1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_signalstats.c

1025 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 Mark Heath mjpeg0 @ silicontrip dot org
* Copyright (c) 2014 Clément Bœsch
* Copyright (c) 2014 Dave Rice @dericed
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "internal.h"
enum FilterMode {
FILTER_NONE = -1,
FILTER_TOUT,
FILTER_VREP,
FILTER_BRNG,
FILT_NUMB
};
typedef struct SignalstatsContext {
const AVClass *class;
int chromah; // height of chroma plane
int chromaw; // width of chroma plane
int hsub; // horizontal subsampling
int vsub; // vertical subsampling
int depth; // pixel depth
int fs; // pixel count per frame
int cfs; // pixel count per frame of chroma planes
int outfilter; // FilterMode
int filters;
AVFrame *frame_prev;
uint8_t rgba_color[4];
int yuv_color[3];
int nb_jobs;
int *jobs_rets;
int *histy, *histu, *histv, *histsat;
AVFrame *frame_sat;
AVFrame *frame_hue;
} SignalstatsContext;
typedef struct ThreadData {
const AVFrame *in;
AVFrame *out;
} ThreadData;
typedef struct ThreadDataHueSatMetrics {
const AVFrame *src;
AVFrame *dst_sat, *dst_hue;
} ThreadDataHueSatMetrics;
#define OFFSET(x) offsetof(SignalstatsContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption signalstats_options[] = {
{"stat", "set statistics filters", OFFSET(filters), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, "filters"},
{"tout", "analyze pixels for temporal outliers", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_TOUT}, 0, 0, FLAGS, "filters"},
{"vrep", "analyze video lines for vertical line repetition", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_VREP}, 0, 0, FLAGS, "filters"},
{"brng", "analyze for pixels outside of broadcast range", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_BRNG}, 0, 0, FLAGS, "filters"},
{"out", "set video filter", OFFSET(outfilter), AV_OPT_TYPE_INT, {.i64=FILTER_NONE}, -1, FILT_NUMB-1, FLAGS, "out"},
{"tout", "highlight pixels that depict temporal outliers", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_TOUT}, 0, 0, FLAGS, "out"},
{"vrep", "highlight video lines that depict vertical line repetition", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_VREP}, 0, 0, FLAGS, "out"},
{"brng", "highlight pixels that are outside of broadcast range", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_BRNG}, 0, 0, FLAGS, "out"},
{"c", "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
{"color", "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
{NULL}
};
AVFILTER_DEFINE_CLASS(signalstats);
static av_cold int init(AVFilterContext *ctx)
{
uint8_t r, g, b;
SignalstatsContext *s = ctx->priv;
if (s->outfilter != FILTER_NONE)
s->filters |= 1 << s->outfilter;
r = s->rgba_color[0];
g = s->rgba_color[1];
b = s->rgba_color[2];
s->yuv_color[0] = (( 66*r + 129*g + 25*b + (1<<7)) >> 8) + 16;
s->yuv_color[1] = ((-38*r + -74*g + 112*b + (1<<7)) >> 8) + 128;
s->yuv_color[2] = ((112*r + -94*g + -18*b + (1<<7)) >> 8) + 128;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SignalstatsContext *s = ctx->priv;
av_frame_free(&s->frame_prev);
av_frame_free(&s->frame_sat);
av_frame_free(&s->frame_hue);
av_freep(&s->jobs_rets);
av_freep(&s->histy);
av_freep(&s->histu);
av_freep(&s->histv);
av_freep(&s->histsat);
}
static int query_formats(AVFilterContext *ctx)
{
// TODO: add more
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static AVFrame *alloc_frame(enum AVPixelFormat pixfmt, int w, int h)
{
AVFrame *frame = av_frame_alloc();
if (!frame)
return NULL;
frame->format = pixfmt;
frame->width = w;
frame->height = h;
if (av_frame_get_buffer(frame, 32) < 0) {
av_frame_free(&frame);
return NULL;
