1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/vf_vif.c

648 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 2017 Ronald S. Bultje <rsbultje@gmail.com>
* Copyright (c) 2017 Ashish Pratap Singh <ashk43712@gmail.com>
* Copyright (c) 2021 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Calculate VIF between two input videos.
*/
#include <float.h>
#include "libavutil/avstring.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "framesync.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define NUM_DATA_BUFS 13
typedef struct VIFContext {
const AVClass *class;
FFFrameSync fs;
const AVPixFmtDescriptor *desc;
int width;
int height;
int nb_threads;
float factor;
float *data_buf[NUM_DATA_BUFS];
float **temp;
float *ref_data;
float *main_data;
double vif_sum[4];
double vif_min[4];
double vif_max[4];
uint64_t nb_frames;
} VIFContext;
#define OFFSET(x) offsetof(VIFContext, x)
static const AVOption vif_options[] = {
{ NULL }
};
AVFILTER_DEFINE_CLASS(vif);
static const uint8_t vif_filter1d_width1[4] = { 17, 9, 5, 3 };
static const float vif_filter1d_table[4][17] =
{
{
0.00745626912, 0.0142655009, 0.0250313189, 0.0402820669, 0.0594526194,
0.0804751068, 0.0999041125, 0.113746084, 0.118773937, 0.113746084,
0.0999041125, 0.0804751068, 0.0594526194, 0.0402820669, 0.0250313189,
0.0142655009, 0.00745626912
},
{
0.0189780835, 0.0558981746, 0.120920904, 0.192116052, 0.224173605,
0.192116052, 0.120920904, 0.0558981746, 0.0189780835
},
{
0.054488685, 0.244201347, 0.402619958, 0.244201347, 0.054488685
},
{
0.166378498, 0.667243004, 0.166378498
}
};
typedef struct ThreadData {
const float *filter;
const float *src;
float *dst;
int w, h;
int src_stride;
int dst_stride;
int filter_width;
float **temp;
} ThreadData;
static void vif_dec2(const float *src, float *dst, int w, int h,
int src_stride, int dst_stride)
{
const int dst_px_stride = dst_stride / 2;
for (int i = 0; i < h / 2; i++) {
for (int j = 0; j < w / 2; j++)
dst[i * dst_px_stride + j] = src[(i * 2) * src_stride + (j * 2)];
}
}
static void vif_statistic(const float *mu1_sq, const float *mu2_sq,
const float *mu1_mu2, const float *xx_filt,
const float *yy_filt, const float *xy_filt,
float *num, float *den, int w, int h)
{
static const float sigma_nsq = 2;
float mu1_sq_val, mu2_sq_val, mu1_mu2_val, xx_filt_val, yy_filt_val, xy_filt_val;
float sigma1_sq, sigma2_sq, sigma12, g, sv_sq, eps = 1.0e-10f;
float gain_limit = 100.f;
float num_val, den_val;
float accum_num = 0.0f;
float accum_den = 0.0f;
for (int i = 0; i < h; i++) {
float accum_inner_num = 0.f;
float accum_inner_den = 0.f;
for (int j = 0; j < w; j++) {
mu1_sq_val = mu1_sq[i * w + j];
mu2_sq_val = mu2_sq[i * w + j];
mu1_mu2_val = mu1_mu2[i * w + j];
xx_filt_val = xx_filt[i * w + j];
yy_filt_val = yy_filt[i * w + j];
xy_filt_val = xy_filt[i * w + j];
sigma1_sq = xx_filt_val - mu1_sq_val;
sigma2_sq = yy_filt_val - mu2_sq_val;
sigma12 = xy_filt_val - mu1_mu2_val;
sigma1_sq = FFMAX(sigma1_sq, 0.0f);
sigma2_sq = FFMAX(sigma2_sq, 0.0f);
sigma12 = FFMAX(sigma12, 0.0f);
g = sigma12 / (sigma1_sq + eps);
sv_sq = sigma2_sq - g * sigma12;
if (sigma1_sq < eps) {
g = 0.0f;
sv_sq = sigma2_sq;
sigma1_sq = 0.0f;
}
if (sigma2_sq < eps) {
g = 0.0f;
sv_sq = 0.0f;
}
if (g < 0.0f) {
sv_sq = sigma2_sq;
g = 0.0f;
}
sv_sq = FFMAX(sv_sq, eps);
g = FFMIN(g, gain_limit);
num_val = log2f(1.0f + g * g * sigma1_sq / (sv_sq + sigma_nsq));
den_val = log2f(1.0f + sigma1_sq / sigma_nsq);
if (isnan(den_val))
num_val = den_val = 1.f;
