1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/vvc/vvc_ctu.h

485 lines
13 KiB
C
Raw Normal View History

/*
* VVC CTU(Coding Tree Unit) parser
*
* Copyright (C) 2022 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_VVC_VVC_CTU_H
#define AVCODEC_VVC_VVC_CTU_H
#include "libavcodec/cabac.h"
#include "libavutil/mem_internal.h"
#include "vvcdec.h"
#define MAX_CTU_SIZE 128
#define MAX_CU_SIZE MAX_CTU_SIZE
#define MIN_CU_SIZE 4
#define MIN_CU_LOG2 2
#define MAX_CU_DEPTH 7
#define MAX_PARTS_IN_CTU ((MAX_CTU_SIZE >> MIN_CU_LOG2) * (MAX_CTU_SIZE >> MIN_CU_LOG2))
#define MIN_PU_SIZE 4
#define MAX_TB_SIZE 64
#define MIN_TU_SIZE 4
#define MAX_TUS_IN_CU 64
#define MAX_QP 63
#define MAX_PB_SIZE 128
#define EDGE_EMU_BUFFER_STRIDE (MAX_PB_SIZE + 32)
#define CHROMA_EXTRA_BEFORE 1
#define CHROMA_EXTRA_AFTER 2
#define CHROMA_EXTRA 3
#define LUMA_EXTRA_BEFORE 3
#define LUMA_EXTRA_AFTER 4
#define LUMA_EXTRA 7
#define BILINEAR_EXTRA_BEFORE 0
#define BILINEAR_EXTRA_AFTER 1
#define BILINEAR_EXTRA 1
#define MAX_CONTROL_POINTS 3
#define AFFINE_MIN_BLOCK_SIZE 4
#define MRG_MAX_NUM_CANDS 6
#define MAX_NUM_HMVP_CANDS 5
#define SAO_PADDING_SIZE 1
#define ALF_PADDING_SIZE 8
#define ALF_BLOCK_SIZE 4
#define ALF_BORDER_LUMA 3
#define ALF_BORDER_CHROMA 2
#define ALF_VB_POS_ABOVE_LUMA 4
#define ALF_VB_POS_ABOVE_CHROMA 2
#define ALF_GRADIENT_STEP 2
#define ALF_GRADIENT_BORDER 2
#define ALF_GRADIENT_SIZE ((MAX_CU_SIZE + ALF_GRADIENT_BORDER * 2) / ALF_GRADIENT_STEP)
#define ALF_NUM_DIR 4
/**
* Value of the luma sample at position (x, y) in the 2D array tab.
*/
#define SAMPLE(tab, x, y) ((tab)[(y) * s->pps->width + (x)])
#define SAMPLE_CTB(tab, x, y) ((tab)[(y) * min_cb_width + (x)])
#define CTB(tab, x, y) ((tab)[(y) * fc->ps.pps->ctb_width + (x)])
enum SAOType {
SAO_NOT_APPLIED = 0,
SAO_BAND,
SAO_EDGE,
};
enum SAOEOClass {
SAO_EO_HORIZ = 0,
SAO_EO_VERT,
SAO_EO_135D,
SAO_EO_45D,
};
typedef struct NeighbourAvailable {
int cand_left;
int cand_up;
int cand_up_left;
int cand_up_right;
int cand_up_right_sap;
} NeighbourAvailable;
enum IspType{
ISP_NO_SPLIT,
ISP_HOR_SPLIT,
ISP_VER_SPLIT,
};
typedef enum VVCSplitMode {
SPLIT_NONE,
SPLIT_TT_HOR,
SPLIT_BT_HOR,
SPLIT_TT_VER,
SPLIT_BT_VER,
SPLIT_QT,
} VVCSplitMode;
typedef enum MtsIdx {
MTS_DCT2_DCT2,
MTS_DST7_DST7,
MTS_DST7_DCT8,
MTS_DCT8_DST7,
MTS_DCT8_DCT8,
} MtsIdx;
typedef struct TransformBlock {
uint8_t has_coeffs;
uint8_t c_idx;
uint8_t ts; ///< transform_skip_flag
int x0;
int y0;
int tb_width;
int tb_height;
int log2_tb_width;
int log2_tb_height;
int max_scan_x;
int max_scan_y;
int min_scan_x;
int min_scan_y;
int qp;
int rect_non_ts_flag;
int bd_shift;
int bd_offset;
int *coeffs;
} TransformBlock;
typedef enum VVCTreeType {