}
return frame;
}
static int config_props(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SignalstatsContext *s = ctx->priv;
AVFilterLink *inlink = outlink->src->inputs[0];
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
s->hsub = desc->log2_chroma_w;
s->vsub = desc->log2_chroma_h;
s->depth = desc->comp[0].depth;
if (s->depth > 8) {
s->histy = av_malloc_array(1 << s->depth, sizeof(*s->histy));
s->histu = av_malloc_array(1 << s->depth, sizeof(*s->histu));
s->histv = av_malloc_array(1 << s->depth, sizeof(*s->histv));
s->histsat = av_malloc_array(1 << s->depth, sizeof(*s->histsat));
if (!s->histy || !s->histu || !s->histv || !s->histsat)
return AVERROR(ENOMEM);
}
outlink->w = inlink->w;
outlink->h = inlink->h;
s->chromaw = AV_CEIL_RSHIFT(inlink->w, s->hsub);
s->chromah = AV_CEIL_RSHIFT(inlink->h, s->vsub);
s->fs = inlink->w * inlink->h;
s->cfs = s->chromaw * s->chromah;
s->nb_jobs = FFMAX(1, FFMIN(inlink->h, ff_filter_get_nb_threads(ctx)));
s->jobs_rets = av_malloc_array(s->nb_jobs, sizeof(*s->jobs_rets));
if (!s->jobs_rets)
return AVERROR(ENOMEM);
s->frame_sat = alloc_frame(s->depth > 8 ? AV_PIX_FMT_GRAY16 : AV_PIX_FMT_GRAY8, inlink->w, inlink->h);
s->frame_hue = alloc_frame(AV_PIX_FMT_GRAY16, inlink->w, inlink->h);
if (!s->frame_sat || !s->frame_hue)
return AVERROR(ENOMEM);
return 0;
}
static void burn_frame8(const SignalstatsContext *s, AVFrame *f, int x, int y)
{
const int chromax = x >> s->hsub;
const int chromay = y >> s->vsub;
f->data[0][y * f->linesize[0] + x] = s->yuv_color[0];
f->data[1][chromay * f->linesize[1] + chromax] = s->yuv_color[1];
f->data[2][chromay * f->linesize[2] + chromax] = s->yuv_color[2];
}
static void burn_frame16(const SignalstatsContext *s, AVFrame *f, int x, int y)
{
const int chromax = x >> s->hsub;
const int chromay = y >> s->vsub;
const int mult = 1 << (s->depth - 8);
AV_WN16(f->data[0] + y * f->linesize[0] + x * 2, s->yuv_color[0] * mult);
AV_WN16(f->data[1] + chromay * f->linesize[1] + chromax * 2, s->yuv_color[1] * mult);
AV_WN16(f->data[2] + chromay * f->linesize[2] + chromax * 2, s->yuv_color[2] * mult);
}
static int filter8_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int yc = y >> s->vsub;
const uint8_t *pluma = &in->data[0][y * in->linesize[0]];
const uint8_t *pchromau = &in->data[1][yc * in->linesize[1]];
const uint8_t *pchromav = &in->data[2][yc * in->linesize[2]];
for (x = 0; x < w; x++) {
const int xc = x >> s->hsub;
const int luma = pluma[x];
const int chromau = pchromau[xc];
const int chromav = pchromav[xc];
const int filt = luma < 16 || luma > 235 ||
chromau < 16 || chromau > 240 ||
chromav < 16 || chromav > 240;
score += filt;
if (out && filt)
burn_frame8(s, out, x, y);
}
}
return score;
}
static int filter16_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int mult = 1 << (s->depth - 8);
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int yc = y >> s->vsub;
const uint16_t *pluma = (uint16_t *)&in->data[0][y * in->linesize[0]];
const uint16_t *pchromau = (uint16_t *)&in->data[1][yc * in->linesize[1]];
const uint16_t *pchromav = (uint16_t *)&in->data[2][yc * in->linesize[2]];
for (x = 0; x < w; x++) {
const int xc = x >> s->hsub;
const int luma = pluma[x];
const int chromau = pchromau[xc];
const int chromav = pchromav[xc];
const int filt = luma < 16 * mult || luma > 235 * mult ||
chromau < 16 * mult || chromau > 240 * mult ||
chromav < 16 * mult || chromav > 240 * mult;
score += filt;
if (out && filt)
burn_frame16(s, out, x, y);
}
}
return score;
}
static int filter_tout_outlier(uint8_t x, uint8_t y, uint8_t z)
{
return ((abs(x - y) + abs (z - y)) / 2) - abs(z - x) > 4; // make 4 configurable?
