1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavfilter/vf_minterpolate.c

1243 lines
48 KiB
C
Raw Normal View History

/**
* Copyright (c) 2014-2015 Michael Niedermayer <michaelni@gmx.at>
* Copyright (c) 2016 Davinder Singh (DSM_) <ds.mudhar<@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "motion_estimation.h"
#include "libavcodec/mathops.h"
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/motion_vector.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixelutils.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define ME_MODE_BIDIR 0
#define ME_MODE_BILAT 1
#define MC_MODE_OBMC 0
#define MC_MODE_AOBMC 1
#define SCD_METHOD_NONE 0
#define SCD_METHOD_FDIFF 1
#define NB_FRAMES 4
#define NB_PIXEL_MVS 32
#define NB_CLUSTERS 128
#define ALPHA_MAX 1024
#define CLUSTER_THRESHOLD 4
#define PX_WEIGHT_MAX 255
#define COST_PRED_SCALE 64
static const uint8_t obmc_linear32[1024] = {
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
};
static const uint8_t obmc_linear16[256] = {
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
};
static const uint8_t obmc_linear8[64] = {
4, 12, 20, 28, 28, 20, 12, 4,
12, 36, 60, 84, 84, 60, 36, 12,
20, 60,100,140,140,100, 60, 20,
28, 84,140,196,196,140, 84, 28,
28, 84,140,196,196,140, 84, 28,
20, 60,100,140,140,100, 60, 20,
12, 36, 60, 84, 84, 60, 36, 12,
4, 12, 20, 28, 28, 20, 12, 4,
};
static const uint8_t obmc_linear4[16] = {
16, 48, 48, 16,
48,144,144, 48,
48,144,144, 48,
16, 48, 48, 16,
};
static const uint8_t * const obmc_tab_linear[4]= {
obmc_linear32, obmc_linear16, obmc_linear8, obmc_linear4
};
enum MIMode {
MI_MODE_DUP = 0,
MI_MODE_BLEND = 1,
MI_MODE_MCI = 2,
};
typedef struct Cluster {
int64_t sum[2];
int nb;
} Cluster;
typedef struct Block {
int16_t mvs[2][2];
int cid;
uint64_t sbad;
int sb;
struct Block *subs;
} Block;
typedef struct Pixel {
int16_t mvs[NB_PIXEL_MVS][2];
uint32_t weights[NB_PIXEL_MVS];
int8_t refs[NB_PIXEL_MVS];
int nb;
} Pixel;
typedef struct Frame {
AVFrame *avf;
Block *blocks;
} Frame;
typedef struct MIContext {
const AVClass *class;
AVMotionEstContext me_ctx;
AVRational frame_rate;
enum MIMode mi_mode;
int mc_mode;
int me_mode;
int me_method;
int mb_size;
int search_param;
int vsbmc;
Frame frames[NB_FRAMES];
Cluster clusters[NB_CLUSTERS];
Block *int_blocks;
Pixel *pixels;
int (*mv_table[3])[2][2];
int64_t out_pts;
int b_width, b_height, b_count;
int log2_mb_size;
int scd_method;
int scene_changed;
av_pixelutils_sad_fn sad;
double prev_mafd;
double scd_threshold;
int log2_chroma_w;
int log2_chroma_h;
int nb_planes;
} MIContext;
#define OFFSET(x) offsetof(MIContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
static const AVOption minterpolate_options[] = {
{ "fps", "output's frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "60"}, 0, INT_MAX, FLAGS },
{ "mi_mode", "motion interpolation mode", OFFSET(mi_mode), AV_OPT_TYPE_INT, {.i64 = MI_MODE_MCI}, MI_MODE_DUP, MI_MODE_MCI, FLAGS, "mi_mode" },
CONST("dup", "duplicate frames", MI_MODE_DUP, "mi_mode"),
CONST("blend", "blend frames", MI_MODE_BLEND, "mi_mode"),
CONST("mci", "motion compensated interpolation", MI_MODE_MCI, "mi_mode"),
{ "mc_mode", "motion compensation mode", OFFSET(mc_mode), AV_OPT_TYPE_INT, {.i64 = MC_MODE_OBMC}, MC_MODE_OBMC, MC_MODE_AOBMC, FLAGS, "mc_mode" },
CONST("obmc", "overlapped block motion compensation", MC_MODE_OBMC, "mc_mode"),
CONST("aobmc", "adaptive overlapped block motion compensation", MC_MODE_AOBMC, "mc_mode"),
{ "me_mode", "motion estimation mode", OFFSET(me_mode), AV_OPT_TYPE_INT, {.i64 = ME_MODE_BILAT}, ME_MODE_BIDIR, ME_MODE_BILAT, FLAGS, "me_mode" },
CONST("bidir", "bidirectional motion estimation", ME_MODE_BIDIR, "me_mode"),
CONST("bilat", "bilateral motion estimation", ME_MODE_BILAT, "me_mode"),
