1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vaf_spectrumsynth.c

550 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* SpectrumSynth filter
* @todo support float pixel format
*/
#include "libavutil/tx.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/cpu.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "avfilter.h"
#include "formats.h"
#include "audio.h"
#include "video.h"
#include "filters.h"
#include "internal.h"
#include "window_func.h"
enum MagnitudeScale { LINEAR, LOG, NB_SCALES };
enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES };
enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
typedef struct SpectrumSynthContext {
const AVClass *class;
int sample_rate;
int channels;
int scale;
int sliding;
int win_func;
float overlap;
int orientation;
AVFrame *magnitude, *phase;
AVTXContext *fft; ///< Fast Fourier Transform context
av_tx_fn tx_fn;
AVComplexFloat **fft_in; ///< bins holder for each (displayed) channels
AVComplexFloat **fft_out; ///< bins holder for each (displayed) channels
int win_size;
int size;
int nb_freq;
int hop_size;
int start, end;
int xpos;
int xend;
int64_t pts;
float factor;
AVFrame *buffer;
float *window_func_lut; ///< Window function LUT
} SpectrumSynthContext;
#define OFFSET(x) offsetof(SpectrumSynthContext, x)
#define A AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_AUDIO_PARAM
#define V AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption spectrumsynth_options[] = {
{ "sample_rate", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64 = 44100}, 15, INT_MAX, A },
{ "channels", "set channels", OFFSET(channels), AV_OPT_TYPE_INT, {.i64 = 1}, 1, 8, A },
{ "scale", "set input amplitude scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = LOG}, 0, NB_SCALES-1, V, .unit = "scale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, V, .unit = "scale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, V, .unit = "scale" },
{ "slide", "set input sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = FULLFRAME}, 0, NB_SLIDES-1, V, .unit = "slide" },
{ "replace", "consume old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, V, .unit = "slide" },
{ "scroll", "consume only most right column", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, V, .unit = "slide" },
{ "fullframe", "consume full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, V, .unit = "slide" },
{ "rscroll", "consume only most left column", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, V, .unit = "slide" },
WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, 0),
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, A },
{ "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, V, .unit = "orientation" },
{ "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, V, .unit = "orientation" },
{ "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, V, .unit = "orientation" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(spectrumsynth);
static int query_formats(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layout = NULL;
AVFilterLink *magnitude = ctx->inputs[0];
AVFilterLink *phase = ctx->inputs[1];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV444P16, AV_PIX_FMT_NONE };
int ret, sample_rates[] = { 48000, -1 };
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref (formats, &outlink->incfg.formats )) < 0 ||
(ret = ff_add_channel_layout (&layout, &FF_COUNT2LAYOUT(s->channels))) < 0 ||
(ret = ff_channel_layouts_ref (layout , &outlink->incfg.channel_layouts)) < 0)
return ret;
sample_rates[0] = s->sample_rate;
formats = ff_make_format_list(sample_rates);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &magnitude->outcfg.formats)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &phase->outcfg.formats)) < 0)