}
static int filter8_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint8_t *p = in->data[0];
int lw = in->linesize[0];
int x, y, score = 0, filt;
for (y = slice_start; y < slice_end; y++) {
if (y - 1 < 0 || y + 1 >= h)
continue;
// detect two pixels above and below (to eliminate interlace artefacts)
// should check that video format is infact interlaced.
#define FILTER(i, j) \
filter_tout_outlier(p[(y-j) * lw + x + i], \
p[ y * lw + x + i], \
p[(y+j) * lw + x + i])
#define FILTER3(j) (FILTER(-1, j) && FILTER(0, j) && FILTER(1, j))
if (y - 2 >= 0 && y + 2 < h) {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(2) && FILTER3(1);
score += filt;
if (filt && out)
burn_frame8(s, out, x, y);
}
} else {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(1);
score += filt;
if (filt && out)
burn_frame8(s, out, x, y);
}
}
}
return score;
}
static int filter16_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint16_t *p = (uint16_t *)in->data[0];
int lw = in->linesize[0] / 2;
int x, y, score = 0, filt;
for (y = slice_start; y < slice_end; y++) {
if (y - 1 < 0 || y + 1 >= h)
continue;
// detect two pixels above and below (to eliminate interlace artefacts)
// should check that video format is infact interlaced.
if (y - 2 >= 0 && y + 2 < h) {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(2) && FILTER3(1);
score += filt;
if (filt && out)
burn_frame16(s, out, x, y);
}
} else {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(1);
score += filt;
if (filt && out)
burn_frame16(s, out, x, y);
}
}
}
return score;
}
#define VREP_START 4
static int filter8_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint8_t *p = in->data[0];
const int lw = in->linesize[0];
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int y2lw = (y - VREP_START) * lw;
const int ylw = y * lw;
int filt, totdiff = 0;
if (y < VREP_START)
continue;
for (x = 0; x < w; x++)
totdiff += abs(p[y2lw + x] - p[ylw + x]);
filt = totdiff < w;
score += filt;
if (filt && out)
for (x = 0; x < w; x++)
burn_frame8(s, out, x, y);
}
return score * w;
}
static int filter16_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint16_t *p = (uint16_t *)in->data[0];
const int lw = in->linesize[0] / 2;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int y2lw = (y - VREP_START) * lw;
const int ylw = y * lw;
int64_t totdiff = 0;
int filt;
if (y < VREP_START)
continue;
for (x = 0; x < w; x++)
totdiff += abs(p[y2lw + x] - p[ylw + x]);
filt = totdiff < w;
score += filt;
if (filt && out)
for (x = 0; x < w; x++)
burn_frame16(s, out, x, y);
}
return score * w;
}
static const struct {
const char *name;
int (*process8)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
int (*process16)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} filters_def[] = {
{"TOUT", filter8_tout, filter16_tout},
{"VREP", filter8_vrep, filter16_vrep},
{"BRNG", filter8_brng, filter16_brng},
{NULL}
};
#define DEPTH 256
static int compute_sat_hue_metrics8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int i, j;
ThreadDataHueSatMetrics *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *src = td->src;
AVFrame *dst_sat = td->dst_sat;
AVFrame *dst_hue = td->dst_hue;
const int slice_start = (s->chromah * jobnr ) / nb_jobs;
const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs;
const int lsz_u = src->linesize[1];
const int lsz_v = src->linesize[2];
const uint8_t *p_u = src->data[1] + slice_start * lsz_u;
const uint8_t *p_v = src->data[2] + slice_start * lsz_v;
const int lsz_sat = dst_sat->linesize[0];
const int lsz_hue = dst_hue->linesize[0];
uint8_t *p_sat = dst_sat->data[0] + slice_start * lsz_sat;
uint8_t *p_hue = dst_hue->data[0] + slice_start * lsz_hue;
for (j = slice_start; j < slice_end; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = p_u[i];
const int yuvv = p_v[i];
p_sat[i] = hypot(yuvu - 128, yuvv - 128); // int or round?