{ "me", "motion estimation method", OFFSET(me_method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_EPZS}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, "me" },
CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "me"),
CONST("tss", "three step search", AV_ME_METHOD_TSS, "me"),
CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "me"),
CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "me"),
CONST("fss", "four step search", AV_ME_METHOD_FSS, "me"),
CONST("ds", "diamond search", AV_ME_METHOD_DS, "me"),
CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "me"),
CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "me"),
CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "me"),
{ "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 4, 16, FLAGS },
{ "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 32}, 4, INT_MAX, FLAGS },
{ "vsbmc", "variable-size block motion compensation", OFFSET(vsbmc), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS },
{ "scd", "scene change detection method", OFFSET(scd_method), AV_OPT_TYPE_INT, {.i64 = SCD_METHOD_FDIFF}, SCD_METHOD_NONE, SCD_METHOD_FDIFF, FLAGS, "scene" },
CONST("none", "disable detection", SCD_METHOD_NONE, "scene"),
CONST("fdiff", "frame difference", SCD_METHOD_FDIFF, "scene"),
{ "scd_threshold", "scene change threshold", OFFSET(scd_threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0}, 0, 100.0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(minterpolate);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static uint64_t get_sbad(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_cur = me_ctx->data_cur;
uint8_t *data_next = me_ctx->data_ref;
int linesize = me_ctx->linesize;
int mv_x1 = x_mv - x;
int mv_y1 = y_mv - y;
int mv_x, mv_y, i, j;
uint64_t sbad = 0;
x = av_clip(x, me_ctx->x_min, me_ctx->x_max);
y = av_clip(y, me_ctx->y_min, me_ctx->y_max);
mv_x = av_clip(x_mv - x, -FFMIN(x - me_ctx->x_min, me_ctx->x_max - x), FFMIN(x - me_ctx->x_min, me_ctx->x_max - x));
mv_y = av_clip(y_mv - y, -FFMIN(y - me_ctx->y_min, me_ctx->y_max - y), FFMIN(y - me_ctx->y_min, me_ctx->y_max - y));
data_cur += (y + mv_y) * linesize;
data_next += (y - mv_y) * linesize;
for (j = 0; j < me_ctx->mb_size; j++)
for (i = 0; i < me_ctx->mb_size; i++)
sbad += FFABS(data_cur[x + mv_x + i + j * linesize] - data_next[x - mv_x + i + j * linesize]);
return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static uint64_t get_sbad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_cur = me_ctx->data_cur;
uint8_t *data_next = me_ctx->data_ref;
int linesize = me_ctx->linesize;
int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
int mv_x1 = x_mv - x;
int mv_y1 = y_mv - y;
int mv_x, mv_y, i, j;
uint64_t sbad = 0;
x = av_clip(x, x_min, x_max);
y = av_clip(y, y_min, y_max);
mv_x = av_clip(x_mv - x, -FFMIN(x - x_min, x_max - x), FFMIN(x - x_min, x_max - x));
mv_y = av_clip(y_mv - y, -FFMIN(y - y_min, y_max - y), FFMIN(y - y_min, y_max - y));
for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
sbad += FFABS(data_cur[x + mv_x + i + (y + mv_y + j) * linesize] - data_next[x - mv_x + i + (y - mv_y + j) * linesize]);
return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static uint64_t get_sad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_ref = me_ctx->data_ref;
uint8_t *data_cur = me_ctx->data_cur;
int linesize = me_ctx->linesize;
int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
int mv_x = x_mv - x;
int mv_y = y_mv - y;
int i, j;
uint64_t sad = 0;
x = av_clip(x, x_min, x_max);
y = av_clip(y, y_min, y_max);
x_mv = av_clip(x_mv, x_min, x_max);
y_mv = av_clip(y_mv, y_min, y_max);
for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