return ret;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SpectrumSynthContext *s = ctx->priv;
int width = ctx->inputs[0]->w;
int height = ctx->inputs[0]->h;
AVRational time_base = ctx->inputs[0]->time_base;
AVRational frame_rate = ctx->inputs[0]->frame_rate;
float factor, overlap, scale;
int i, ch, ret;
outlink->sample_rate = s->sample_rate;
outlink->time_base = (AVRational){1, s->sample_rate};
if (width != ctx->inputs[1]->w ||
height != ctx->inputs[1]->h) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase sizes differ (%dx%d vs %dx%d).\n",
width, height,
ctx->inputs[1]->w, ctx->inputs[1]->h);
return AVERROR_INVALIDDATA;
} else if (av_cmp_q(time_base, ctx->inputs[1]->time_base) != 0) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase time bases differ (%d/%d vs %d/%d).\n",
time_base.num, time_base.den,
ctx->inputs[1]->time_base.num,
ctx->inputs[1]->time_base.den);
return AVERROR_INVALIDDATA;
} else if (av_cmp_q(frame_rate, ctx->inputs[1]->frame_rate) != 0) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase framerates differ (%d/%d vs %d/%d).\n",
frame_rate.num, frame_rate.den,
ctx->inputs[1]->frame_rate.num,
ctx->inputs[1]->frame_rate.den);
return AVERROR_INVALIDDATA;
}
s->size = s->orientation == VERTICAL ? height / s->channels : width / s->channels;
s->xend = s->orientation == VERTICAL ? width : height;
s->win_size = s->size * 2;
s->nb_freq = s->size;
ret = av_tx_init(&s->fft, &s->tx_fn, AV_TX_FLOAT_FFT, 1, s->win_size, &scale, 0);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
"The window size might be too high.\n");
return ret;
}
s->fft_in = av_calloc(s->channels, sizeof(*s->fft_in));
if (!s->fft_in)
return AVERROR(ENOMEM);
s->fft_out = av_calloc(s->channels, sizeof(*s->fft_out));
if (!s->fft_out)
return AVERROR(ENOMEM);
for (ch = 0; ch < s->channels; ch++) {
s->fft_in[ch] = av_calloc(FFALIGN(s->win_size, av_cpu_max_align()), sizeof(**s->fft_in));
if (!s->fft_in[ch])
return AVERROR(ENOMEM);
s->fft_out[ch] = av_calloc(FFALIGN(s->win_size, av_cpu_max_align()), sizeof(**s->fft_out));
if (!s->fft_out[ch])
return AVERROR(ENOMEM);
}
s->buffer = ff_get_audio_buffer(outlink, s->win_size * 2);
if (!s->buffer)
return AVERROR(ENOMEM);
/* pre-calc windowing function */
s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
if (s->overlap == 1)
s->overlap = overlap;
s->hop_size = (1 - s->overlap) * s->win_size;
for (factor = 0, i = 0; i < s->win_size; i++) {
factor += s->window_func_lut[i] * s->window_func_lut[i];
}
s->factor = (factor / s->win_size) / FFMAX(1 / (1 - s->overlap) - 1, 1);
return 0;
}
static void read16_fft_bin(SpectrumSynthContext *s,
int x, int y, int f, int ch)
{
const int m_linesize = s->magnitude->linesize[0];
const int p_linesize = s->phase->linesize[0];
const uint16_t *m = (uint16_t *)(s->magnitude->data[0] + y * m_linesize);
const uint16_t *p = (uint16_t *)(s->phase->data[0] + y * p_linesize);
float magnitude, phase;
switch (s->scale) {
case LINEAR:
magnitude = m[x] / (double)UINT16_MAX;
break;
case LOG:
magnitude = ff_exp10(((m[x] / (double)UINT16_MAX) - 1.) * 6.);
break;
default:
av_assert0(0);
}
phase = ((p[x] / (double)UINT16_MAX) * 2. - 1.) * M_PI;
s->fft_in[ch][f].re = magnitude * cos(phase);
s->fft_in[ch][f].im = magnitude * sin(phase);
}
static void read8_fft_bin(SpectrumSynthContext *s,
int x, int y, int f, int ch)
{
const int m_linesize = s->magnitude->linesize[0];
const int p_linesize = s->phase->linesize[0];
const uint8_t *m = (uint8_t *)(s->magnitude->data[0] + y * m_linesize);
const uint8_t *p = (uint8_t *)(s->phase->data[0] + y * p_linesize);
float magnitude, phase;
switch (s->scale) {
case LINEAR:
magnitude = m[x] / (double)UINT8_MAX;
break;
case LOG:
magnitude = ff_exp10(((m[x] / (double)UINT8_MAX) - 1.) * 6.);
break;
default:
av_assert0(0);
}