((int16_t*)p_hue)[i] = fmod(floor((180 / M_PI) * atan2f(yuvu-128, yuvv-128) + 180), 360.);
}
p_u += lsz_u;
p_v += lsz_v;
p_sat += lsz_sat;
p_hue += lsz_hue;
}
return 0;
}
static int compute_sat_hue_metrics16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int i, j;
ThreadDataHueSatMetrics *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *src = td->src;
AVFrame *dst_sat = td->dst_sat;
AVFrame *dst_hue = td->dst_hue;
const int mid = 1 << (s->depth - 1);
const int slice_start = (s->chromah * jobnr ) / nb_jobs;
const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs;
const int lsz_u = src->linesize[1] / 2;
const int lsz_v = src->linesize[2] / 2;
const uint16_t *p_u = (uint16_t*)src->data[1] + slice_start * lsz_u;
const uint16_t *p_v = (uint16_t*)src->data[2] + slice_start * lsz_v;
const int lsz_sat = dst_sat->linesize[0] / 2;
const int lsz_hue = dst_hue->linesize[0] / 2;
uint16_t *p_sat = (uint16_t*)dst_sat->data[0] + slice_start * lsz_sat;
uint16_t *p_hue = (uint16_t*)dst_hue->data[0] + slice_start * lsz_hue;
for (j = slice_start; j < slice_end; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = p_u[i];
const int yuvv = p_v[i];
p_sat[i] = hypot(yuvu - mid, yuvv - mid); // int or round?
((int16_t*)p_hue)[i] = fmod(floor((180 / M_PI) * atan2f(yuvu-mid, yuvv-mid) + 180), 360.);
}
p_u += lsz_u;
p_v += lsz_v;
p_sat += lsz_sat;
p_hue += lsz_hue;
}
return 0;
}
static unsigned compute_bit_depth(uint16_t mask)
{
return av_popcount(mask);
}
static int filter_frame8(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = in;
int i, j;
int w = 0, cw = 0, // in
pw = 0, cpw = 0; // prev
int fil;
char metabuf[128];
unsigned int histy[DEPTH] = {0},
histu[DEPTH] = {0},
histv[DEPTH] = {0},
histhue[360] = {0},
histsat[DEPTH] = {0}; // limited to 8 bit data.
int miny = -1, minu = -1, minv = -1;
int maxy = -1, maxu = -1, maxv = -1;
int lowy = -1, lowu = -1, lowv = -1;
int highy = -1, highu = -1, highv = -1;
int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1;
int lowp, highp, clowp, chighp;
int accy, accu, accv;
int accsat, acchue = 0;
int medhue, maxhue;
int toty = 0, totu = 0, totv = 0, totsat=0;
int tothue = 0;
int dify = 0, difu = 0, difv = 0;
uint16_t masky = 0, masku = 0, maskv = 0;
int filtot[FILT_NUMB] = {0};
AVFrame *prev;
AVFrame *sat = s->frame_sat;
AVFrame *hue = s->frame_hue;
const uint8_t *p_sat = sat->data[0];
const uint8_t *p_hue = hue->data[0];
const int lsz_sat = sat->linesize[0];
const int lsz_hue = hue->linesize[0];
ThreadDataHueSatMetrics td_huesat = {
.src = in,
.dst_sat = sat,
.dst_hue = hue,
};
if (!s->frame_prev)
s->frame_prev = av_frame_clone(in);
prev = s->frame_prev;
if (s->outfilter != FILTER_NONE) {
out = av_frame_clone(in);
av_frame_make_writable(out);
}
ctx->internal->execute(ctx, compute_sat_hue_metrics8, &td_huesat,
NULL, FFMIN(s->chromah, ff_filter_get_nb_threads(ctx)));
// Calculate luma histogram and difference with previous frame or field.
for (j = 0; j < link->h; j++) {
for (i = 0; i < link->w; i++) {
const int yuv = in->data[0][w + i];
masky |= yuv;
histy[yuv]++;
dify += abs(yuv - prev->data[0][pw + i]);
}
w += in->linesize[0];
pw += prev->linesize[0];
}
// Calculate chroma histogram and difference with previous frame or field.