accum_inner_num += num_val;
accum_inner_den += den_val;
}
accum_num += accum_inner_num;
accum_den += accum_inner_den;
}
num[0] = accum_num;
den[0] = accum_den;
}
static void vif_xx_yy_xy(const float *x, const float *y, float *xx, float *yy,
float *xy, int w, int h)
{
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
float xval = x[j];
float yval = y[j];
float xxval = xval * xval;
float yyval = yval * yval;
float xyval = xval * yval;
xx[j] = xxval;
yy[j] = yyval;
xy[j] = xyval;
}
xx += w;
yy += w;
xy += w;
x += w;
y += w;
}
}
static int vif_filter1d(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const float *filter = td->filter;
const float *src = td->src;
float *dst = td->dst;
int w = td->w;
int h = td->h;
int src_stride = td->src_stride;
int dst_stride = td->dst_stride;
int filt_w = td->filter_width;
float *temp = td->temp[jobnr];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++) {
/** Vertical pass. */
for (int j = 0; j < w; j++) {
float sum = 0.f;
if (i >= filt_w / 2 && i < h - filt_w / 2 - 1) {
for (int filt_i = 0; filt_i < filt_w; filt_i++) {
const float filt_coeff = filter[filt_i];
float img_coeff;
int ii = i - filt_w / 2 + filt_i;
img_coeff = src[ii * src_stride + j];
sum += filt_coeff * img_coeff;
}
} else {
for (int filt_i = 0; filt_i < filt_w; filt_i++) {
const float filt_coeff = filter[filt_i];
int ii = i - filt_w / 2 + filt_i;
float img_coeff;
ii = ii < 0 ? -ii : (ii >= h ? 2 * h - ii - 1 : ii);
img_coeff = src[ii * src_stride + j];
sum += filt_coeff * img_coeff;
}
}
temp[j] = sum;
}
/** Horizontal pass. */
for (int j = 0; j < w; j++) {
float sum = 0.f;
if (j >= filt_w / 2 && j < w - filt_w / 2 - 1) {
for (int filt_j = 0; filt_j < filt_w; filt_j++) {
const float filt_coeff = filter[filt_j];
int jj = j - filt_w / 2 + filt_j;
float img_coeff;
img_coeff = temp[jj];
sum += filt_coeff * img_coeff;
}
} else {
for (int filt_j = 0; filt_j < filt_w; filt_j++) {
const float filt_coeff = filter[filt_j];
int jj = j - filt_w / 2 + filt_j;
float img_coeff;
jj = jj < 0 ? -jj : (jj >= w ? 2 * w - jj - 1 : jj);
img_coeff = temp[jj];
sum += filt_coeff * img_coeff;
}
}
dst[i * dst_stride + j] = sum;
}
}
return 0;
}
static int compute_vif2(AVFilterContext *ctx,
const float *ref, const float *main, int w, int h,
int ref_stride, int main_stride, float *score,
float *const data_buf[NUM_DATA_BUFS], float **temp,
int gnb_threads)
{
ThreadData td;
float *ref_scale = data_buf[0];
float *main_scale = data_buf[1];
float *ref_sq = data_buf[2];
float *main_sq = data_buf[3];
float *ref_main = data_buf[4];
float *mu1 = data_buf[5];
float *mu2 = data_buf[6];
float *mu1_sq = data_buf[7];
float *mu2_sq = data_buf[8];
float *mu1_mu2 = data_buf[9];
float *ref_sq_filt = data_buf[10];
float *main_sq_filt = data_buf[11];
float *ref_main_filt = data_buf[12];
float *curr_ref_scale = (float *)ref;
float *curr_main_scale = (float *)main;
int curr_ref_stride = ref_stride;
int curr_main_stride = main_stride;
float num = 0.f;
float den = 0.f;
for (int scale = 0; scale < 4; scale++) {
const float *filter = vif_filter1d_table[scale];
int filter_width = vif_filter1d_width1[scale];
const int nb_threads = FFMIN(h, gnb_threads);
int buf_valid_w = w;
int buf_valid_h = h;
td.filter = filter;
td.filter_width = filter_width;
if (scale > 0) {
td.src = curr_ref_scale;
td.dst = mu1;
td.w = w;
td.h = h;
td.src_stride = curr_ref_stride;
td.dst_stride = w;
td.temp = temp;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
td.src = curr_main_scale;
