1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-11-23 21:54:53 +02:00
Files
FFmpeg/libavcodec/magicyuvenc.c

677 lines
21 KiB
C
Raw Normal View History

/*
* MagicYUV encoder
* Copyright (c) 2017 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include "libavutil/cpu.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/qsort.h"
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "encode.h"
#include "put_bits.h"
#include "lossless_videoencdsp.h"
#define MAGICYUV_EXTRADATA_SIZE 32
typedef enum Prediction {
LEFT = 1,
GRADIENT,
MEDIAN,
} Prediction;
typedef struct HuffEntry {
uint8_t len;
uint32_t code;
} HuffEntry;
typedef struct PTable {
int value; ///< input value
2025-08-01 22:43:23 +02:00
int64_t prob; ///< number of occurrences of this value in input
} PTable;
typedef struct Slice {
int width;
int height;
int encode_raw;
unsigned pos;
unsigned size;
uint8_t *slice;
uint8_t *dst;
int64_t counts[256];
} Slice;
typedef struct MagicYUVContext {
const AVClass *class;
int frame_pred;
int planes;
uint8_t format;
int slice_height;
int nb_slices;
int correlate;
int hshift[4];
int vshift[4];
uint8_t *decorrelate_buf[2];
Slice *slices;
HuffEntry he[4][256];
LLVidEncDSPContext llvidencdsp;
void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
ptrdiff_t stride, int width, int height);
} MagicYUVContext;
static void left_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
uint8_t prev = 0;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - prev;
prev = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
prev = src[-stride];
for (i = 0; i < width; i++) {
dst[i] = src[i] - prev;
prev = src[i];
}
dst += width;
src += stride;
}
}
static void gradient_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
int left = 0, top, lefttop;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - left;
left = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
top = src[-stride];
left = src[0] - top;
dst[0] = left;
for (i = 1; i < width; i++) {
top = src[i - stride];
lefttop = src[i - (stride + 1)];
left = src[i-1];
dst[i] = (src[i] - top) - left + lefttop;
}
dst += width;
src += stride;
}
}
static void median_predict(MagicYUVContext *s,
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
int width, int height)
{
int left = 0, lefttop;
int i, j;
for (i = 0; i < width; i++) {
dst[i] = src[i] - left;
left = src[i];
}
dst += width;
src += stride;
for (j = 1; j < height; j++) {
left = lefttop = src[-stride];
s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
dst += width;
src += stride;
}
}
static av_cold int magy_encode_init(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
PutByteContext pb;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_GBRP:
avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
s->correlate = 1;
s->format = 0x65;
break;
case AV_PIX_FMT_GBRAP:
avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
s->correlate = 1;
s->format = 0x66;
break;
case AV_PIX_FMT_YUV420P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
s->hshift[1] =
s->vshift[1] =
s->hshift[2] =
s->vshift[2] = 1;
s->format = 0x69;
break;
case AV_PIX_FMT_YUV422P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
s->hshift[1] =
s->hshift[2] = 1;
s->format = 0x68;
break;
case AV_PIX_FMT_YUV444P:
avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
s->format = 0x67;
break;
case AV_PIX_FMT_YUVA444P:
avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
s->format = 0x6a;
break;
case AV_PIX_FMT_GRAY8:
avctx->codec_tag = MKTAG('M', '8', 'G', '0');
s->format = 0x6b;
break;
}
ff_llvidencdsp_init(&s->llvidencdsp);
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
s->nb_slices = avctx->slices > 0 ? avctx->slices : avctx->thread_count;
s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]);
s->nb_slices = FFMAX(1, s->nb_slices);
s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]);
s->nb_slices = (avctx->height + s->slice_height - 1) / s->slice_height;
s->nb_slices = FFMIN(256U / s->planes, s->nb_slices);
s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices));
if (!s->slices)
return AVERROR(ENOMEM);
if (s->correlate) {
size_t max_align = av_cpu_max_align();
size_t aligned_width = FFALIGN(avctx->width, max_align);
s->decorrelate_buf[0] = av_calloc(2U * (s->nb_slices * s->slice_height),
aligned_width);
if (!s->decorrelate_buf[0])
return AVERROR(ENOMEM);
s->decorrelate_buf[1] = s->decorrelate_buf[0] + (s->nb_slices * s->slice_height) * aligned_width;
}
for (int n = 0; n < s->nb_slices; n++) {
for (int i = 0; i < s->planes; i++) {
Slice *sl = &s->slices[n * s->planes + i];