phase = ((p[x] / (double)UINT8_MAX) * 2. - 1.) * M_PI;
s->fft_in[ch][f].re = magnitude * cos(phase);
s->fft_in[ch][f].im = magnitude * sin(phase);
}
static void read_fft_data(AVFilterContext *ctx, int x, int h, int ch)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int start = h * (s->channels - ch) - 1;
int end = h * (s->channels - ch - 1);
int y, f;
switch (s->orientation) {
case VERTICAL:
switch (inlink->format) {
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_GRAY16:
for (y = start, f = 0; y >= end; y--, f++) {
read16_fft_bin(s, x, y, f, ch);
}
break;
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_GRAY8:
for (y = start, f = 0; y >= end; y--, f++) {
read8_fft_bin(s, x, y, f, ch);
}
break;
}
break;
case HORIZONTAL:
switch (inlink->format) {
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_GRAY16:
for (y = end, f = 0; y <= start; y++, f++) {
read16_fft_bin(s, y, x, f, ch);
}
break;
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_GRAY8:
for (y = end, f = 0; y <= start; y++, f++) {
read8_fft_bin(s, y, x, f, ch);
}
break;
}
break;
}
}
static void synth_window(AVFilterContext *ctx, int x)
{
SpectrumSynthContext *s = ctx->priv;
const int h = s->size;
int nb = s->win_size;
int y, f, ch;
for (ch = 0; ch < s->channels; ch++) {
read_fft_data(ctx, x, h, ch);
for (y = h; y <= s->nb_freq; y++) {
s->fft_in[ch][y].re = 0;
s->fft_in[ch][y].im = 0;
}
for (y = s->nb_freq + 1, f = s->nb_freq - 1; y < nb; y++, f--) {
s->fft_in[ch][y].re = s->fft_in[ch][f].re;
s->fft_in[ch][y].im = -s->fft_in[ch][f].im;
}
s->tx_fn(s->fft, s->fft_out[ch], s->fft_in[ch], sizeof(AVComplexFloat));
}
}
static int try_push_frame(AVFilterContext *ctx, int x)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
const float factor = s->factor;
int ch, n, i, ret;
int start, end;
AVFrame *out;
synth_window(ctx, x);
for (ch = 0; ch < s->channels; ch++) {
float *buf = (float *)s->buffer->extended_data[ch];
int j, k;
start = s->start;
end = s->end;
k = end;
for (i = 0, j = start; j < k && i < s->win_size; i++, j++) {
buf[j] += s->fft_out[ch][i].re;
}
for (; i < s->win_size; i++, j++) {
buf[j] = s->fft_out[ch][i].re;
}
start += s->hop_size;
end = j;
if (start >= s->win_size) {
start -= s->win_size;
end -= s->win_size;
if (ch == s->channels - 1) {
float *dst;
int c;
out = ff_get_audio_buffer(outlink, s->win_size);
if (!out) {
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
return AVERROR(ENOMEM);
}
out->pts = s->pts;
s->pts += s->win_size;
for (c = 0; c < s->channels; c++) {
dst = (float *)out->extended_data[c];
buf = (float *)s->buffer->extended_data[c];
for (n = 0; n < s->win_size; n++) {
dst[n] = buf[n] * factor;
}
memmove(buf, buf + s->win_size, s->win_size * 4);
}
ret = ff_filter_frame(outlink, out);
if (ret < 0)
return ret;
}
}
}
s->start = start;
s->end = end;
return 0;
}
static int try_push_frames(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
int ret, x;
if (!(s->magnitude && s->phase))
return 0;
switch (s->sliding) {
case REPLACE:
ret = try_push_frame(ctx, s->xpos);
s->xpos++;
if (s->xpos >= s->xend)
s->xpos = 0;
break;
case SCROLL:
s->xpos = s->xend - 1;
ret = try_push_frame(ctx, s->xpos);
break;
case RSCROLL:
s->xpos = 0;
ret = try_push_frame(ctx, s->xpos);
break;
case FULLFRAME:
for (x = 0; x < s->xend; x++) {
ret = try_push_frame(ctx, x);
if (ret < 0)
break;
}
break;
default:
av_assert0(0);
}
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
return ret;
}
static int activate(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
AVFrame **staging[2] = { &s->magnitude, &s->phase };
int64_t pts;
int i, ret;
FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
for (i = 0; i < 2; i++) {
if (*staging[i])
continue;
ret = ff_inlink_consume_frame(ctx->inputs[i], staging[i]);
if (ret < 0)
return ret;
if (ret) {