sad += FFABS(data_ref[x_mv + i + (y_mv + j) * linesize] - data_cur[x + i + (y + j) * linesize]);
return sad + (FFABS(mv_x - me_ctx->pred_x) + FFABS(mv_y - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static int config_input(AVFilterLink *inlink)
{
MIContext *mi_ctx = inlink->dst->priv;
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
const int height = inlink->h;
const int width = inlink->w;
int i;
mi_ctx->log2_chroma_h = desc->log2_chroma_h;
mi_ctx->log2_chroma_w = desc->log2_chroma_w;
mi_ctx->nb_planes = av_pix_fmt_count_planes(inlink->format);
mi_ctx->log2_mb_size = av_ceil_log2_c(mi_ctx->mb_size);
mi_ctx->mb_size = 1 << mi_ctx->log2_mb_size;
mi_ctx->b_width = width >> mi_ctx->log2_mb_size;
mi_ctx->b_height = height >> mi_ctx->log2_mb_size;
mi_ctx->b_count = mi_ctx->b_width * mi_ctx->b_height;
for (i = 0; i < NB_FRAMES; i++) {
Frame *frame = &mi_ctx->frames[i];
frame->blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block));
if (!frame->blocks)
return AVERROR(ENOMEM);
}
if (mi_ctx->mi_mode == MI_MODE_MCI) {
if (!(mi_ctx->pixels = av_mallocz_array(width * height, sizeof(Pixel))))
return AVERROR(ENOMEM);
if (mi_ctx->me_mode == ME_MODE_BILAT)
if (!(mi_ctx->int_blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block))))
return AVERROR(ENOMEM);
if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
for (i = 0; i < 3; i++) {
mi_ctx->mv_table[i] = av_mallocz_array(mi_ctx->b_count, sizeof(*mi_ctx->mv_table[0]));
if (!mi_ctx->mv_table[i])
return AVERROR(ENOMEM);
}
}
}
if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
mi_ctx->sad = av_pixelutils_get_sad_fn(3, 3, 2, mi_ctx);
if (!mi_ctx->sad)
return AVERROR(EINVAL);
}
ff_me_init_context(me_ctx, mi_ctx->mb_size, mi_ctx->search_param, width, height, 0, (mi_ctx->b_width - 1) << mi_ctx->log2_mb_size, 0, (mi_ctx->b_height - 1) << mi_ctx->log2_mb_size);
if (mi_ctx->me_mode == ME_MODE_BIDIR)
me_ctx->get_cost = &get_sad_ob;
else if (mi_ctx->me_mode == ME_MODE_BILAT)
me_ctx->get_cost = &get_sbad_ob;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
MIContext *mi_ctx = outlink->src->priv;
outlink->frame_rate = mi_ctx->frame_rate;
outlink->time_base = av_inv_q(mi_ctx->frame_rate);
return 0;
}
#define ADD_PRED(preds, px, py)\
do {\
preds.mvs[preds.nb][0] = px;\
preds.mvs[preds.nb][1] = py;\
preds.nb++;\
} while(0)
static void search_mv(MIContext *mi_ctx, Block *blocks, int mb_x, int mb_y, int dir)
{
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
AVMotionEstPredictor *preds = me_ctx->preds;
Block *block = &blocks[mb_x + mb_y * mi_ctx->b_width];
const int x_mb = mb_x << mi_ctx->log2_mb_size;
const int y_mb = mb_y << mi_ctx->log2_mb_size;
const int mb_i = mb_x + mb_y * mi_ctx->b_width;
int mv[2] = {x_mb, y_mb};
switch (mi_ctx->me_method) {
case AV_ME_METHOD_ESA:
ff_me_search_esa(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_TSS:
ff_me_search_tss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_TDLS:
ff_me_search_tdls(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_NTSS:
ff_me_search_ntss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_FSS:
ff_me_search_fss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_DS:
ff_me_search_ds(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_HEXBS:
ff_me_search_hexbs(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_EPZS:
preds[0].nb = 0;
preds[1].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - 1][dir][0], mi_ctx->mv_table[0][mb_i - 1][dir][1]);
//top mb in current frame
if (mb_y > 0)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][1]);
//top-right mb in current frame
if (mb_y > 0 && mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][1]);
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
