int dst_linesize, int thread_id) \
{ \
filter_freq_##bsize(src, src_linesize, dst, dst_linesize, NULL, NULL, s->th); \
} \
\
static void filter_freq_expr_##bsize(DCTdnoizContext *s, \
const float *src, int src_linesize, \
2014-08-10 21:49:55 +02:00
float *dst, int dst_linesize, int thread_id) \
{ \
2014-08-10 21:49:55 +02:00
filter_freq_##bsize(src, src_linesize, dst, dst_linesize, \
s->expr[thread_id], s->var_values[thread_id], 0); \
2013-04-24 15:28:53 +02:00
}
DEF_FILTER_FREQ_FUNCS(8)
DEF_FILTER_FREQ_FUNCS(16)
2013-04-24 15:28:53 +02:00
#define DCT3X3_0_0 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_0_1 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_0_2 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_1_0 0.7071067811865475f /* 1/sqrt(2) */
#define DCT3X3_1_2 -0.7071067811865475f /* -1/sqrt(2) */
#define DCT3X3_2_0 0.4082482904638631f /* 1/sqrt(6) */
#define DCT3X3_2_1 -0.8164965809277261f /* -2/sqrt(6) */
#define DCT3X3_2_2 0.4082482904638631f /* 1/sqrt(6) */
static av_always_inline void color_decorrelation(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h,
int r, int g, int b)
{
int x, y;
float *dstp_r = dst[0];
float *dstp_g = dst[1];
float *dstp_b = dst[2];
const uint8_t *srcp = src[0];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = srcp[r] * DCT3X3_0_0 + srcp[g] * DCT3X3_0_1 + srcp[b] * DCT3X3_0_2;
dstp_g[x] = srcp[r] * DCT3X3_1_0 + srcp[b] * DCT3X3_1_2;
dstp_b[x] = srcp[r] * DCT3X3_2_0 + srcp[g] * DCT3X3_2_1 + srcp[b] * DCT3X3_2_2;
srcp += 3;
}
srcp += src_linesize - w * 3;
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
}
}
static av_always_inline void color_correlation(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h,
int r, int g, int b)
{
int x, y;
const float *src_r = src[0];
const float *src_g = src[1];
const float *src_b = src[2];
uint8_t *dstp = dst[0];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp[r] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
dstp[g] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
dstp[b] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
dstp += 3;
}
dstp += dst_linesize - w * 3;
src_r += src_linesize;
src_g += src_linesize;
src_b += src_linesize;
}
}
#define DECLARE_COLOR_FUNCS(name, r, g, b) \
static void color_decorrelation_##name(float **dst, int dst_linesize, \
const uint8_t **src, int src_linesize, \
int w, int h) \
{ \
color_decorrelation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
} \
\
static void color_correlation_##name(uint8_t **dst, int dst_linesize, \
float **src, int src_linesize, \
int w, int h) \
{ \
color_correlation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
}
DECLARE_COLOR_FUNCS(rgb, 0, 1, 2)
DECLARE_COLOR_FUNCS(bgr, 2, 1, 0)
static av_always_inline void color_decorrelation_gbrp(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h)
{
int x, y;
float *dstp_r = dst[0];
float *dstp_g = dst[1];
float *dstp_b = dst[2];
const uint8_t *srcp_r = src[2];
const uint8_t *srcp_g = src[0];
const uint8_t *srcp_b = src[1];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = srcp_r[x] * DCT3X3_0_0 + srcp_g[x] * DCT3X3_0_1 + srcp_b[x] * DCT3X3_0_2;
dstp_g[x] = srcp_r[x] * DCT3X3_1_0 + srcp_b[x] * DCT3X3_1_2;
dstp_b[x] = srcp_r[x] * DCT3X3_2_0 + srcp_g[x] * DCT3X3_2_1 + srcp_b[x] * DCT3X3_2_2;
