1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavformat/au.c

222 lines
5.8 KiB
C
Raw Normal View History

/*
* AU muxer and demuxer
* Copyright (c) 2001 Fabrice Bellard
*
* first version by Francois Revol <revol@free.fr>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Reference documents:
* http://www.opengroup.org/public/pubs/external/auformat.html
* http://www.goice.co.jp/member/mo/formats/au.html
*/
#include "avformat.h"
#include "internal.h"
#include "avio_internal.h"
#include "pcm.h"
static const AVCodecTag codec_au_tags[] = {
{ AV_CODEC_ID_PCM_MULAW, 1 },
{ AV_CODEC_ID_PCM_S8, 2 },
{ AV_CODEC_ID_PCM_S16BE, 3 },
{ AV_CODEC_ID_PCM_S24BE, 4 },
{ AV_CODEC_ID_PCM_S32BE, 5 },
{ AV_CODEC_ID_PCM_F32BE, 6 },
{ AV_CODEC_ID_PCM_F64BE, 7 },
{ AV_CODEC_ID_PCM_ALAW, 27 },
{ AV_CODEC_ID_NONE, 0 },
};
#if CONFIG_AU_DEMUXER
static int au_probe(AVProbeData *p)
{
if (p->buf[0] == '.' && p->buf[1] == 's' &&
p->buf[2] == 'n' && p->buf[3] == 'd')
return AVPROBE_SCORE_MAX;
else
return 0;
}
#define BLOCK_SIZE 1024
static int au_read_header(AVFormatContext *s)
{
int size;
unsigned int tag;
AVIOContext *pb = s->pb;
unsigned int id, channels, rate;
int bps;
enum AVCodecID codec;
AVStream *st;
tag = avio_rl32(pb);
if (tag != MKTAG('.', 's', 'n', 'd'))
2012-12-23 23:06:46 +03:00
return AVERROR_INVALIDDATA;
size = avio_rb32(pb); /* header size */
avio_rb32(pb); /* data size */
id = avio_rb32(pb);
rate = avio_rb32(pb);
channels = avio_rb32(pb);
if (size > 24) {
/* skip unused data */
avio_skip(pb, size - 24);
}
codec = ff_codec_get_id(codec_au_tags, id);
if (codec == AV_CODEC_ID_NONE) {
avpriv_request_sample(s, "unknown or unsupported codec tag: %u", id);
return AVERROR_PATCHWELCOME;
}
bps = av_get_bits_per_sample(codec);
if (!bps) {
avpriv_request_sample(s, "Unknown bits per sample");
return AVERROR_PATCHWELCOME;
}
if (channels == 0 || channels >= INT_MAX / (BLOCK_SIZE * bps >> 3)) {
av_log(s, AV_LOG_ERROR, "Invalid number of channels %u\n", channels);
return AVERROR_INVALIDDATA;
}
2012-12-23 21:39:31 +03:00
if (rate == 0 || rate > INT_MAX) {
av_log(s, AV_LOG_ERROR, "Invalid sample rate: %u\n", rate);
return AVERROR_INVALIDDATA;
}
st = avformat_new_stream(s, NULL);
if (!st)
2012-12-23 23:06:46 +03:00
return AVERROR(ENOMEM);
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO;
st->codecpar->codec_tag = id;
st->codecpar->codec_id = codec;
st->codecpar->channels = channels;
st->codecpar->sample_rate = rate;
st->codecpar->bit_rate = channels * rate * bps;
st->codecpar->block_align = channels * bps >> 3;
st->start_time = 0;
avpriv_set_pts_info(st, 64, 1, rate);
return 0;
}
static int au_read_packet(AVFormatContext *s, AVPacket *pkt)
{
int ret;
ret = av_get_packet(s->pb, pkt, BLOCK_SIZE *
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
s->streams[0]->codecpar->block_align);
if (ret < 0)
return ret;
pkt->stream_index = 0;
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
pkt->duration = ret / s->streams[0]->codecpar->block_align;
return 0;
}
AVInputFormat ff_au_demuxer = {
.name = "au",
.long_name = NULL_IF_CONFIG_SMALL("Sun AU"),
.read_probe = au_probe,
.read_header = au_read_header,
.read_packet = au_read_packet,
.read_seek = ff_pcm_read_seek,
.codec_tag = (const AVCodecTag* const []) { codec_au_tags, 0 },
};
#endif /* CONFIG_AU_DEMUXER */
#if CONFIG_AU_MUXER
2012-12-23 22:14:38 +03:00
#include "rawenc.h"
/* if we don't know the size in advance */
#define AU_UNKNOWN_SIZE ((uint32_t)(~0))
/* AUDIO_FILE header */
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
static int put_au_header(AVIOContext *pb, AVCodecParameters *par)
{
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
if (!par->codec_tag)
2012-12-23 23:06:46 +03:00
return AVERROR(EINVAL);
ffio_wfourcc(pb, ".snd"); /* magic number */
avio_wb32(pb, 24); /* header size */
avio_wb32(pb, AU_UNKNOWN_SIZE); /* data size */
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
avio_wb32(pb, par->codec_tag); /* codec ID */
avio_wb32(pb, par->sample_rate);
avio_wb32(pb, par->channels);
return 0;
}
static int au_write_header(AVFormatContext *s)
{
AVIOContext *pb = s->pb;
2012-12-23 23:06:46 +03:00
int ret;
s->priv_data = NULL;
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
2014-06-18 21:42:52 +03:00
if ((ret = put_au_header(pb, s->streams[0]->codecpar)) < 0)
2012-12-23 23:06:46 +03:00
return ret;
avio_flush(pb);
return 0;
}
static int au_write_trailer(AVFormatContext *s)
{
AVIOContext *pb = s->pb;
int64_t file_size;
if (s->pb->seekable) {
/* update file size */
file_size = avio_tell(pb);
avio_seek(pb, 8, SEEK_SET);
avio_wb32(pb, (uint32_t)(file_size - 24));
avio_seek(pb, file_size, SEEK_SET);
avio_flush(pb);
}
return 0;
}
AVOutputFormat ff_au_muxer = {
.name = "au",
.long_name = NULL_IF_CONFIG_SMALL("Sun AU"),
.mime_type = "audio/basic",
.extensions = "au",
.audio_codec = AV_CODEC_ID_PCM_S16BE,
.video_codec = AV_CODEC_ID_NONE,
.write_header = au_write_header,
.write_packet = ff_raw_write_packet,
.write_trailer = au_write_trailer,
.codec_tag = (const AVCodecTag* const []) { codec_au_tags, 0 },
.flags = AVFMT_NOTIMESTAMPS,
};
#endif /* CONFIG_AU_MUXER */