//collocated mb in prev frame
ADD_PRED(preds[0], mi_ctx->mv_table[1][mb_i][dir][0], mi_ctx->mv_table[1][mb_i][dir][1]);
//accelerator motion vector of collocated block in prev frame
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i][dir][0] + (mi_ctx->mv_table[1][mb_i][dir][0] - mi_ctx->mv_table[2][mb_i][dir][0]),
mi_ctx->mv_table[1][mb_i][dir][1] + (mi_ctx->mv_table[1][mb_i][dir][1] - mi_ctx->mv_table[2][mb_i][dir][1]));
//left mb in prev frame
if (mb_x > 0)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - 1][dir][0], mi_ctx->mv_table[1][mb_i - 1][dir][1]);
//top mb in prev frame
if (mb_y > 0)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][1]);
//right mb in prev frame
if (mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + 1][dir][0], mi_ctx->mv_table[1][mb_i + 1][dir][1]);
//bottom mb in prev frame
if (mb_y + 1 < mi_ctx->b_height)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][1]);
ff_me_search_epzs(me_ctx, x_mb, y_mb, mv);
mi_ctx->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
mi_ctx->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
break;
case AV_ME_METHOD_UMH:
preds[0].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], blocks[mb_i - 1].mvs[dir][0], blocks[mb_i - 1].mvs[dir][1]);
if (mb_y > 0) {
//top mb in current frame
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width].mvs[dir][0], blocks[mb_i - mi_ctx->b_width].mvs[dir][1]);
//top-right mb in current frame
if (mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][1]);
//top-left mb in current frame
else if (mb_x > 0)
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][1]);
}
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
ff_me_search_umh(me_ctx, x_mb, y_mb, mv);
break;
}
block->mvs[dir][0] = mv[0] - x_mb;
block->mvs[dir][1] = mv[1] - y_mb;
}
static void bilateral_me(MIContext *mi_ctx)
{
Block *block;
int mb_x, mb_y;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
block->cid = 0;
block->sb = 0;
block->mvs[0][0] = 0;
block->mvs[0][1] = 0;
}
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
search_mv(mi_ctx, mi_ctx->int_blocks, mb_x, mb_y, 0);
}
static int var_size_bme(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n)
{
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
uint64_t cost_sb, cost_old;
int mb_size = me_ctx->mb_size;
int search_param = me_ctx->search_param;
int mv_x, mv_y;
int x, y;
int ret;
me_ctx->mb_size = 1 << n;
cost_old = me_ctx->get_cost(me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
me_ctx->mb_size = mb_size;
if (!cost_old) {
block->sb = 0;
return 0;
}
if (!block->subs) {
block->subs = av_mallocz_array(4, sizeof(Block));
if (!block->subs)
return AVERROR(ENOMEM);
}
block->sb = 1;
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++) {
Block *sb = &block->subs[x + y * 2];
int mv[2] = {x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]};
me_ctx->mb_size = 1 << (n - 1);
me_ctx->search_param = 2;
me_ctx->pred_x = block->mvs[0][0];
me_ctx->pred_y = block->mvs[0][1];
cost_sb = ff_me_search_ds(&mi_ctx->me_ctx, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1], mv);
mv_x = mv[0] - x_mb;
mv_y = mv[1] - y_mb;
me_ctx->mb_size = mb_size;
me_ctx->search_param = search_param;
if (cost_sb < cost_old / 4) {
sb->mvs[0][0] = mv_x;
sb->mvs[0][1] = mv_y;
if (n > 1) {
if (ret = var_size_bme(mi_ctx, sb, x_mb + (x << (n - 1)), y_mb + (y << (n - 1)), n - 1))
return ret;
} else
sb->sb = 0;
} else {
block->sb = 0;
return 0;
}
}
return 0;
}
static int cluster_mvs(MIContext *mi_ctx)
{
int changed, c, c_max = 0;
int mb_x, mb_y, x, y;
int mv_x, mv_y, avg_x, avg_y, dx, dy;
int d, ret;
Block *block;
Cluster *cluster, *cluster_new;
do {
changed = 0;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