}
srcp_r += src_linesize;
srcp_g += src_linesize;
srcp_b += src_linesize;
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
}
}
static av_always_inline void color_correlation_gbrp(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h)
{
int x, y;
const float *src_r = src[0];
const float *src_g = src[1];
const float *src_b = src[2];
uint8_t *dstp_r = dst[2];
uint8_t *dstp_g = dst[0];
uint8_t *dstp_b = dst[1];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
dstp_g[x] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
dstp_b[x] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
}
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
src_r += src_linesize;
src_g += src_linesize;
src_b += src_linesize;
}
}
2013-04-24 15:28:53 +02:00
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
DCTdnoizContext *s = ctx->priv;
2014-08-10 21:49:55 +02:00
int i, x, y, bx, by, linesize, *iweights, max_slice_h, slice_h;
const int bsize = 1 << s->n;
2013-04-24 15:28:53 +02:00
switch (inlink->format) {
case AV_PIX_FMT_BGR24:
s->color_decorrelation = color_decorrelation_bgr;
s->color_correlation = color_correlation_bgr;
break;
case AV_PIX_FMT_RGB24:
s->color_decorrelation = color_decorrelation_rgb;
s->color_correlation = color_correlation_rgb;
break;
case AV_PIX_FMT_GBRP:
s->color_decorrelation = color_decorrelation_gbrp;
s->color_correlation = color_correlation_gbrp;
break;
default:
av_assert0(0);
}
2013-04-24 15:28:53 +02:00
s->pr_width = inlink->w - (inlink->w - bsize) % s->step;
s->pr_height = inlink->h - (inlink->h - bsize) % s->step;
2013-04-24 15:28:53 +02:00
if (s->pr_width != inlink->w)
av_log(ctx, AV_LOG_WARNING, "The last %d horizontal pixels won't be denoised\n",
inlink->w - s->pr_width);
if (s->pr_height != inlink->h)
av_log(ctx, AV_LOG_WARNING, "The last %d vertical pixels won't be denoised\n",
inlink->h - s->pr_height);
2014-08-10 21:49:55 +02:00
max_slice_h = s->pr_height / ((s->bsize - 1) * 2);
if (max_slice_h == 0)
return AVERROR(EINVAL);
s->nb_threads = FFMIN3(MAX_THREADS, ff_filter_get_nb_threads(ctx), max_slice_h);
2014-08-10 21:49:55 +02:00
av_log(ctx, AV_LOG_DEBUG, "threads: [max=%d hmax=%d user=%d] => %d\n",
MAX_THREADS, max_slice_h, ff_filter_get_nb_threads(ctx), s->nb_threads);
2014-08-10 21:49:55 +02:00
2013-04-24 15:28:53 +02:00
s->p_linesize = linesize = FFALIGN(s->pr_width, 32);
for (i = 0; i < 2; i++) {
s->cbuf[i][0] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][0]));
s->cbuf[i][1] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][1]));
s->cbuf[i][2] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][2]));
2013-04-24 15:28:53 +02:00
if (!s->cbuf[i][0] || !s->cbuf[i][1] || !s->cbuf[i][2])
return AVERROR(ENOMEM);
}
2014-08-10 21:49:55 +02:00
/* eval expressions are probably not thread safe when the eval internal
* state can be changed (typically through load & store operations) */
if (s->expr_str) {
for (i = 0; i < s->nb_threads; i++) {
int ret = av_expr_parse(&s->expr[i], s->expr_str, var_names,
NULL, NULL, NULL, NULL, 0, ctx);
if (ret < 0)
return ret;
}
}
/* each slice will need to (pre & re)process the top and bottom block of
* the previous one in in addition to its processing area. This is because