sl->height = n == s->nb_slices - 1 ? avctx->height - n * s->slice_height : s->slice_height;
sl->height = AV_CEIL_RSHIFT(sl->height, s->vshift[i]);
sl->width = AV_CEIL_RSHIFT(avctx->width, s->hshift[i]);
sl->slice = av_malloc(avctx->width * (s->slice_height + 2) +
AV_INPUT_BUFFER_PADDING_SIZE);
if (!sl->slice)
return AVERROR(ENOMEM);
}
}
switch (s->frame_pred) {
case LEFT: s->predict = left_predict; break;
case GRADIENT: s->predict = gradient_predict; break;
case MEDIAN: s->predict = median_predict; break;
}
avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE;
avctx->extradata = av_mallocz(avctx->extradata_size +
AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata)
return AVERROR(ENOMEM);
bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE);
bytestream2_put_le32u(&pb, MKTAG('M', 'A', 'G', 'Y'));
bytestream2_put_le32u(&pb, 32);
bytestream2_put_byteu(&pb, 7);
bytestream2_put_byteu(&pb, s->format);
bytestream2_put_byteu(&pb, 12);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 32);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_le32u(&pb, avctx->width);
bytestream2_put_le32u(&pb, avctx->height);
bytestream2_put_le32u(&pb, avctx->width);
bytestream2_put_le32u(&pb, avctx->height);
return 0;
}
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
{
for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
uint16_t curr = codes_count[i]; // # of leafs of length i
codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
nb_codes = codes_count[i] + curr; // # of nodes on level i
}
for (unsigned i = 0; i < 256; i++) {
he[i].code = codes_count[he[i].len];
codes_count[he[i].len]++;
}
}
static void count_usage(const uint8_t *src, int width,
int height, int64_t *counts)
{
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++)
counts[src[i]]++;
src += width;
}
}
typedef struct PackageMergerList {
int nitems; ///< number of items in the list and probability ex. 4
int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
int probability[514]; ///< probability of each item 3, 8, 18, 46
int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
} PackageMergerList;
static int compare_by_prob(const void *a, const void *b)
{
const PTable *a2 = a;
const PTable *b2 = b;
return a2->prob - b2->prob;
}
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
uint16_t codes_counts[33],
int size, int max_length)
{
PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
int times, i, j, k;
int nbits[257] = {0};
int min;
av_assert0(max_length > 0);
to->nitems = 0;
from->nitems = 0;
to->item_idx[0] = 0;
from->item_idx[0] = 0;
AV_QSORT(prob_table, size, PTable, compare_by_prob);
for (times = 0; times <= max_length; times++) {
to->nitems = 0;
to->item_idx[0] = 0;
j = 0;
k = 0;
if (times < max_length) {
i = 0;
}
while (i < size || j + 1 < from->nitems) {
to->nitems++;
to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
if (i < size &&
(j + 1 >= from->nitems ||
prob_table[i].prob <
from->probability[j] + from->probability[j + 1])) {
to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
to->probability[to->nitems - 1] = prob_table[i].prob;
i++;
} else {
for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
to->items[to->item_idx[to->nitems]++] = from->items[k];
}
to->probability[to->nitems - 1] =
from->probability[j] + from->probability[j + 1];
j += 2;
}
}
temp = to;
to = from;
from = temp;
}
min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
for (i = 0; i < from->item_idx[min]; i++) {
nbits[from->items[i]]++;
}
for (i = 0; i < size; i++) {
distincts[i].len = nbits[i];
codes_counts[nbits[i]]++;
}
}
static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
{
MagicYUVContext *s = avctx->priv_data;
Slice *sl = &s->slices[n * s->planes + plane];
const uint8_t *dst = sl->slice;
int64_t *counts = sl->counts;
memset(counts, 0, sizeof(sl->counts));
count_usage(dst, sl->width, sl->height, counts);
return 0;
}
static void generate_codes(AVCodecContext *avctx,
HuffEntry *he, int plane)
{
MagicYUVContext *s = avctx->priv_data;
PTable counts[256];
uint16_t codes_counts[33] = { 0 };
for (size_t i = 0; i < FF_ARRAY_ELEMS(counts); i++) {
counts[i].prob = 1;
counts[i].value = i;
}
for (int n = 0; n < s->nb_slices; n++) {
Slice *sl = &s->slices[n * s->planes + plane];
int64_t *slice_counts = sl->counts;
for (int i = 0; i < 256; i++)
counts[i].prob += slice_counts[i];
}
magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
calculate_codes(he, codes_counts);
}
static void output_codes(PutByteContext *pb, const HuffEntry he[256])
{
for (int i = 0; i < 256; i++) {
// The seven low bits are len; the top bit means the run of
// codes of this length has length one.