c = block->cid;
cluster = &mi_ctx->clusters[c];
mv_x = block->mvs[0][0];
mv_y = block->mvs[0][1];
if (cluster->nb < 2)
continue;
avg_x = cluster->sum[0] / cluster->nb;
avg_y = cluster->sum[1] / cluster->nb;
dx = avg_x - mv_x;
dy = avg_y - mv_y;
if (FFABS(dx) > CLUSTER_THRESHOLD || FFABS(dy) > CLUSTER_THRESHOLD) {
for (d = 1; d < 5; d++)
for (y = FFMAX(mb_y - d, 0); y < FFMIN(mb_y + d + 1, mi_ctx->b_height); y++)
for (x = FFMAX(mb_x - d, 0); x < FFMIN(mb_x + d + 1, mi_ctx->b_width); x++) {
Block *nb = &mi_ctx->int_blocks[x + y * mi_ctx->b_width];
if (nb->cid > block->cid) {
if (nb->cid < c || c == block->cid)
c = nb->cid;
}
}
if (c == block->cid)
c = c_max + 1;
if (c >= NB_CLUSTERS) {
continue;
}
cluster_new = &mi_ctx->clusters[c];
cluster_new->sum[0] += mv_x;
cluster_new->sum[1] += mv_y;
cluster->sum[0] -= mv_x;
cluster->sum[1] -= mv_y;
cluster_new->nb++;
cluster->nb--;
c_max = FFMAX(c_max, c);
block->cid = c;
changed = 1;
}
}
} while (changed);
/* find boundaries */
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
for (y = FFMAX(mb_y - 1, 0); y < FFMIN(mb_y + 2, mi_ctx->b_height); y++)
for (x = FFMAX(mb_x - 1, 0); x < FFMIN(mb_x + 2, mi_ctx->b_width); x++) {
dx = x - mb_x;
dy = y - mb_y;
if ((x - mb_x) && (y - mb_y) || !dx && !dy)
continue;
if (!mb_x || !mb_y || mb_x == mi_ctx->b_width - 1 || mb_y == mi_ctx->b_height - 1)
continue;
if (block->cid != mi_ctx->int_blocks[x + y * mi_ctx->b_width].cid) {
if (!dx && block->cid == mi_ctx->int_blocks[x + (mb_y - dy) * mi_ctx->b_width].cid ||
!dy && block->cid == mi_ctx->int_blocks[(mb_x - dx) + y * mi_ctx->b_width].cid) {
if (ret = var_size_bme(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size))
return ret;
}
}
}
}
return 0;
}
static int inject_frame(AVFilterLink *inlink, AVFrame *avf_in)
{
AVFilterContext *ctx = inlink->dst;
MIContext *mi_ctx = ctx->priv;
Frame frame_tmp;
int mb_x, mb_y, dir;
av_frame_free(&mi_ctx->frames[0].avf);
frame_tmp = mi_ctx->frames[0];
memmove(&mi_ctx->frames[0], &mi_ctx->frames[1], sizeof(mi_ctx->frames[0]) * (NB_FRAMES - 1));
mi_ctx->frames[NB_FRAMES - 1] = frame_tmp;
mi_ctx->frames[NB_FRAMES - 1].avf = avf_in;
if (mi_ctx->mi_mode == MI_MODE_MCI) {
if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
mi_ctx->mv_table[2] = memcpy(mi_ctx->mv_table[2], mi_ctx->mv_table[1], sizeof(*mi_ctx->mv_table[1]) * mi_ctx->b_count);
mi_ctx->mv_table[1] = memcpy(mi_ctx->mv_table[1], mi_ctx->mv_table[0], sizeof(*mi_ctx->mv_table[0]) * mi_ctx->b_count);
}
if (mi_ctx->me_mode == ME_MODE_BIDIR) {
if (mi_ctx->frames[1].avf) {
for (dir = 0; dir < 2; dir++) {
mi_ctx->me_ctx.linesize = mi_ctx->frames[2].avf->linesize[0];
mi_ctx->me_ctx.data_cur = mi_ctx->frames[2].avf->data[0];
mi_ctx->me_ctx.data_ref = mi_ctx->frames[dir ? 3 : 1].avf->data[0];
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
search_mv(mi_ctx, mi_ctx->frames[2].blocks, mb_x, mb_y, dir);
}
}
} else if (mi_ctx->me_mode == ME_MODE_BILAT) {
Block *block;
int i, ret;
if (!mi_ctx->frames[0].avf)
return 0;
mi_ctx->me_ctx.linesize = mi_ctx->frames[0].avf->linesize[0];
mi_ctx->me_ctx.data_cur = mi_ctx->frames[1].avf->data[0];
mi_ctx->me_ctx.data_ref = mi_ctx->frames[2].avf->data[0];
bilateral_me(mi_ctx);
if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
int x_mb = mb_x << mi_ctx->log2_mb_size;
int y_mb = mb_y << mi_ctx->log2_mb_size;
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
block->sbad = get_sbad(&mi_ctx->me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
}
}
if (mi_ctx->vsbmc) {
for (i = 0; i < NB_CLUSTERS; i++) {
mi_ctx->clusters[i].sum[0] = 0;
mi_ctx->clusters[i].sum[1] = 0;
mi_ctx->clusters[i].nb = 0;
}
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