for (j = 0; j < s->chromah; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = in->data[1][cw+i];
const int yuvv = in->data[2][cw+i];
masku |= yuvu;
maskv |= yuvv;
histu[yuvu]++;
difu += abs(yuvu - prev->data[1][cpw+i]);
histv[yuvv]++;
difv += abs(yuvv - prev->data[2][cpw+i]);
histsat[p_sat[i]]++;
histhue[((int16_t*)p_hue)[i]]++;
}
cw += in->linesize[1];
cpw += prev->linesize[1];
p_sat += lsz_sat;
p_hue += lsz_hue;
}
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
ThreadData td = {
.in = in,
.out = out != in && s->outfilter == fil ? out : NULL,
};
memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets));
ctx->internal->execute(ctx, filters_def[fil].process8,
&td, s->jobs_rets, s->nb_jobs);
for (i = 0; i < s->nb_jobs; i++)
filtot[fil] += s->jobs_rets[i];
}
}
// find low / high based on histogram percentile
// these only need to be calculated once.
lowp = lrint(s->fs * 10 / 100.);
highp = lrint(s->fs * 90 / 100.);
clowp = lrint(s->cfs * 10 / 100.);
chighp = lrint(s->cfs * 90 / 100.);
accy = accu = accv = accsat = 0;
for (fil = 0; fil < DEPTH; fil++) {
if (miny < 0 && histy[fil]) miny = fil;
if (minu < 0 && histu[fil]) minu = fil;
if (minv < 0 && histv[fil]) minv = fil;
if (minsat < 0 && histsat[fil]) minsat = fil;
if (histy[fil]) maxy = fil;
if (histu[fil]) maxu = fil;
if (histv[fil]) maxv = fil;
if (histsat[fil]) maxsat = fil;
toty += histy[fil] * fil;
totu += histu[fil] * fil;
totv += histv[fil] * fil;
totsat += histsat[fil] * fil;
accy += histy[fil];
accu += histu[fil];
accv += histv[fil];
accsat += histsat[fil];
if (lowy == -1 && accy >= lowp) lowy = fil;
if (lowu == -1 && accu >= clowp) lowu = fil;
if (lowv == -1 && accv >= clowp) lowv = fil;
if (lowsat == -1 && accsat >= clowp) lowsat = fil;
if (highy == -1 && accy >= highp) highy = fil;
if (highu == -1 && accu >= chighp) highu = fil;
if (highv == -1 && accv >= chighp) highv = fil;
if (highsat == -1 && accsat >= chighp) highsat = fil;
}
maxhue = histhue[0];
medhue = -1;
for (fil = 0; fil < 360; fil++) {
tothue += histhue[fil] * fil;
acchue += histhue[fil];
if (medhue == -1 && acchue > s->cfs / 2)
medhue = fil;
if (histhue[fil] > maxhue) {
maxhue = histhue[fil];
}
}
av_frame_free(&s->frame_prev);
s->frame_prev = av_frame_clone(in);
#define SET_META(key, fmt, val) do { \
snprintf(metabuf, sizeof(metabuf), fmt, val); \
av_dict_set(&out->metadata, "lavfi.signalstats." key, metabuf, 0); \
} while (0)
SET_META("YMIN", "%d", miny);
SET_META("YLOW", "%d", lowy);
SET_META("YAVG", "%g", 1.0 * toty / s->fs);
SET_META("YHIGH", "%d", highy);
SET_META("YMAX", "%d", maxy);
SET_META("UMIN", "%d", minu);
SET_META("ULOW", "%d", lowu);
SET_META("UAVG", "%g", 1.0 * totu / s->cfs);
SET_META("UHIGH", "%d", highu);
SET_META("UMAX", "%d", maxu);
SET_META("VMIN", "%d", minv);
SET_META("VLOW", "%d", lowv);
SET_META("VAVG", "%g", 1.0 * totv / s->cfs);
SET_META("VHIGH", "%d", highv);
SET_META("VMAX", "%d", maxv);
SET_META("SATMIN", "%d", minsat);
SET_META("SATLOW", "%d", lowsat);
SET_META("SATAVG", "%g", 1.0 * totsat / s->cfs);
SET_META("SATHIGH", "%d", highsat);
SET_META("SATMAX", "%d", maxsat);
SET_META("HUEMED", "%d", medhue);
SET_META("HUEAVG", "%g", 1.0 * tothue / s->cfs);
SET_META("YDIF", "%g", 1.0 * dify / s->fs);
SET_META("UDIF", "%g", 1.0 * difu / s->cfs);
SET_META("VDIF", "%g", 1.0 * difv / s->cfs);
SET_META("YBITDEPTH", "%d", compute_bit_depth(masky));
SET_META("UBITDEPTH", "%d", compute_bit_depth(masku));