bytestream2_put_byteu(pb, he[i].len);
}
}
static void encode_plane_slice_raw(const uint8_t *src, uint8_t *dst,
int width, int height, int prediction)
{
unsigned count = width * height;
dst[0] = 1;
dst[1] = prediction;
memcpy(dst + 2, src, count);
}
static void encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size,
int width, int height, HuffEntry *he, int prediction)
{
PutBitContext pb;
init_put_bits(&pb, dst, dst_size);
put_bits(&pb, 8, 0);
put_bits(&pb, 8, prediction);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
const int idx = src[i];
const int len = he[idx].len;
put_bits(&pb, len, he[idx].code);
}
src += width;
}
flush_put_bits(&pb);
av_assert1(put_bytes_left(&pb, 0) <= 3);
}
static int encode_slice(AVCodecContext *avctx, void *tdata,
int n, int threadnr)
{
MagicYUVContext *s = avctx->priv_data;
for (int i = 0; i < s->planes; i++) {
Slice *sl = &s->slices[n * s->planes + i];
// Zero the padding now
AV_WN32(sl->dst + sl->size - 4, 0);
if (sl->encode_raw)
encode_plane_slice_raw(sl->slice, sl->dst,
sl->width, sl->height, s->frame_pred);
else
encode_plane_slice(sl->slice,
sl->dst,
sl->size,
sl->width, sl->height,
s->he[i], s->frame_pred);
}
return 0;
}
static int predict_slice(AVCodecContext *avctx, void *tdata,
int n, int threadnr)
{
size_t max_align = av_cpu_max_align();
const int aligned_width = FFALIGN(avctx->width, max_align);
MagicYUVContext *s = avctx->priv_data;
const int slice_height = s->slice_height;
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
const int width = avctx->width;
AVFrame *frame = tdata;
if (s->correlate) {
uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width,
s->decorrelate_buf[1] + n * slice_height * aligned_width };
const int decorrelate_linesize = aligned_width;
const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0],
decorrelated[1], s->planes == 4 ? frame->data[3] + n * slice_height * frame->linesize[3] : NULL };
const uint8_t *r, *g, *b;
const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
decorrelate_linesize, frame->linesize[3] };
g = frame->data[0] + n * slice_height * frame->linesize[0];
b = frame->data[1] + n * slice_height * frame->linesize[1];
r = frame->data[2] + n * slice_height * frame->linesize[2];
for (int i = 0; i < height; i++) {
s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
g += frame->linesize[0];
b += frame->linesize[1];
r += frame->linesize[2];
decorrelated[0] += decorrelate_linesize;
decorrelated[1] += decorrelate_linesize;
}
for (int i = 0; i < s->planes; i++) {
Slice *sl = &s->slices[n * s->planes + i];
s->predict(s, data[i], sl->slice, linesize[i],
frame->width, height);
}
} else {
for (int i = 0; i < s->planes; i++) {
Slice *sl = &s->slices[n * s->planes + i];
s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i],
sl->slice,
frame->linesize[i],
sl->width, sl->height);
}
}
for (int p = 0; p < s->planes; p++)
count_plane_slice(avctx, n, p);
return 0;
}
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
MagicYUVContext *s = avctx->priv_data;
PutByteContext pb;
int header_size = 32 + (4 + 1) * (s->planes * s->nb_slices + 1)
+ 256 * s->planes /* Hufftables */;
int64_t pkt_size = header_size;
int ret;
avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices);
for (int i = 0; i < s->planes; i++)
generate_codes(avctx, s->he[i], i);
for (int i = 0; i < s->nb_slices; ++i) {
for (int j = 0; j < s->planes; ++j) {
Slice *const sl = &s->slices[i * s->planes + j];
int64_t size = 0;
for (size_t k = 0; k < FF_ARRAY_ELEMS(sl->counts); ++k)
size += sl->counts[k] * s->he[j][k].len;
size = AV_CEIL_RSHIFT(size, 3);
sl->encode_raw = size >= sl->width * sl->height;
if (sl->encode_raw)
size = sl->width * sl->height;
sl->size = FFALIGN(size + 2, 4);
sl->pos = pkt_size;
pkt_size += sl->size;
}
}
ret = ff_get_encode_buffer(avctx, pkt, pkt_size, 0);
if (ret < 0)
return ret;
bytestream2_init_writer(&pb, pkt->data, pkt->size);
bytestream2_put_le32u(&pb, MKTAG('M', 'A', 'G', 'Y'));
bytestream2_put_le32u(&pb, 32); // header size
bytestream2_put_byteu(&pb, 7); // version
bytestream2_put_byteu(&pb, s->format);
bytestream2_put_byteu(&pb, 12); // max huffman length
