1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/doc/indevs.texi

533 lines
15 KiB
Plaintext
Raw Normal View History

@chapter Input Devices
@c man begin INPUT DEVICES
Input devices are configured elements in FFmpeg which allow to access
the data coming from a multimedia device attached to your system.
When you configure your FFmpeg build, all the supported input devices
are enabled by default. You can list all available ones using the
configure option "--list-indevs".
You can disable all the input devices using the configure option
"--disable-indevs", and selectively enable an input device using the
option "--enable-indev=@var{INDEV}", or you can disable a particular
input device using the option "--disable-indev=@var{INDEV}".
The option "-formats" of the ff* tools will display the list of
supported input devices (amongst the demuxers).
A description of the currently available input devices follows.
@section alsa
ALSA (Advanced Linux Sound Architecture) input device.
To enable this input device during configuration you need libasound
installed on your system.
This device allows capturing from an ALSA device. The name of the
device to capture has to be an ALSA card identifier.
An ALSA identifier has the syntax:
@example
hw:@var{CARD}[,@var{DEV}[,@var{SUBDEV}]]
@end example
where the @var{DEV} and @var{SUBDEV} components are optional.
The three arguments (in order: @var{CARD},@var{DEV},@var{SUBDEV})
specify card number or identifier, device number and subdevice number
(-1 means any).
To see the list of cards currently recognized by your system check the
files @file{/proc/asound/cards} and @file{/proc/asound/devices}.
For example to capture with @file{ffmpeg} from an ALSA device with
card id 0, you may run the command:
@example
ffmpeg -f alsa -i hw:0 alsaout.wav
@end example
For more information see:
@url{http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html}
@section bktr
BSD video input device.
@section dshow
Windows DirectShow input device.
DirectShow support is enabled when FFmpeg is built with mingw-w64.
Currently only audio and video devices are supported.
Multiple devices may be opened as separate inputs, but they may also be
opened on the same input, which should improve synchronism between them.
The input name should be in the format:
@example
@var{TYPE}=@var{NAME}[:@var{TYPE}=@var{NAME}]
@end example
where @var{TYPE} can be either @var{audio} or @var{video},
and @var{NAME} is the device's name.
@subsection Options
If no options are specified, the device's defaults are used.
If the device does not support the requested options, it will
fail to open.
@table @option
@item video_size
Set the video size in the captured video.
@item framerate
Set the framerate in the captured video.
@item sample_rate
Set the sample rate (in Hz) of the captured audio.
@item sample_size
Set the sample size (in bits) of the captured audio.
@item channels
Set the number of channels in the captured audio.
@item list_devices
If set to @option{true}, print a list of devices and exit.
@item list_options
If set to @option{true}, print a list of selected device's options
and exit.
@end table
@subsection Examples
@itemize
@item
Print the list of DirectShow supported devices and exit:
@example
$ ffmpeg -list_devices true -f dshow -i dummy
@end example
@item
Open video device @var{Camera}:
@example
$ ffmpeg -f dshow -i video="Camera"
@end example
@item
Open video device @var{Camera} and audio device @var{Microphone}:
@example
$ ffmpeg -f dshow -i video="Camera":audio="Microphone"
@end example
@item
Print the list of supported options in selected device and exit:
@example
$ ffmpeg -list_options true -f dshow -i video="Camera"
@end example
@end itemize
@section dv1394
Linux DV 1394 input device.
2011-03-07 19:54:52 +02:00
@section fbdev
Linux framebuffer input device.
The Linux framebuffer is a graphic hardware-independent abstraction
layer to show graphics on a computer monitor, typically on the
console. It is accessed through a file device node, usually
@file{/dev/fb0}.
For more detailed information read the file
Documentation/fb/framebuffer.txt included in the Linux source tree.
To record from the framebuffer device @file{/dev/fb0} with
2011-03-07 19:54:52 +02:00
@file{ffmpeg}:
@example
ffmpeg -f fbdev -r 10 -i /dev/fb0 out.avi
@end example
You can take a single screenshot image with the command:
@example
ffmpeg -f fbdev -vframes 1 -r 1 -i /dev/fb0 screenshot.jpeg
@end example
See also @url{http://linux-fbdev.sourceforge.net/}, and fbset(1).
@section jack
JACK input device.
To enable this input device during configuration you need libjack
installed on your system.
A JACK input device creates one or more JACK writable clients, one for
each audio channel, with name @var{client_name}:input_@var{N}, where
@var{client_name} is the name provided by the application, and @var{N}
is a number which identifies the channel.
Each writable client will send the acquired data to the FFmpeg input
device.
Once you have created one or more JACK readable clients, you need to
connect them to one or more JACK writable clients.
To connect or disconnect JACK clients you can use the
@file{jack_connect} and @file{jack_disconnect} programs, or do it
through a graphical interface, for example with @file{qjackctl}.
To list the JACK clients and their properties you can invoke the command
@file{jack_lsp}.