SINGLE_TREE,
DUAL_TREE_LUMA,
DUAL_TREE_CHROMA,
} VVCTreeType;
typedef struct TransformUnit {
int x0;
int y0;
int width;
int height;
uint8_t joint_cbcr_residual_flag; ///< tu_joint_cbcr_residual_flag
uint8_t coded_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< tu_y_coded_flag, tu_cb_coded_flag, tu_cr_coded_flag
uint8_t nb_tbs;
TransformBlock tbs[VVC_MAX_SAMPLE_ARRAYS];
struct TransformUnit *next; ///< RefStruct reference
} TransformUnit;
typedef enum PredMode {
MODE_INTER,
MODE_INTRA,
MODE_SKIP,
MODE_PLT,
MODE_IBC,
} PredMode;
typedef struct Mv {
int x; ///< horizontal component of motion vector
int y; ///< vertical component of motion vector
} Mv;
typedef struct MvField {
DECLARE_ALIGNED(8, Mv, mv)[2]; ///< mvL0, vvL1
int8_t ref_idx[2]; ///< refIdxL0, refIdxL1
uint8_t hpel_if_idx; ///< hpelIfIdx
uint8_t bcw_idx; ///< bcwIdx
uint8_t pred_flag;
uint8_t ciip_flag; ///< ciip_flag
} MvField;
typedef struct DMVRInfo {
DECLARE_ALIGNED(8, Mv, mv)[2]; ///< mvL0, vvL1
uint8_t dmvr_enabled;
} DMVRInfo;
typedef enum MotionModelIdc {
MOTION_TRANSLATION,
MOTION_4_PARAMS_AFFINE,
MOTION_6_PARAMS_AFFINE,
} MotionModelIdc;
typedef enum PredFlag {
PF_INTRA = 0x0,
PF_L0 = 0x1,
PF_L1 = 0x2,
PF_BI = 0x3,
PF_IBC = PF_L0 | 0x4,
} PredFlag;
typedef enum IntraPredMode {
INTRA_INVALID = -1,
INTRA_PLANAR = 0,
INTRA_DC,
INTRA_HORZ = 18,
INTRA_DIAG = 34,
INTRA_VERT = 50,
INTRA_VDIAG = 66,
INTRA_LT_CCLM = 81,
INTRA_L_CCLM,
INTRA_T_CCLM
} IntraPredMode;
typedef struct MotionInfo {
MotionModelIdc motion_model_idc; ///< MotionModelIdc
int8_t ref_idx[2]; ///< refIdxL0, refIdxL1
uint8_t hpel_if_idx; ///< hpelIfIdx
uint8_t bcw_idx; ///< bcwIdx
PredFlag pred_flag;
Mv mv[2][MAX_CONTROL_POINTS];
int num_sb_x, num_sb_y;
} MotionInfo;
typedef struct PredictionUnit {
uint8_t general_merge_flag;
uint8_t mmvd_merge_flag;
//InterPredIdc inter_pred_idc;
uint8_t inter_affine_flag;
//subblock predict
uint8_t merge_subblock_flag;
uint8_t merge_gpm_flag;
uint8_t gpm_partition_idx;
MvField gpm_mv[2];
int sym_mvd_flag;
MotionInfo mi;
// for regular prediction only
uint8_t dmvr_flag;
uint8_t bdof_flag;
int16_t diff_mv_x[2][AFFINE_MIN_BLOCK_SIZE * AFFINE_MIN_BLOCK_SIZE]; ///< diffMvLX
int16_t diff_mv_y[2][AFFINE_MIN_BLOCK_SIZE * AFFINE_MIN_BLOCK_SIZE]; ///< diffMvLX
int cb_prof_flag[2];
} PredictionUnit;
typedef struct CodingUnit {
VVCTreeType tree_type;
int x0;
int y0;
int cb_width;
int cb_height;
int ch_type;
int cqt_depth;
uint8_t coded_flag;
uint8_t sbt_flag;
uint8_t sbt_horizontal_flag;
uint8_t sbt_pos_flag;
int lfnst_idx;
MtsIdx mts_idx;
uint8_t act_enabled_flag;
uint8_t intra_luma_ref_idx; ///< IntraLumaRefLineIdx[][]
uint8_t intra_mip_flag; ///< intra_mip_flag
