1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/af_arls.c

356 lines
11 KiB
C
Raw Normal View History

2023-04-16 18:53:07 +02:00
/*
* Copyright (c) 2023 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
enum OutModes {
IN_MODE,
DESIRED_MODE,
OUT_MODE,
NOISE_MODE,
ERROR_MODE,
2023-04-16 18:53:07 +02:00
NB_OMODES
};
typedef struct AudioRLSContext {
const AVClass *class;
int order;
float lambda;
float delta;
int output_mode;
int kernel_size;
AVFrame *offset;
AVFrame *delay;
AVFrame *coeffs;
AVFrame *p, *dp;
AVFrame *gains;
AVFrame *u, *tmp;
AVFrame *frame[2];
AVFloatDSPContext *fdsp;
} AudioRLSContext;
#define OFFSET(x) offsetof(AudioRLSContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define AT AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption arls_options[] = {
{ "order", "set the filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=16}, 1, INT16_MAX, A },
{ "lambda", "set the filter lambda", OFFSET(lambda), AV_OPT_TYPE_FLOAT, {.dbl=1.f}, 0, 1, AT },
{ "delta", "set the filter delta", OFFSET(delta), AV_OPT_TYPE_FLOAT, {.dbl=2.f}, 0, INT16_MAX, A },
{ "out_mode", "set output mode", OFFSET(output_mode), AV_OPT_TYPE_INT, {.i64=OUT_MODE}, 0, NB_OMODES-1, AT, "mode" },
{ "i", "input", 0, AV_OPT_TYPE_CONST, {.i64=IN_MODE}, 0, 0, AT, "mode" },
{ "d", "desired", 0, AV_OPT_TYPE_CONST, {.i64=DESIRED_MODE}, 0, 0, AT, "mode" },
{ "o", "output", 0, AV_OPT_TYPE_CONST, {.i64=OUT_MODE}, 0, 0, AT, "mode" },
{ "n", "noise", 0, AV_OPT_TYPE_CONST, {.i64=NOISE_MODE}, 0, 0, AT, "mode" },
{ "e", "error", 0, AV_OPT_TYPE_CONST, {.i64=ERROR_MODE}, 0, 0, AT, "mode" },
2023-04-16 18:53:07 +02:00
{ NULL }
};
AVFILTER_DEFINE_CLASS(arls);
static float fir_sample(AudioRLSContext *s, float sample, float *delay,
float *coeffs, float *tmp, int *offset)
{
const int order = s->order;
float output;
delay[*offset] = sample;
memcpy(tmp, coeffs + order - *offset, order * sizeof(float));
output = s->fdsp->scalarproduct_float(delay, tmp, s->kernel_size);
if (--(*offset) < 0)
*offset = order - 1;
return output;
}
static float process_sample(AudioRLSContext *s, float input, float desired, int ch)
{
float *coeffs = (float *)s->coeffs->extended_data[ch];
float *delay = (float *)s->delay->extended_data[ch];
float *gains = (float *)s->gains->extended_data[ch];
float *tmp = (float *)s->tmp->extended_data[ch];
float *u = (float *)s->u->extended_data[ch];
float *p = (float *)s->p->extended_data[ch];
float *dp = (float *)s->dp->extended_data[ch];
int *offsetp = (int *)s->offset->extended_data[ch];
const int kernel_size = s->kernel_size;
const int order = s->order;
const float lambda = s->lambda;
int offset = *offsetp;
float g = lambda;
float output, e;
delay[offset + order] = input;
output = fir_sample(s, input, delay, coeffs, tmp, offsetp);
e = desired - output;
for (int i = 0, pos = offset; i < order; i++, pos++) {
const int ikernel_size = i * kernel_size;
u[i] = 0.f;
for (int k = 0, pos = offset; k < order; k++, pos++)
u[i] += p[ikernel_size + k] * delay[pos];
g += u[i] * delay[pos];
}
g = 1.f / g;
for (int i = 0; i < order; i++) {
const int ikernel_size = i * kernel_size;
gains[i] = u[i] * g;
coeffs[i] = coeffs[order + i] = coeffs[i] + gains[i] * e;
tmp[i] = 0.f;
for (int k = 0, pos = offset; k < order; k++, pos++)
tmp[i] += p[ikernel_size + k] * delay[pos];
}
for (int i = 0; i < order; i++) {
const int ikernel_size = i * kernel_size;
for (int k = 0; k < order; k++)
dp[ikernel_size + k] = gains[i] * tmp[k];
}
for (int i = 0; i < order; i++) {
const int ikernel_size = i * kernel_size;
for (int k = 0; k < order; k++)
p[ikernel_size + k] = (p[ikernel_size + k] - (dp[ikernel_size + k] + dp[kernel_size * k + i]) * 0.5f) * lambda;
}
switch (s->output_mode) {
case IN_MODE: output = input; break;
case DESIRED_MODE: output = desired; break;
case OUT_MODE: output = desired - output; break;
case NOISE_MODE: output = input - output; break;
case ERROR_MODE: break;
2023-04-16 18:53:07 +02:00
}
return output;
}
static int process_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AudioRLSContext *s = ctx->priv;