ff_filter_set_ready(ctx, 10);
return try_push_frames(ctx);
}
}
for (i = 0; i < 2; i++) {
if (ff_inlink_acknowledge_status(ctx->inputs[i], &ret, &pts)) {
ff_outlink_set_status(ctx->outputs[0], ret, pts);
ff_inlink_set_status(ctx->inputs[1 - i], ret);
return 0;
}
}
if (ff_outlink_frame_wanted(ctx->outputs[0])) {
for (i = 0; i < 2; i++) {
if (!*staging[i])
ff_inlink_request_frame(ctx->inputs[i]);
}
}
return FFERROR_NOT_READY;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
int i;
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
av_frame_free(&s->buffer);
av_tx_uninit(&s->fft);
if (s->fft_in) {
for (i = 0; i < s->channels; i++)
av_freep(&s->fft_in[i]);
}
if (s->fft_out) {
for (i = 0; i < s->channels; i++)
av_freep(&s->fft_out[i]);
}
av_freep(&s->fft_in);
av_freep(&s->fft_out);
av_freep(&s->window_func_lut);
}
static const AVFilterPad spectrumsynth_inputs[] = {
{
.name = "magnitude",
.type = AVMEDIA_TYPE_VIDEO,
},
{
.name = "phase",
.type = AVMEDIA_TYPE_VIDEO,
},
};
static const AVFilterPad spectrumsynth_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_vaf_spectrumsynth = {
.name = "spectrumsynth",
.description = NULL_IF_CONFIG_SMALL("Convert input spectrum videos to audio output."),
.uninit = uninit,
.activate = activate,
.priv_size = sizeof(SpectrumSynthContext),
2021-08-12 13:05:31 +02:00
FILTER_INPUTS(spectrumsynth_inputs),
FILTER_OUTPUTS(spectrumsynth_outputs),
avfilter: Replace query_formats callback with union of list and callback If one looks at the many query_formats callbacks in existence, one will immediately recognize that there is one type of default callback for video and a slightly different default callback for audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);" for video with a filter-specific pix_fmts list. For audio, it is the same with a filter-specific sample_fmts list together with ff_set_common_all_samplerates() and ff_set_common_all_channel_counts(). This commit allows to remove the boilerplate query_formats callbacks by replacing said callback with a union consisting the old callback and pointers for pixel and sample format arrays. For the not uncommon case in which these lists only contain a single entry (besides the sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also added to the union to store them directly in the AVFilter, thereby avoiding a relocation. The state of said union will be contained in a new, dedicated AVFilter field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t in order to create a hole for this new field; this is no problem, as the maximum of all the nb_inputs is four; for nb_outputs it is only two). The state's default value coincides with the earlier default of query_formats being unset, namely that the filter accepts all formats (and also sample rates and channel counts/layouts for audio) provided that these properties agree coincide for all inputs and outputs. By using different union members for audio and video filters the type-unsafety of using the same functions for audio and video lists will furthermore be more confined to formats.c than before. When the new fields are used, they will also avoid allocations: Currently something nearly equivalent to ff_default_query_formats() is called after every successful call to a query_formats callback; yet in the common case that the newly allocated AVFilterFormats are not used at all (namely if there are no free links) these newly allocated AVFilterFormats are freed again without ever being used. Filters no longer using the callback will not exhibit this any more. Reviewed-by: Paul B Mahol <onemda@gmail.com> Reviewed-by: Nicolas George <george@nsup.org> Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-27 12:07:35 +02:00
FILTER_QUERY_FUNC(query_formats),
.priv_class = &spectrumsynth_class,
};