Follows an example which shows how to capture a JACK readable client
with @file{ffmpeg}.
@example
# Create a JACK writable client with name "ffmpeg".
$ ffmpeg -f jack -i ffmpeg -y out.wav
# Start the sample jack_metro readable client.
$ jack_metro -b 120 -d 0.2 -f 4000
# List the current JACK clients.
$ jack_lsp -c
system:capture_1
system:capture_2
system:playback_1
system:playback_2
ffmpeg:input_1
metro:120_bpm
# Connect metro to the ffmpeg writable client.
$ jack_connect metro:120_bpm ffmpeg:input_1
@end example
For more information read:
@url{http://jackaudio.org/}
@section lavfi
Libavfilter input virtual device.
This input device reads data from the open output pads of a libavfilter
filtergraph.
For each filtergraph open output, the input device will create a
corresponding stream which is mapped to the generated output. Currently
only video data is supported. The filtergraph is specified through the
option @option{graph}.
2011-08-11 18:32:54 +03:00
To enable this input device, you need to configure your build with
@code{--enable-libavfilter}.
@subsection Options
@table @option
@item graph
Specify the filtergraph to use as input. Each video open output must be
labelled by a unique string of the form "out@var{N}", where @var{N} is a
number starting from 0 corresponding to the mapped input stream
generated by the device.
The first unlabelled output is automatically assigned to the "out0"
label, but all the others need to be specified explicitely.
If not specified defaults to the filename specified for the input
device.
@end table
@subsection Examples
@itemize
@item
Create a color video stream and play it back with @file{ffplay}:
@example
ffplay -f lavfi -graph "color=pink [out0]" dummy
@end example
@item
As the previous example, but use filename for specifying the graph
description, and omit the "out0" label:
@example
ffplay -f lavfi color=pink
@end example
@item
Create three different video test filtered sources and play them:
@example
ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3
@end example
2011-08-18 16:39:24 +03:00
@item
Read an audio stream from a file using the amovie source and play it
back with @file{ffplay}:
@example
ffplay -f lavfi "amovie=test.wav"
@end example
@item
Read an audio stream and a video stream and play it back with
@file{ffplay}:
@example
ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"
@end example
@end itemize
@section libdc1394
IIDC1394 input device, based on libdc1394 and libraw1394.
2011-06-25 09:06:00 +03:00
@section openal
The OpenAL input device provides audio capture on all systems with a
working OpenAL 1.1 implementation.
To enable this input device during configuration, you need OpenAL
headers and libraries installed on your system, and need to configure
FFmpeg with @code{--enable-openal}.
OpenAL headers and libraries should be provided as part of your OpenAL
implementation, or as an additional download (an SDK). Depending on your
installation you may need to specify additional flags via the
@code{--extra-cflags} and @code{--extra-ldflags} for allowing the build
system to locate the OpenAL headers and libraries.
An incomplete list of OpenAL implementations follows:
@table @strong
@item Creative
The official Windows implementation, providing hardware acceleration
with supported devices and software fallback.
See @url{http://openal.org/}.
@item OpenAL Soft
Portable, open source (LGPL) software implementation. Includes
backends for the most common sound APIs on the Windows, Linux,
Solaris, and BSD operating systems.
See @url{http://kcat.strangesoft.net/openal.html}.
@item Apple
OpenAL is part of Core Audio, the official Mac OS X Audio interface.
See @url{http://developer.apple.com/technologies/mac/audio-and-video.html}
@end table
This device allows to capture from an audio input device handled
through OpenAL.
You need to specify the name of the device to capture in the provided
filename. If the empty string is provided, the device will
automatically select the default device. You can get the list of the
supported devices by using the option @var{list_devices}.
@subsection Options
@table @option
@item channels
Set the number of channels in the captured audio. Only the values
@option{1} (monaural) and @option{2} (stereo) are currently supported.
Defaults to @option{2}.
@item sample_size
Set the sample size (in bits) of the captured audio. Only the values
@option{8} and @option{16} are currently supported. Defaults to
@option{16}.
@item sample_rate
Set the sample rate (in Hz) of the captured audio.
Defaults to @option{44.1k}.
@item list_devices
If set to @option{true}, print a list of devices and exit.
Defaults to @option{false}.
@end table
@subsection Examples
Print the list of OpenAL supported devices and exit:
@example
$ ffmpeg -list_devices true -f openal -i dummy out.ogg
@end example
Capture from the OpenAL device @file{DR-BT101 via PulseAudio}:
@example
$ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out.ogg
@end example
Capture from the default device (note the empty string '' as filename):
@example
$ ffmpeg -f openal -i '' out.ogg
@end example
Capture from two devices simultaneously, writing to two different files,
within the same @file{ffmpeg} command:
@example
$ ffmpeg -f openal -i 'DR-BT101 via PulseAudio' out1.ogg -f openal -i 'ALSA Default' out2.ogg
@end example
Note: not all OpenAL implementations support multiple simultaneous capture -
try the latest OpenAL Soft if the above does not work.