td.dst = mu2;
td.src_stride = curr_main_stride;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
vif_dec2(mu1, ref_scale, buf_valid_w, buf_valid_h, w, w);
vif_dec2(mu2, main_scale, buf_valid_w, buf_valid_h, w, w);
w = buf_valid_w / 2;
h = buf_valid_h / 2;
buf_valid_w = w;
buf_valid_h = h;
curr_ref_scale = ref_scale;
curr_main_scale = main_scale;
curr_ref_stride = w;
curr_main_stride = w;
}
td.src = curr_ref_scale;
td.dst = mu1;
td.w = w;
td.h = h;
td.src_stride = curr_ref_stride;
td.dst_stride = w;
td.temp = temp;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
td.src = curr_main_scale;
td.dst = mu2;
td.src_stride = curr_main_stride;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
vif_xx_yy_xy(mu1, mu2, mu1_sq, mu2_sq, mu1_mu2, w, h);
vif_xx_yy_xy(curr_ref_scale, curr_main_scale, ref_sq, main_sq, ref_main, w, h);
td.src = ref_sq;
td.dst = ref_sq_filt;
td.src_stride = w;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
td.src = main_sq;
td.dst = main_sq_filt;
td.src_stride = w;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
td.src = ref_main;
td.dst = ref_main_filt;
ff_filter_execute(ctx, vif_filter1d, &td, NULL, nb_threads);
vif_statistic(mu1_sq, mu2_sq, mu1_mu2, ref_sq_filt, main_sq_filt,
ref_main_filt, &num, &den, w, h);
score[scale] = den <= FLT_EPSILON ? 1.f : num / den;
}
return 0;
}
#define offset_fn(type, bits) \
static void offset_##bits##bit(VIFContext *s, \
const AVFrame *ref, \
AVFrame *main, int stride)\
{ \
int w = s->width; \
int h = s->height; \
\
int ref_stride = ref->linesize[0]; \
int main_stride = main->linesize[0]; \
\
const type *ref_ptr = (const type *) ref->data[0]; \
const type *main_ptr = (const type *) main->data[0]; \
\
const float factor = s->factor; \
\
float *ref_ptr_data = s->ref_data; \
float *main_ptr_data = s->main_data; \
\
for (int i = 0; i < h; i++) { \
for (int j = 0; j < w; j++) { \
ref_ptr_data[j] = ref_ptr[j] * factor - 128.f; \
main_ptr_data[j] = main_ptr[j] * factor - 128.f; \
} \
ref_ptr += ref_stride / sizeof(type); \
ref_ptr_data += w; \
main_ptr += main_stride / sizeof(type); \
main_ptr_data += w; \
} \
}
offset_fn(uint8_t, 8)
offset_fn(uint16_t, 16)
static void set_meta(AVDictionary **metadata, const char *key, float d)
{
char value[257];
snprintf(value, sizeof(value), "%f", d);
av_dict_set(metadata, key, value, 0);
}
static AVFrame *do_vif(AVFilterContext *ctx, AVFrame *main, const AVFrame *ref)
{
VIFContext *s = ctx->priv;
AVDictionary **metadata = &main->metadata;
float score[4];
s->factor = 1.f / (1 << (s->desc->comp[0].depth - 8));
if (s->desc->comp[0].depth <= 8) {
offset_8bit(s, ref, main, s->width);
} else {
offset_16bit(s, ref, main, s->width);
}
compute_vif2(ctx, s->ref_data, s->main_data,
s->width, s->height, s->width, s->width,
score, s->data_buf, s->temp, s->nb_threads);
set_meta(metadata, "lavfi.vif.scale.0", score[0]);
set_meta(metadata, "lavfi.vif.scale.1", score[1]);
set_meta(metadata, "lavfi.vif.scale.2", score[2]);
set_meta(metadata, "lavfi.vif.scale.3", score[3]);
for (int i = 0; i < 4; i++) {
s->vif_min[i] = FFMIN(s->vif_min[i], score[i]);
s->vif_max[i] = FFMAX(s->vif_max[i], score[i]);
s->vif_sum[i] += score[i];
}
s->nb_frames++;
return main;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
#define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf
PF(P9), PF(P10), PF(P12), PF(P14), PF(P16),
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int config_input_ref(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