AVFrame *out = arg;
const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs;
const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
for (int c = start; c < end; c++) {
const float *input = (const float *)s->frame[0]->extended_data[c];
const float *desired = (const float *)s->frame[1]->extended_data[c];
float *output = (float *)out->extended_data[c];
for (int n = 0; n < out->nb_samples; n++) {
output[n] = process_sample(s, input[n], desired[n], c);
if (ctx->is_disabled)
output[n] = input[n];
}
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
AudioRLSContext *s = ctx->priv;
int i, ret, status;
int nb_samples;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
nb_samples = FFMIN(ff_inlink_queued_samples(ctx->inputs[0]),
ff_inlink_queued_samples(ctx->inputs[1]));
for (i = 0; i < ctx->nb_inputs && nb_samples > 0; i++) {
if (s->frame[i])
continue;
if (ff_inlink_check_available_samples(ctx->inputs[i], nb_samples) > 0) {
ret = ff_inlink_consume_samples(ctx->inputs[i], nb_samples, nb_samples, &s->frame[i]);
if (ret < 0)
return ret;
}
}
if (s->frame[0] && s->frame[1]) {
AVFrame *out;
out = ff_get_audio_buffer(ctx->outputs[0], s->frame[0]->nb_samples);
if (!out) {
av_frame_free(&s->frame[0]);
av_frame_free(&s->frame[1]);
return AVERROR(ENOMEM);
}
ff_filter_execute(ctx, process_channels, out, NULL,
FFMIN(ctx->outputs[0]->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
out->pts = s->frame[0]->pts;
av_frame_free(&s->frame[0]);
av_frame_free(&s->frame[1]);
ret = ff_filter_frame(ctx->outputs[0], out);
if (ret < 0)
return ret;
}
if (!nb_samples) {
for (i = 0; i < 2; i++) {
if (ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts)) {
ff_outlink_set_status(ctx->outputs[0], status, pts);
return 0;
}
}
}
if (ff_outlink_frame_wanted(ctx->outputs[0])) {
for (i = 0; i < 2; i++) {
if (ff_inlink_queued_samples(ctx->inputs[i]) > 0)
continue;
ff_inlink_request_frame(ctx->inputs[i]);
return 0;
}
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AudioRLSContext *s = ctx->priv;
s->kernel_size = FFALIGN(s->order, 16);
if (!s->offset)
s->offset = ff_get_audio_buffer(outlink, 1);
if (!s->delay)
s->delay = ff_get_audio_buffer(outlink, 2 * s->kernel_size);
if (!s->coeffs)
s->coeffs = ff_get_audio_buffer(outlink, 2 * s->kernel_size);
if (!s->gains)
s->gains = ff_get_audio_buffer(outlink, s->kernel_size);
if (!s->p)
s->p = ff_get_audio_buffer(outlink, s->kernel_size * s->kernel_size);
if (!s->dp)
s->dp = ff_get_audio_buffer(outlink, s->kernel_size * s->kernel_size);
if (!s->u)
s->u = ff_get_audio_buffer(outlink, s->kernel_size);
if (!s->tmp)
s->tmp = ff_get_audio_buffer(outlink, s->kernel_size);
if (!s->delay || !s->coeffs || !s->p || !s->dp || !s->gains || !s->offset || !s->u || !s->tmp)
return AVERROR(ENOMEM);
for (int ch = 0; ch < s->offset->ch_layout.nb_channels; ch++) {
int *dst = (int *)s->offset->extended_data[ch];
for (int i = 0; i < s->kernel_size; i++)
dst[0] = s->kernel_size - 1;
}
for (int ch = 0; ch < s->p->ch_layout.nb_channels; ch++) {
float *dst = (float *)s->p->extended_data[ch];
for (int i = 0; i < s->kernel_size; i++)
dst[i * s->kernel_size + i] = s->delta;
}
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
AudioRLSContext *s = ctx->priv;
s->fdsp = avpriv_float_dsp_alloc(0);
if (!s->fdsp)
return AVERROR(ENOMEM);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
AudioRLSContext *s = ctx->priv;
av_freep(&s->fdsp);
av_frame_free(&s->delay);
av_frame_free(&s->coeffs);
av_frame_free(&s->gains);
av_frame_free(&s->offset);
av_frame_free(&s->p);
av_frame_free(&s->dp);
av_frame_free(&s->u);
av_frame_free(&s->tmp);
}
static const AVFilterPad inputs[] = {
{
.name = "input",
.type = AVMEDIA_TYPE_AUDIO,
},
{
.name = "desired",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_af_arls = {
.name = "arls",
.description = NULL_IF_CONFIG_SMALL("Apply Recursive Least Squares algorithm to first audio stream."),
.priv_size = sizeof(AudioRLSContext),
.priv_class = &arls_class,
.init = init,
.uninit = uninit,
.activate = activate,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};