mi_ctx->clusters[0].sum[0] += block->mvs[0][0];
mi_ctx->clusters[0].sum[1] += block->mvs[0][1];
}
mi_ctx->clusters[0].nb = mi_ctx->b_count;
if (ret = cluster_mvs(mi_ctx))
return ret;
}
}
}
return 0;
}
static int detect_scene_change(MIContext *mi_ctx)
{
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
int x, y;
int linesize = me_ctx->linesize;
uint8_t *p1 = mi_ctx->frames[1].avf->data[0];
uint8_t *p2 = mi_ctx->frames[2].avf->data[0];
if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
double ret = 0, mafd, diff;
int64_t sad;
for (sad = y = 0; y < me_ctx->height; y += 8)
for (x = 0; x < linesize; x += 8)
sad += mi_ctx->sad(p1 + x + y * linesize, linesize, p2 + x + y * linesize, linesize);
emms_c();
mafd = (double) sad / (me_ctx->height * me_ctx->width * 3);
diff = fabs(mafd - mi_ctx->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
mi_ctx->prev_mafd = mafd;
return ret >= mi_ctx->scd_threshold;
}
return 0;
}
#define ADD_PIXELS(b_weight, mv_x, mv_y)\
do {\
if (!b_weight || pixel->nb + 1 >= NB_PIXEL_MVS)\
continue;\
pixel->refs[pixel->nb] = 1;\
pixel->weights[pixel->nb] = b_weight * (ALPHA_MAX - alpha);\
pixel->mvs[pixel->nb][0] = av_clip((mv_x * alpha) / ALPHA_MAX, x_min, x_max);\
pixel->mvs[pixel->nb][1] = av_clip((mv_y * alpha) / ALPHA_MAX, y_min, y_max);\
pixel->nb++;\
pixel->refs[pixel->nb] = 2;\
pixel->weights[pixel->nb] = b_weight * alpha;\
pixel->mvs[pixel->nb][0] = av_clip(-mv_x * (ALPHA_MAX - alpha) / ALPHA_MAX, x_min, x_max);\
pixel->mvs[pixel->nb][1] = av_clip(-mv_y * (ALPHA_MAX - alpha) / ALPHA_MAX, y_min, y_max);\
pixel->nb++;\
} while(0)
static void bidirectional_obmc(MIContext *mi_ctx, int alpha)
{
int x, y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
int mb_y, mb_x, dir;
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
mi_ctx->pixels[x + y * width].nb = 0;
for (dir = 0; dir < 2; dir++)
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
int a = dir ? alpha : (ALPHA_MAX - alpha);
int mv_x = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][0];
int mv_y = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][1];
int start_x, start_y;
int startc_x, startc_y, endc_x, endc_y;
start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_x * a / ALPHA_MAX;
start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_y * a / ALPHA_MAX;
startc_x = av_clip(start_x, 0, width - 1);
startc_y = av_clip(start_y, 0, height - 1);
endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
if (dir) {
mv_x = -mv_x;
mv_y = -mv_y;
}
for (y = startc_y; y < endc_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = startc_x; x < endc_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
Pixel *pixel = &mi_ctx->pixels[x + y * width];
ADD_PIXELS(obmc_weight, mv_x, mv_y);
}
}
}
}
static void set_frame_data(MIContext *mi_ctx, int alpha, AVFrame *avf_out)
{
int x, y, plane;
for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
int width = avf_out->width;
int height = avf_out->height;
int chroma = plane == 1 || plane == 2;
for (y = 0; y < height; y++)
for (x = 0; x < width; x++) {
int x_mv, y_mv;
int weight_sum = 0;
int i, val = 0;
Pixel *pixel = &mi_ctx->pixels[x + y * avf_out->width];
for (i = 0; i < pixel->nb; i++)
weight_sum += pixel->weights[i];
if (!weight_sum || !pixel->nb) {
pixel->weights[0] = ALPHA_MAX - alpha;
pixel->refs[0] = 1;
pixel->mvs[0][0] = 0;
pixel->mvs[0][1] = 0;
pixel->weights[1] = alpha;
pixel->refs[1] = 2;
pixel->mvs[1][0] = 0;
pixel->mvs[1][1] = 0;
pixel->nb = 2;
weight_sum = ALPHA_MAX;
}
for (i = 0; i < pixel->nb; i++) {
Frame *frame = &mi_ctx->frames[pixel->refs[i]];
if (chroma) {
x_mv = (x >> mi_ctx->log2_chroma_w) + pixel->mvs[i][0] / (1 << mi_ctx->log2_chroma_w);
y_mv = (y >> mi_ctx->log2_chroma_h) + pixel->mvs[i][1] / (1 << mi_ctx->log2_chroma_h);