uint8_t skip_flag; ///< cu_skip_flag;
//inter
uint8_t ciip_flag;
// Inferred parameters
enum IspType isp_split_type; ///< IntraSubPartitionsSplitType
enum PredMode pred_mode; ///< PredMode
int num_intra_subpartitions;
IntraPredMode intra_pred_mode_y; ///< IntraPredModeY
IntraPredMode intra_pred_mode_c; ///< IntraPredModeC
int mip_chroma_direct_flag; ///< MipChromaDirectFlag
int bdpcm_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< BdpcmFlag
int apply_lfnst_flag[VVC_MAX_SAMPLE_ARRAYS]; ///< ApplyLfnstFlag[]
struct {
TransformUnit *head; ///< RefStruct reference
TransformUnit *tail; ///< RefStruct reference
} tus;
int8_t qp[4]; ///< QpY, Qp′Cb, Qp′Cr, Qp′CbCr
PredictionUnit pu;
struct CodingUnit *next; ///< RefStruct reference
} CodingUnit;
typedef struct CTU {
CodingUnit *cus;
int max_y[2][VVC_MAX_REF_ENTRIES];
int max_y_idx[2];
int has_dmvr;
} CTU;
typedef struct ReconstructedArea {
int x;
int y;
int w;
int h;
} ReconstructedArea;
typedef struct VVCCabacState {
uint16_t state[2];
uint8_t shift[2];
} VVCCabacState;
// VVC_CONTEXTS matched with SYNTAX_ELEMENT_LAST, it's checked by cabac_init_state.
#define VVC_CONTEXTS 378
typedef struct EntryPoint {
int8_t qp_y; ///< QpY
int stat_coeff[VVC_MAX_SAMPLE_ARRAYS]; ///< StatCoeff
VVCCabacState cabac_state[VVC_CONTEXTS];
CABACContext cc;
int ctu_start;
int ctu_end;
uint8_t is_first_qg; // first quantization group
MvField hmvp[MAX_NUM_HMVP_CANDS]; ///< HmvpCandList
int num_hmvp; ///< NumHmvpCand
MvField hmvp_ibc[MAX_NUM_HMVP_CANDS]; ///< HmvpIbcCandList
int num_hmvp_ibc; ///< NumHmvpIbcCand
} EntryPoint;
typedef struct VVCLocalContext {
uint8_t ctb_left_flag;
uint8_t ctb_up_flag;
uint8_t ctb_up_right_flag;
uint8_t ctb_up_left_flag;
int end_of_tiles_x;
int end_of_tiles_y;
/* +7 is for subpixel interpolation, *2 for high bit depths */
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2];
/* The extended size between the new edge emu buffer is abused by SAO */
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer2)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, int16_t, tmp)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, int16_t, tmp1)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, int16_t, tmp2)[MAX_PB_SIZE * MAX_PB_SIZE];
DECLARE_ALIGNED(32, uint8_t, ciip_tmp1)[MAX_PB_SIZE * MAX_PB_SIZE * 2];
DECLARE_ALIGNED(32, uint8_t, ciip_tmp2)[MAX_PB_SIZE * MAX_PB_SIZE * 2];
DECLARE_ALIGNED(32, uint8_t, sao_buffer)[(MAX_CTU_SIZE + 2 * SAO_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, uint8_t, alf_buffer_luma)[(MAX_CTU_SIZE + 2 * ALF_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, uint8_t, alf_buffer_chroma)[(MAX_CTU_SIZE + 2 * ALF_PADDING_SIZE) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, int32_t, alf_gradient_tmp)[ALF_GRADIENT_SIZE * ALF_GRADIENT_SIZE * ALF_NUM_DIR];