SET_META("VBITDEPTH", "%d", compute_bit_depth(maskv));
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
char metaname[128];
snprintf(metabuf, sizeof(metabuf), "%g", 1.0 * filtot[fil] / s->fs);
snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name);
av_dict_set(&out->metadata, metaname, metabuf, 0);
}
}
if (in != out)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int filter_frame16(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = in;
int i, j;
int w = 0, cw = 0, // in
pw = 0, cpw = 0; // prev
int fil;
char metabuf[128];
unsigned int *histy = s->histy,
*histu = s->histu,
*histv = s->histv,
histhue[360] = {0},
*histsat = s->histsat;
int miny = -1, minu = -1, minv = -1;
int maxy = -1, maxu = -1, maxv = -1;
int lowy = -1, lowu = -1, lowv = -1;
int highy = -1, highu = -1, highv = -1;
int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1;
int lowp, highp, clowp, chighp;
int accy, accu, accv;
int accsat, acchue = 0;
int medhue, maxhue;
int64_t toty = 0, totu = 0, totv = 0, totsat=0;
int64_t tothue = 0;
int64_t dify = 0, difu = 0, difv = 0;
uint16_t masky = 0, masku = 0, maskv = 0;
int filtot[FILT_NUMB] = {0};
AVFrame *prev;
AVFrame *sat = s->frame_sat;
AVFrame *hue = s->frame_hue;
const uint16_t *p_sat = (uint16_t *)sat->data[0];
const uint16_t *p_hue = (uint16_t *)hue->data[0];
const int lsz_sat = sat->linesize[0] / 2;
const int lsz_hue = hue->linesize[0] / 2;
ThreadDataHueSatMetrics td_huesat = {
.src = in,
.dst_sat = sat,
.dst_hue = hue,
};
if (!s->frame_prev)
s->frame_prev = av_frame_clone(in);
prev = s->frame_prev;
if (s->outfilter != FILTER_NONE) {
out = av_frame_clone(in);
av_frame_make_writable(out);
}
ctx->internal->execute(ctx, compute_sat_hue_metrics16, &td_huesat,
NULL, FFMIN(s->chromah, ff_filter_get_nb_threads(ctx)));
// Calculate luma histogram and difference with previous frame or field.
memset(s->histy, 0, (1 << s->depth) * sizeof(*s->histy));
for (j = 0; j < link->h; j++) {
for (i = 0; i < link->w; i++) {
const int yuv = AV_RN16(in->data[0] + w + i * 2);
masky |= yuv;
histy[yuv]++;
dify += abs(yuv - (int)AV_RN16(prev->data[0] + pw + i * 2));
}
w += in->linesize[0];
pw += prev->linesize[0];
}
// Calculate chroma histogram and difference with previous frame or field.
memset(s->histu, 0, (1 << s->depth) * sizeof(*s->histu));
memset(s->histv, 0, (1 << s->depth) * sizeof(*s->histv));
memset(s->histsat, 0, (1 << s->depth) * sizeof(*s->histsat));
for (j = 0; j < s->chromah; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = AV_RN16(in->data[1] + cw + i * 2);
const int yuvv = AV_RN16(in->data[2] + cw + i * 2);
masku |= yuvu;
maskv |= yuvv;
histu[yuvu]++;
difu += abs(yuvu - (int)AV_RN16(prev->data[1] + cpw + i * 2));
histv[yuvv]++;
difv += abs(yuvv - (int)AV_RN16(prev->data[2] + cpw + i * 2));
histsat[p_sat[i]]++;
histhue[((int16_t*)p_hue)[i]]++;
}
cw += in->linesize[1];
cpw += prev->linesize[1];
p_sat += lsz_sat;
p_hue += lsz_hue;
}
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
ThreadData td = {
.in = in,
.out = out != in && s->outfilter == fil ? out : NULL,
};
memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets));
ctx->internal->execute(ctx, filters_def[fil].process16,
&td, s->jobs_rets, s->nb_jobs);
for (i = 0; i < s->nb_jobs; i++)
filtot[fil] += s->jobs_rets[i];
}
}
// find low / high based on histogram percentile
// these only need to be calculated once.