} else {
x_mv = x + pixel->mvs[i][0];
y_mv = y + pixel->mvs[i][1];
}
val += pixel->weights[i] * frame->avf->data[plane][x_mv + y_mv * frame->avf->linesize[plane]];
}
val = ROUNDED_DIV(val, weight_sum);
if (chroma)
avf_out->data[plane][(x >> mi_ctx->log2_chroma_w) + (y >> mi_ctx->log2_chroma_h) * avf_out->linesize[plane]] = val;
else
avf_out->data[plane][x + y * avf_out->linesize[plane]] = val;
}
}
}
static void var_size_bmc(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n, int alpha)
{
int sb_x, sb_y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
for (sb_y = 0; sb_y < 2; sb_y++)
for (sb_x = 0; sb_x < 2; sb_x++) {
Block *sb = &block->subs[sb_x + sb_y * 2];
if (sb->sb)
var_size_bmc(mi_ctx, sb, x_mb + (sb_x << (n - 1)), y_mb + (sb_y << (n - 1)), n - 1, alpha);
else {
int x, y;
int mv_x = sb->mvs[0][0] * 2;
int mv_y = sb->mvs[0][1] * 2;
int start_x = x_mb + (sb_x << (n - 1));
int start_y = y_mb + (sb_y << (n - 1));
int end_x = start_x + (1 << (n - 1));
int end_y = start_y + (1 << (n - 1));
for (y = start_y; y < end_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = start_x; x < end_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
Pixel *pixel = &mi_ctx->pixels[x + y * width];
ADD_PIXELS(PX_WEIGHT_MAX, mv_x, mv_y);
}
}
}
}
}
static void bilateral_obmc(MIContext *mi_ctx, Block *block, int mb_x, int mb_y, int alpha)
{
int x, y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
Block *nb;
int nb_x, nb_y;
uint64_t sbads[9];
int mv_x = block->mvs[0][0] * 2;
int mv_y = block->mvs[0][1] * 2;
int start_x, start_y;
int startc_x, startc_y, endc_x, endc_y;
if (mi_ctx->mc_mode == MC_MODE_AOBMC)
for (nb_y = FFMAX(0, mb_y - 1); nb_y < FFMIN(mb_y + 2, mi_ctx->b_height); nb_y++)
for (nb_x = FFMAX(0, mb_x - 1); nb_x < FFMIN(mb_x + 2, mi_ctx->b_width); nb_x++) {
int x_nb = nb_x << mi_ctx->log2_mb_size;
int y_nb = nb_y << mi_ctx->log2_mb_size;
if (nb_x - mb_x || nb_y - mb_y)
sbads[nb_x - mb_x + 1 + (nb_y - mb_y + 1) * 3] = get_sbad(&mi_ctx->me_ctx, x_nb, y_nb, x_nb + block->mvs[0][0], y_nb + block->mvs[0][1]);
}
start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
startc_x = av_clip(start_x, 0, width - 1);
startc_y = av_clip(start_y, 0, height - 1);
endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
for (y = startc_y; y < endc_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = startc_x; x < endc_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
Pixel *pixel = &mi_ctx->pixels[x + y * width];
if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
nb_x = (((x - start_x) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
nb_y = (((y - start_y) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
if (nb_x || nb_y) {
uint64_t sbad = sbads[nb_x + 1 + (nb_y + 1) * 3];
nb = &mi_ctx->int_blocks[mb_x + nb_x + (mb_y + nb_y) * mi_ctx->b_width];
if (sbad && sbad != UINT64_MAX && nb->sbad != UINT64_MAX) {
int phi = av_clip(ALPHA_MAX * nb->sbad / sbad, 0, ALPHA_MAX);
obmc_weight = obmc_weight * phi / ALPHA_MAX;
}
}
}
ADD_PIXELS(obmc_weight, mv_x, mv_y);
}
}
}
static void interpolate(AVFilterLink *inlink, AVFrame *avf_out)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
MIContext *mi_ctx = ctx->priv;
int x, y;
int plane, alpha;
int64_t pts;
pts = av_rescale(avf_out->pts, (int64_t) ALPHA_MAX * outlink->time_base.num * inlink->time_base.den,
(int64_t) outlink->time_base.den * inlink->time_base.num);
alpha = (pts - mi_ctx->frames[1].avf->pts * ALPHA_MAX) / (mi_ctx->frames[2].avf->pts - mi_ctx->frames[1].avf->pts);
alpha = av_clip(alpha, 0, ALPHA_MAX);
if (alpha == 0 || alpha == ALPHA_MAX) {
av_frame_copy(avf_out, alpha ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
return;
}
if (mi_ctx->scene_changed) {