@section oss
Open Sound System input device.
The filename to provide to the input device is the device node
representing the OSS input device, and is usually set to
@file{/dev/dsp}.
For example to grab from @file{/dev/dsp} using @file{ffmpeg} use the
command:
@example
ffmpeg -f oss -i /dev/dsp /tmp/oss.wav
@end example
For more information about OSS see:
@url{http://manuals.opensound.com/usersguide/dsp.html}
@section sndio
sndio input device.
To enable this input device during configuration you need libsndio
installed on your system.
The filename to provide to the input device is the device node
representing the sndio input device, and is usually set to
@file{/dev/audio0}.
For example to grab from @file{/dev/audio0} using @file{ffmpeg} use the
command:
@example
ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav
@end example
@section video4linux and video4linux2
Video4Linux and Video4Linux2 input video devices.
The name of the device to grab is a file device node, usually Linux
systems tend to automatically create such nodes when the device
(e.g. an USB webcam) is plugged into the system, and has a name of the
kind @file{/dev/video@var{N}}, where @var{N} is a number associated to
the device.
Video4Linux and Video4Linux2 devices only support a limited set of
@var{width}x@var{height} sizes and framerates. You can check which are
supported for example with the command @file{dov4l} for Video4Linux
devices and the command @file{v4l-info} for Video4Linux2 devices.
If the size for the device is set to 0x0, the input device will
try to autodetect the size to use.
Only for the video4linux2 device, if the frame rate is set to 0/0 the
input device will use the frame rate value already set in the driver.
Video4Linux support is deprecated since Linux 2.6.30, and will be
dropped in later versions.
Follow some usage examples of the video4linux devices with the ff*
tools.
@example
# Grab and show the input of a video4linux device, frame rate is set
# to the default of 25/1.
ffplay -s 320x240 -f video4linux /dev/video0
# Grab and show the input of a video4linux2 device, autoadjust size.
ffplay -f video4linux2 /dev/video0
# Grab and record the input of a video4linux2 device, autoadjust size,
# frame rate value defaults to 0/0 so it is read from the video4linux2
# driver.
ffmpeg -f video4linux2 -i /dev/video0 out.mpeg
@end example
@section vfwcap
VfW (Video for Windows) capture input device.
The filename passed as input is the capture driver number, ranging from
0 to 9. You may use "list" as filename to print a list of drivers. Any
other filename will be interpreted as device number 0.
@section x11grab
X11 video input device.
This device allows to capture a region of an X11 display.
The filename passed as input has the syntax:
@example
[@var{hostname}]:@var{display_number}.@var{screen_number}[+@var{x_offset},@var{y_offset}]
@end example
@var{hostname}:@var{display_number}.@var{screen_number} specifies the
X11 display name of the screen to grab from. @var{hostname} can be
ommitted, and defaults to "localhost". The environment variable
@env{DISPLAY} contains the default display name.
@var{x_offset} and @var{y_offset} specify the offsets of the grabbed
area with respect to the top-left border of the X11 screen. They
default to 0.
Check the X11 documentation (e.g. man X) for more detailed information.
Use the @file{dpyinfo} program for getting basic information about the
properties of your X11 display (e.g. grep for "name" or "dimensions").
For example to grab from @file{:0.0} using @file{ffmpeg}:
@example
ffmpeg -f x11grab -r 25 -s cif -i :0.0 out.mpg
# Grab at position 10,20.
ffmpeg -f x11grab -r 25 -s cif -i :0.0+10,20 out.mpg
@end example
@subsection @var{follow_mouse} AVOption
The syntax is:
@example
-follow_mouse centered|@var{PIXELS}
@end example
When it is specified with "centered", the grabbing region follows the mouse
pointer and keeps the pointer at the center of region; otherwise, the region
follows only when the mouse pointer reaches within @var{PIXELS} (greater than
zero) to the edge of region.
For example:
@example
ffmpeg -f x11grab -follow_mouse centered -r 25 -s cif -i :0.0 out.mpg
# Follows only when the mouse pointer reaches within 100 pixels to edge
ffmpeg -f x11grab -follow_mouse 100 -r 25 -s cif -i :0.0 out.mpg
@end example
@subsection @var{show_region} AVOption
The syntax is:
@example
-show_region 1
@end example
If @var{show_region} AVOption is specified with @var{1}, then the grabbing
region will be indicated on screen. With this option, it's easy to know what is
being grabbed if only a portion of the screen is grabbed.
For example:
@example
ffmpeg -f x11grab -show_region 1 -r 25 -s cif -i :0.0+10,20 out.mpg
# With follow_mouse
ffmpeg -f x11grab -follow_mouse centered -show_region 1 -r 25 -s cif -i :0.0 out.mpg
@end example
@c man end INPUT DEVICES