VIFContext *s = ctx->priv;
if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
ctx->inputs[0]->h != ctx->inputs[1]->h) {
av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
return AVERROR(EINVAL);
}
s->desc = av_pix_fmt_desc_get(inlink->format);
s->width = ctx->inputs[0]->w;
s->height = ctx->inputs[0]->h;
s->nb_threads = ff_filter_get_nb_threads(ctx);
for (int i = 0; i < 4; i++) {
s->vif_min[i] = DBL_MAX;
s->vif_max[i] = -DBL_MAX;
}
for (int i = 0; i < NUM_DATA_BUFS; i++) {
if (!(s->data_buf[i] = av_calloc(s->width, s->height * sizeof(float))))
return AVERROR(ENOMEM);
}
if (!(s->ref_data = av_calloc(s->width, s->height * sizeof(float))))
return AVERROR(ENOMEM);
if (!(s->main_data = av_calloc(s->width, s->height * sizeof(float))))
return AVERROR(ENOMEM);
if (!(s->temp = av_calloc(s->nb_threads, sizeof(s->temp[0]))))
return AVERROR(ENOMEM);
for (int i = 0; i < s->nb_threads; i++) {
if (!(s->temp[i] = av_calloc(s->width, sizeof(float))))
return AVERROR(ENOMEM);
}
return 0;
}
static int process_frame(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
VIFContext *s = fs->opaque;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out_frame, *main_frame = NULL, *ref_frame = NULL;
int ret;
ret = ff_framesync_dualinput_get(fs, &main_frame, &ref_frame);
if (ret < 0)
return ret;
if (ctx->is_disabled || !ref_frame) {
out_frame = main_frame;
} else {
out_frame = do_vif(ctx, main_frame, ref_frame);
}
out_frame->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base);
return ff_filter_frame(outlink, out_frame);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
VIFContext *s = ctx->priv;
AVFilterLink *mainlink = ctx->inputs[0];
FFFrameSyncIn *in;
int ret;
outlink->w = mainlink->w;
outlink->h = mainlink->h;
outlink->time_base = mainlink->time_base;
outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
outlink->frame_rate = mainlink->frame_rate;
if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
return ret;
in = s->fs.in;
in[0].time_base = mainlink->time_base;
in[1].time_base = ctx->inputs[1]->time_base;
in[0].sync = 2;
in[0].before = EXT_STOP;
in[0].after = EXT_STOP;
in[1].sync = 1;
in[1].before = EXT_STOP;
in[1].after = EXT_STOP;
s->fs.opaque = s;
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs);
}
static int activate(AVFilterContext *ctx)
{
VIFContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
VIFContext *s = ctx->priv;
if (s->nb_frames > 0) {
for (int i = 0; i < 4; i++)
av_log(ctx, AV_LOG_INFO, "VIF scale=%d average:%f min:%f: max:%f\n",
i, s->vif_sum[i] / s->nb_frames, s->vif_min[i], s->vif_max[i]);
}
for (int i = 0; i < NUM_DATA_BUFS; i++)
av_freep(&s->data_buf[i]);
av_freep(&s->ref_data);
av_freep(&s->main_data);
for (int i = 0; i < s->nb_threads && s->temp; i++)
av_freep(&s->temp[i]);
av_freep(&s->temp);
ff_framesync_uninit(&s->fs);
}
static const AVFilterPad vif_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
},{
.name = "reference",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_ref,
},
};
static const AVFilterPad vif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_vif = {
.name = "vif",
.description = NULL_IF_CONFIG_SMALL("Calculate the VIF between two video streams."),
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(VIFContext),
.priv_class = &vif_class,
.activate = activate,
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(vif_inputs),
FILTER_OUTPUTS(vif_outputs),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
};