* each pixel is averaged by all the surrounding blocks */
slice_h = (int)ceilf(s->pr_height / (float)s->nb_threads) + (s->bsize - 1) * 2;
2014-08-10 21:49:55 +02:00
for (i = 0; i < s->nb_threads; i++) {
s->slices[i] = av_malloc_array(linesize, slice_h * sizeof(*s->slices[i]));
if (!s->slices[i])
return AVERROR(ENOMEM);
}
2013-04-24 15:28:53 +02:00
s->weights = av_malloc(s->pr_height * linesize * sizeof(*s->weights));
if (!s->weights)
return AVERROR(ENOMEM);
iweights = av_calloc(s->pr_height, linesize * sizeof(*iweights));
if (!iweights)
return AVERROR(ENOMEM);
for (y = 0; y < s->pr_height - bsize + 1; y += s->step)
for (x = 0; x < s->pr_width - bsize + 1; x += s->step)
for (by = 0; by < bsize; by++)
for (bx = 0; bx < bsize; bx++)
2013-04-24 15:28:53 +02:00
iweights[(y + by)*linesize + x + bx]++;
for (y = 0; y < s->pr_height; y++)
for (x = 0; x < s->pr_width; x++)
s->weights[y*linesize + x] = 1. / iweights[y*linesize + x];
av_free(iweights);
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
DCTdnoizContext *s = ctx->priv;
s->bsize = 1 << s->n;
if (s->overlap == -1)
s->overlap = s->bsize - 1;
if (s->overlap > s->bsize - 1) {
av_log(s, AV_LOG_ERROR, "Overlap value can not except %d "
"with a block size of %dx%d\n",
s->bsize - 1, s->bsize, s->bsize);
return AVERROR(EINVAL);
}
2013-04-24 15:28:53 +02:00
if (s->expr_str) {
switch (s->n) {
case 3: s->filter_freq_func = filter_freq_expr_8; break;
case 4: s->filter_freq_func = filter_freq_expr_16; break;
default: av_assert0(0);
}
} else {
switch (s->n) {
case 3: s->filter_freq_func = filter_freq_sigma_8; break;
case 4: s->filter_freq_func = filter_freq_sigma_16; break;
default: av_assert0(0);
}
2013-04-24 15:28:53 +02:00
}
s->th = s->sigma * 3.;
s->step = s->bsize - s->overlap;
2013-04-24 15:28:53 +02:00
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_BGR24, AV_PIX_FMT_RGB24,
AV_PIX_FMT_GBRP,
2013-04-24 15:28:53 +02:00
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
2013-04-24 15:28:53 +02:00
}
2014-08-10 21:49:55 +02:00
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static int filter_slice(AVFilterContext *ctx,
void *arg, int jobnr, int nb_jobs)
2013-04-24 15:28:53 +02:00
{
int x, y;
2013-04-24 15:28:53 +02:00
DCTdnoizContext *s = ctx->priv;
2014-08-10 21:49:55 +02:00
const ThreadData *td = arg;
const int w = s->pr_width;
const int h = s->pr_height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const int slice_start_ctx = FFMAX(slice_start - s->bsize + 1, 0);
const int slice_end_ctx = FFMIN(slice_end, h - s->bsize + 1);
const int slice_h = slice_end_ctx - slice_start_ctx;
const int src_linesize = s->p_linesize;
const int dst_linesize = s->p_linesize;
const int slice_linesize = s->p_linesize;
float *dst;
const float *src = td->src + slice_start_ctx * src_linesize;
const float *weights = s->weights + slice_start * dst_linesize;
float *slice = s->slices[jobnr];
2013-04-24 15:28:53 +02:00
// reset block sums
2014-08-10 21:49:55 +02:00
memset(slice, 0, (slice_h + s->bsize - 1) * dst_linesize * sizeof(*slice));
2013-04-24 15:28:53 +02:00
// block dct sums
2014-08-10 21:49:55 +02:00
for (y = 0; y < slice_h; y += s->step) {
for (x = 0; x < w - s->bsize + 1; x += s->step)
s->filter_freq_func(s, src + x, src_linesize,