lowp = lrint(s->fs * 10 / 100.);
highp = lrint(s->fs * 90 / 100.);
clowp = lrint(s->cfs * 10 / 100.);
chighp = lrint(s->cfs * 90 / 100.);
accy = accu = accv = accsat = 0;
for (fil = 0; fil < 1 << s->depth; fil++) {
if (miny < 0 && histy[fil]) miny = fil;
if (minu < 0 && histu[fil]) minu = fil;
if (minv < 0 && histv[fil]) minv = fil;
if (minsat < 0 && histsat[fil]) minsat = fil;
if (histy[fil]) maxy = fil;
if (histu[fil]) maxu = fil;
if (histv[fil]) maxv = fil;
if (histsat[fil]) maxsat = fil;
toty += histy[fil] * fil;
totu += histu[fil] * fil;
totv += histv[fil] * fil;
totsat += histsat[fil] * fil;
accy += histy[fil];
accu += histu[fil];
accv += histv[fil];
accsat += histsat[fil];
if (lowy == -1 && accy >= lowp) lowy = fil;
if (lowu == -1 && accu >= clowp) lowu = fil;
if (lowv == -1 && accv >= clowp) lowv = fil;
if (lowsat == -1 && accsat >= clowp) lowsat = fil;
if (highy == -1 && accy >= highp) highy = fil;
if (highu == -1 && accu >= chighp) highu = fil;
if (highv == -1 && accv >= chighp) highv = fil;
if (highsat == -1 && accsat >= chighp) highsat = fil;
}
maxhue = histhue[0];
medhue = -1;
for (fil = 0; fil < 360; fil++) {
tothue += histhue[fil] * fil;
acchue += histhue[fil];
if (medhue == -1 && acchue > s->cfs / 2)
medhue = fil;
if (histhue[fil] > maxhue) {
maxhue = histhue[fil];
}
}
av_frame_free(&s->frame_prev);
s->frame_prev = av_frame_clone(in);
SET_META("YMIN", "%d", miny);
SET_META("YLOW", "%d", lowy);
SET_META("YAVG", "%g", 1.0 * toty / s->fs);
SET_META("YHIGH", "%d", highy);
SET_META("YMAX", "%d", maxy);
SET_META("UMIN", "%d", minu);
SET_META("ULOW", "%d", lowu);
SET_META("UAVG", "%g", 1.0 * totu / s->cfs);
SET_META("UHIGH", "%d", highu);
SET_META("UMAX", "%d", maxu);
SET_META("VMIN", "%d", minv);
SET_META("VLOW", "%d", lowv);
SET_META("VAVG", "%g", 1.0 * totv / s->cfs);
SET_META("VHIGH", "%d", highv);
SET_META("VMAX", "%d", maxv);
SET_META("SATMIN", "%d", minsat);
SET_META("SATLOW", "%d", lowsat);
SET_META("SATAVG", "%g", 1.0 * totsat / s->cfs);
SET_META("SATHIGH", "%d", highsat);
SET_META("SATMAX", "%d", maxsat);
SET_META("HUEMED", "%d", medhue);
SET_META("HUEAVG", "%g", 1.0 * tothue / s->cfs);
SET_META("YDIF", "%g", 1.0 * dify / s->fs);
SET_META("UDIF", "%g", 1.0 * difu / s->cfs);
SET_META("VDIF", "%g", 1.0 * difv / s->cfs);
SET_META("YBITDEPTH", "%d", compute_bit_depth(masky));
SET_META("UBITDEPTH", "%d", compute_bit_depth(masku));
SET_META("VBITDEPTH", "%d", compute_bit_depth(maskv));
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
char metaname[128];
snprintf(metabuf, sizeof(metabuf), "%g", 1.0 * filtot[fil] / s->fs);
snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name);
av_dict_set(&out->metadata, metaname, metabuf, 0);
}
}
if (in != out)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
if (s->depth > 8)
return filter_frame16(link, in);
else
return filter_frame8(link, in);
}
static const AVFilterPad signalstats_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad signalstats_outputs[] = {
{
.name = "default",
.config_props = config_props,
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_signalstats = {
.name = "signalstats",
.description = "Generate statistics from video analysis.",
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(SignalstatsContext),
.inputs = signalstats_inputs,
.outputs = signalstats_outputs,
.priv_class = &signalstats_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};