struct {
int sbt_num_fourths_tb0; ///< SbtNumFourthsTb0
uint8_t is_cu_qp_delta_coded; ///< IsCuQpDeltaCoded
int cu_qg_top_left_x; ///< CuQgTopLeftX
int cu_qg_top_left_y; ///< CuQgTopLeftY
int is_cu_chroma_qp_offset_coded; ///< IsCuChromaQpOffsetCoded
int chroma_qp_offset[3]; ///< CuQpOffsetCb, CuQpOffsetCr, CuQpOffsetCbCr
int infer_tu_cbf_luma; ///< InferTuCbfLuma
int prev_tu_cbf_y; ///< prevTuCbfY;
int lfnst_dc_only; ///< LfnstDcOnly
int lfnst_zero_out_sig_coeff_flag; ///< LfnstZeroOutSigCoeffFlag
int mts_dc_only; ///< MtsDcOnly
int mts_zero_out_sig_coeff_flag; ///< MtsZeroOutSigCoeffFlag;
} parse;
struct {
// lmcs cache, for recon only
int chroma_scale;
int x_vpdu;
int y_vpdu;
} lmcs;
CodingUnit *cu;
ReconstructedArea ras[2][MAX_PARTS_IN_CTU];
int num_ras[2];
NeighbourAvailable na;
#define BOUNDARY_LEFT_SLICE (1 << 0)
#define BOUNDARY_LEFT_TILE (1 << 1)
#define BOUNDARY_UPPER_SLICE (1 << 2)
#define BOUNDARY_UPPER_TILE (1 << 3)
/* properties of the boundary of the current CTB for the purposes
* of the deblocking filter */
int boundary_flags;
SliceContext *sc;
VVCFrameContext *fc;
EntryPoint *ep;
int *coeffs;
} VVCLocalContext;
typedef struct VVCAllowedSplit {
int qt;
int btv;
int bth;
int ttv;
int tth;
} VVCAllowedSplit;
typedef struct SAOParams {
int offset_abs[3][4]; ///< sao_offset_abs
int offset_sign[3][4]; ///< sao_offset_sign
uint8_t band_position[3]; ///< sao_band_position
int eo_class[3]; ///< sao_eo_class
int16_t offset_val[3][5]; ///< SaoOffsetVal
uint8_t type_idx[3]; ///< sao_type_idx
} SAOParams;
typedef struct ALFParams {
uint8_t ctb_flag[3]; ///< alf_ctb_flag[]
uint8_t ctb_filt_set_idx_y; ///< AlfCtbFiltSetIdxY
uint8_t alf_ctb_filter_alt_idx[2]; ///< alf_ctb_filter_alt_idx[]
uint8_t ctb_cc_idc[2]; ///< alf_ctb_cc_cb_idc, alf_ctb_cc_cr_idc
uint8_t applied[3];
} ALFParams;
/**
* parse a CTU
* @param lc local context for CTU
* @param ctb_idx CTB(CTU) address in the current slice
* @param rs raster order for the CTU.
* @param rx raster order x for the CTU.
* @param ry raster order y for the CTU.
* @return AVERROR
*/
int ff_vvc_coding_tree_unit(VVCLocalContext *lc, int ctu_idx, int rs, int rx, int ry);
//utils
void ff_vvc_set_neighbour_available(VVCLocalContext *lc, int x0, int y0, int w, int h);
void ff_vvc_decode_neighbour(VVCLocalContext *lc, int x_ctb, int y_ctb, int rx, int ry, int rs);
void ff_vvc_ctu_free_cus(CTU *ctu);
int ff_vvc_get_qPy(const VVCFrameContext *fc, int xc, int yc);
void ff_vvc_ep_init_stat_coeff(EntryPoint *ep, int bit_depth, int persistent_rice_adaptation_enabled_flag);
#endif // AVCODEC_VVC_VVC_CTU_H