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 0);
bytestream2_put_byteu(&pb, 32); // coder type
bytestream2_put_byteu(&pb, 0);
bytestream2_put_le32u(&pb, avctx->width);
bytestream2_put_le32u(&pb, avctx->height);
bytestream2_put_le32u(&pb, avctx->width);
bytestream2_put_le32u(&pb, s->slice_height);
// Slice position is relative to the current position (i.e. 32)
bytestream2_put_le32u(&pb, header_size - 32);
for (int i = 0; i < s->planes; ++i) {
for (int j = 0; j < s->nb_slices; ++j) {
Slice *const sl = &s->slices[j * s->planes + i];
bytestream2_put_le32u(&pb, sl->pos - 32);
sl->dst = pkt->data + sl->pos;
}
}
bytestream2_put_byteu(&pb, s->planes);
for (int i = 0; i < s->planes; i++) {
for (int n = 0; n < s->nb_slices; n++)
bytestream2_put_byteu(&pb, n * s->planes + i);
}
for (int i = 0; i < s->planes; ++i)
output_codes(&pb, s->he[i]);
avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices);
*got_packet = 1;
return 0;
}
static av_cold int magy_encode_close(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
if (s->slices) {
for (int i = 0; i < s->planes * s->nb_slices; i++) {
Slice *sl = &s->slices[i];
av_freep(&sl->slice);
}
av_freep(&s->slices);
}
av_freep(&s->decorrelate_buf);
return 0;
}
#define OFFSET(x) offsetof(MagicYUVContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, .unit = "pred" },
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, .unit = "pred" },
{ "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, .unit = "pred" },
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, .unit = "pred" },
{ NULL},
};
static const AVClass magicyuv_class = {
.class_name = "magicyuv",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_magicyuv_encoder = {
.p.name = "magicyuv",
CODEC_LONG_NAME("MagicYUV video"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_MAGICYUV,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS |
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(MagicYUVContext),
.p.priv_class = &magicyuv_class,
.init = magy_encode_init,
.close = magy_encode_close,
FF_CODEC_ENCODE_CB(magy_encode_frame),
CODEC_PIXFMTS(AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY8),
avcodec/internal: add FFCodec.color_ranges I went through all codecs and put them into five basic categories: 1. JPEG range only 2. MPEG range only 3. Explicitly tagged 4. Broken (codec supports both but encoder ignores tags) 5. N/A (headerless or pseudo-formats) Filters in category 5 remain untouched. The rest gain an explicit assignment of their supported color ranges, with codecs in category 4 being set to MPEG-only for safety. It might be considered redundant to distinguish between 0 (category 5) and MPEG+JPEG (category 3), but in doing so we effectively communicate that we can guarantee that these tags will be encoded, which is distinct from the situation where there are some codecs that simply don't have tagging or implied semantics (e.g. rawvideo). A full list of codecs follows: JPEG range only: - amv - roqvideo MPEG range only: - asv1, asv2 - avui - cfhd - cljr - dnxhd - dvvideo - ffv1 - flv - h261, h263, h263p - {h263,vp8}_v4l2m2m - huffyuv, ffvhuff - jpeg2000 - libopenjpeg - libtheora - libwebp, libwebp_anim - libx262 - libxavs, libxavs2 - libxvid - mpeg1video, mpeg2video - mpeg2_qsv - mpeg2_vaapi - mpeg4, msmpeg4, msmpeg4v2, wmv1, wmv2 - mpeg4_omx - prores, prores_aw, prores_ks - rv10, rv20 - snow - speedhq - svq1 - tiff - utvideo Explicitly tagged (MPEG/JPEG): - {av1,h264,hevc}_nvenc - {av1,h264,hevc}_vaapi - {av1,h264,hevc,vp8,vp9,mpeg4}_mediacodec - {av1,h264,hevc,vp9}_qsv - h264_amf - {h264,hevc,prores}_videotoolbox - libaom-av1 - libkvazaar - libopenh264 - librav1e - libsvtav1 - libvpx, libvpx-vp9 - libx264 - libx265 - ljpeg - mjpeg - vc2 Broken (encoder ignores tags): - {av1,hevc}_amf - {h264,hevc,mpeg4}_v4l2m2m - h264_omx - libxeve - magicyuv - {vp8,vp9,mjpeg}_vaapi N/A: - ayuv, yuv4, y41p, v308, v210, v410, v408 (headerless) - pgmyuv (headerless) - rawvideo, bitpacked (headerless) - vnull, wrapped_avframe (pseudocodecs)
2023-10-11 16:09:33 +02:00
.color_ranges = AVCOL_RANGE_MPEG, /* FIXME: implement tagging */
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};