2014-08-10 21:49:55 +02:00
slice + x, slice_linesize,
jobnr);
2013-04-24 15:28:53 +02:00
src += s->step * src_linesize;
2014-08-10 21:49:55 +02:00
slice += s->step * slice_linesize;
2013-04-24 15:28:53 +02:00
}
// average blocks
2014-08-10 21:49:55 +02:00
slice = s->slices[jobnr] + (slice_start - slice_start_ctx) * slice_linesize;
dst = td->dst + slice_start * dst_linesize;
for (y = slice_start; y < slice_end; y++) {
2013-04-24 15:28:53 +02:00
for (x = 0; x < w; x++)
2014-08-10 21:49:55 +02:00
dst[x] = slice[x] * weights[x];
slice += slice_linesize;
2013-04-24 15:28:53 +02:00
dst += dst_linesize;
weights += dst_linesize;
}
2014-08-10 21:49:55 +02:00
return 0;
2013-04-24 15:28:53 +02:00
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
DCTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
int direct, plane;
AVFrame *out;
if (av_frame_is_writable(in)) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
s->color_decorrelation(s->cbuf[0], s->p_linesize,
(const uint8_t **)in->data, in->linesize[0],
s->pr_width, s->pr_height);
2014-08-10 21:49:55 +02:00
for (plane = 0; plane < 3; plane++) {
ThreadData td = {
.src = s->cbuf[0][plane],
.dst = s->cbuf[1][plane],
};
ff_filter_execute(ctx, filter_slice, &td, NULL, s->nb_threads);
2014-08-10 21:49:55 +02:00
}
s->color_correlation(out->data, out->linesize[0],
s->cbuf[1], s->p_linesize,
s->pr_width, s->pr_height);
2013-04-24 15:28:53 +02:00
if (!direct) {
int y;
uint8_t *dst = out->data[0];
const uint8_t *src = in->data[0];
const int dst_linesize = out->linesize[0];
const int src_linesize = in->linesize[0];
const int hpad = (inlink->w - s->pr_width) * 3;
const int vpad = (inlink->h - s->pr_height);
if (hpad) {
uint8_t *dstp = dst + s->pr_width * 3;
const uint8_t *srcp = src + s->pr_width * 3;
for (y = 0; y < s->pr_height; y++) {
memcpy(dstp, srcp, hpad);
dstp += dst_linesize;
srcp += src_linesize;
}
}
if (vpad) {
uint8_t *dstp = dst + s->pr_height * dst_linesize;
const uint8_t *srcp = src + s->pr_height * src_linesize;
for (y = 0; y < vpad; y++) {
memcpy(dstp, srcp, inlink->w * 3);
dstp += dst_linesize;
srcp += src_linesize;
}
}
av_frame_free(&in);
}
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
int i;
DCTdnoizContext *s = ctx->priv;
av_freep(&s->weights);
2013-04-24 15:28:53 +02:00
for (i = 0; i < 2; i++) {
av_freep(&s->cbuf[i][0]);
av_freep(&s->cbuf[i][1]);
av_freep(&s->cbuf[i][2]);
2013-04-24 15:28:53 +02:00
}
2014-08-10 21:49:55 +02:00
for (i = 0; i < s->nb_threads; i++) {
av_freep(&s->slices[i]);
2014-08-10 21:49:55 +02:00
av_expr_free(s->expr[i]);
}
2013-04-24 15:28:53 +02:00
}
static const AVFilterPad dctdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad dctdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_dctdnoiz = {
2013-04-24 15:28:53 +02:00
.name = "dctdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 2D DCT."),
.priv_size = sizeof(DCTdnoizContext),
.init = init,
.uninit = uninit,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(dctdnoiz_inputs),
FILTER_OUTPUTS(dctdnoiz_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(query_formats),
2013-04-24 15:28:53 +02:00
.priv_class = &dctdnoiz_class,
2014-08-10 21:49:55 +02:00
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
2013-04-24 15:28:53 +02:00
};