/* duplicate frame */
av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
return;
}
switch(mi_ctx->mi_mode) {
case MI_MODE_DUP:
av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
break;
case MI_MODE_BLEND:
for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
int width = avf_out->width;
int height = avf_out->height;
if (plane == 1 || plane == 2) {
width = AV_CEIL_RSHIFT(width, mi_ctx->log2_chroma_w);
height = AV_CEIL_RSHIFT(height, mi_ctx->log2_chroma_h);
}
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
avf_out->data[plane][x + y * avf_out->linesize[plane]] =
alpha * mi_ctx->frames[2].avf->data[plane][x + y * mi_ctx->frames[2].avf->linesize[plane]] +
((ALPHA_MAX - alpha) * mi_ctx->frames[1].avf->data[plane][x + y * mi_ctx->frames[1].avf->linesize[plane]] + 512) >> 10;
}
}
}
break;
case MI_MODE_MCI:
if (mi_ctx->me_mode == ME_MODE_BIDIR) {
bidirectional_obmc(mi_ctx, alpha);
set_frame_data(mi_ctx, alpha, avf_out);
} else if (mi_ctx->me_mode == ME_MODE_BILAT) {
int mb_x, mb_y;
Block *block;
for (y = 0; y < mi_ctx->frames[0].avf->height; y++)
for (x = 0; x < mi_ctx->frames[0].avf->width; x++)
mi_ctx->pixels[x + y * mi_ctx->frames[0].avf->width].nb = 0;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
if (block->sb)
var_size_bmc(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size, alpha);
bilateral_obmc(mi_ctx, block, mb_x, mb_y, alpha);
}
set_frame_data(mi_ctx, alpha, avf_out);
}
break;
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *avf_in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
MIContext *mi_ctx = ctx->priv;
int ret;
if (avf_in->pts == AV_NOPTS_VALUE) {
ret = ff_filter_frame(ctx->outputs[0], avf_in);
return ret;
}
if (!mi_ctx->frames[NB_FRAMES - 1].avf || avf_in->pts < mi_ctx->frames[NB_FRAMES - 1].avf->pts) {
av_log(ctx, AV_LOG_VERBOSE, "Initializing out pts from input pts %"PRId64"\n", avf_in->pts);
mi_ctx->out_pts = av_rescale_q(avf_in->pts, inlink->time_base, outlink->time_base);
}
if (!mi_ctx->frames[NB_FRAMES - 1].avf)
if (ret = inject_frame(inlink, av_frame_clone(avf_in)))
return ret;
if (ret = inject_frame(inlink, avf_in))
return ret;
if (!mi_ctx->frames[0].avf)
return 0;
mi_ctx->scene_changed = detect_scene_change(mi_ctx);
for (;;) {
AVFrame *avf_out;
if (av_compare_ts(mi_ctx->out_pts, outlink->time_base, mi_ctx->frames[2].avf->pts, inlink->time_base) > 0)
break;
if (!(avf_out = ff_get_video_buffer(ctx->outputs[0], inlink->w, inlink->h)))
return AVERROR(ENOMEM);
av_frame_copy_props(avf_out, mi_ctx->frames[NB_FRAMES - 1].avf);
avf_out->pts = mi_ctx->out_pts++;
interpolate(inlink, avf_out);
if ((ret = ff_filter_frame(ctx->outputs[0], avf_out)) < 0)
return ret;
}
return 0;
}
static av_cold void free_blocks(Block *block, int sb)
{
if (block->subs)
free_blocks(block->subs, 1);
if (sb)
av_freep(&block);
}
static av_cold void uninit(AVFilterContext *ctx)
{
MIContext *mi_ctx = ctx->priv;
int i, m;
av_freep(&mi_ctx->pixels);
if (mi_ctx->int_blocks)
for (m = 0; m < mi_ctx->b_count; m++)
free_blocks(&mi_ctx->int_blocks[m], 0);
av_freep(&mi_ctx->int_blocks);
for (i = 0; i < NB_FRAMES; i++) {
Frame *frame = &mi_ctx->frames[i];
av_freep(&frame->blocks);
av_frame_free(&frame->avf);
}
for (i = 0; i < 3; i++)
av_freep(&mi_ctx->mv_table[i]);
}
static const AVFilterPad minterpolate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad minterpolate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_minterpolate = {
.name = "minterpolate",
.description = NULL_IF_CONFIG_SMALL("Frame rate conversion using Motion Interpolation."),
.priv_size = sizeof(MIContext),
.priv_class = &minterpolate_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = minterpolate_inputs,
.outputs = minterpolate_outputs,
};