1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/dnxhdenc.c

1009 lines
35 KiB
C
Raw Normal View History

/*
* VC3/DNxHD encoder
* Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
* Copyright (c) 2011 MirriAd Ltd
*
* VC-3 encoder funded by the British Broadcasting Corporation
* 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//#define DEBUG
#define RC_VARIANCE 1 // use variance or ssd for fast rc
#include "libavutil/opt.h"
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "mpegvideo_common.h"
#include "dnxhdenc.h"
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
#define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
static const AVOption options[]={
{"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
{NULL}
};
static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
#define LAMBDA_FRAC_BITS 10
static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
{
int i;
for (i = 0; i < 4; i++) {
block[0] = pixels[0]; block[1] = pixels[1];
block[2] = pixels[2]; block[3] = pixels[3];
block[4] = pixels[4]; block[5] = pixels[5];
block[6] = pixels[6]; block[7] = pixels[7];
pixels += line_size;
block += 8;
}
memcpy(block, block - 8, sizeof(*block) * 8);
memcpy(block + 8, block - 16, sizeof(*block) * 8);
memcpy(block + 16, block - 24, sizeof(*block) * 8);
memcpy(block + 24, block - 32, sizeof(*block) * 8);
}
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
{
int i;
block += 32;
for (i = 0; i < 4; i++) {
memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
}
}
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
int n, int qscale, int *overflow)
{
const uint8_t *scantable= ctx->intra_scantable.scantable;
const int *qmat = ctx->q_intra_matrix[qscale];
int last_non_zero = 0;
int i;
ctx->dsp.fdct(block);
// Divide by 4 with rounding, to compensate scaling of DCT coefficients
block[0] = (block[0] + 2) >> 2;
for (i = 1; i < 64; ++i) {
int j = scantable[i];
int sign = block[j] >> 31;
int level = (block[j] ^ sign) - sign;
level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
block[j] = (level ^ sign) - sign;
if (level)
last_non_zero = i;
}
return last_non_zero;
}
static int dnxhd_init_vlc(DNXHDEncContext *ctx)
{
int i, j, level, run;
int max_level = 1<<(ctx->cid_table->bit_depth+2);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
ctx->vlc_codes += max_level*2;
ctx->vlc_bits += max_level*2;
for (level = -max_level; level < max_level; level++) {
for (run = 0; run < 2; run++) {
int index = (level<<1)|run;
int sign, offset = 0, alevel = level;
MASK_ABS(sign, alevel);
if (alevel > 64) {
offset = (alevel-1)>>6;
alevel -= offset<<6;
}
for (j = 0; j < 257; j++) {
if (ctx->cid_table->ac_level[j] == alevel &&
(!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
(!run || (ctx->cid_table->ac_run_flag [j] && run))) {
assert(!ctx->vlc_codes[index]);
if (alevel) {
ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
} else {
ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
}
break;
}
}
assert(!alevel || j < 257);
if (offset) {
ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
}
}
}
for (i = 0; i < 62; i++) {
int run = ctx->cid_table->run[i];
assert(run < 63);
ctx->run_codes[run] = ctx->cid_table->run_codes[i];
ctx->run_bits [run] = ctx->cid_table->run_bits[i];
}
return 0;
fail:
return -1;
}
static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
{
// init first elem to 1 to avoid div by 0 in convert_matrix
uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
int qscale, i;
const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
if (ctx->cid_table->bit_depth == 8) {
for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->luma_weight[i];
}
ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->chroma_weight[i];
}
ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
for (i = 0; i < 64; i++) {
ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
}
}
} else {
// 10-bit
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
// The quantization formula from the VC-3 standard is:
// quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
// Where p is 32 for 8-bit samples and 8 for 10-bit ones.
// The s factor compensates scaling of DCT coefficients done by the DCT routines,
// and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
// We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
// ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
// For 10-bit samples, p / s == 2
ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
}
}
}
return 0;
fail:
return -1;
}
static int dnxhd_init_rc(DNXHDEncContext *ctx)
{
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
ctx->qscale = 1;
ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
return 0;
fail:
return -1;
}
static int dnxhd_encode_init(AVCodecContext *avctx)
{
DNXHDEncContext *ctx = avctx->priv_data;
int i, index, bit_depth;
switch (avctx->pix_fmt) {
case PIX_FMT_YUV422P:
bit_depth = 8;
break;
case PIX_FMT_YUV422P10:
bit_depth = 10;
break;
default:
av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
return -1;
}
ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
if (!ctx->cid) {
av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
return -1;
}
av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
index = ff_dnxhd_get_cid_table(ctx->cid);
ctx->cid_table = &ff_dnxhd_cid_table[index];
ctx->m.avctx = avctx;
ctx->m.mb_intra = 1;
ctx->m.h263_aic = 1;
avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
dsputil_init(&ctx->m.dsp, avctx);
ff_dct_common_init(&ctx->m);
if (!ctx->m.dct_quantize)
ctx->m.dct_quantize = dct_quantize_c;
if (ctx->cid_table->bit_depth == 10) {
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 4;
} else {
ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 3;
}
#if HAVE_MMX
ff_dnxhd_init_mmx(ctx);
#endif
ctx->m.mb_height = (avctx->height + 15) / 16;
ctx->m.mb_width = (avctx->width + 15) / 16;
if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
ctx->interlaced = 1;
ctx->m.mb_height /= 2;
}
ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
ctx->m.intra_quant_bias = avctx->intra_quant_bias;
if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
return -1;
// Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
if (ctx->nitris_compat)
ctx->min_padding = 1600;
if (dnxhd_init_vlc(ctx) < 0)
return -1;
if (dnxhd_init_rc(ctx) < 0)
return -1;
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
ctx->frame.key_frame = 1;
ctx->frame.pict_type = AV_PICTURE_TYPE_I;
ctx->m.avctx->coded_frame = &ctx->frame;
if (avctx->thread_count > MAX_THREADS) {
av_log(avctx, AV_LOG_ERROR, "too many threads\n");
return -1;
}
ctx->thread[0] = ctx;
for (i = 1; i < avctx->thread_count; i++) {
ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
}
return 0;
fail: //for FF_ALLOCZ_OR_GOTO
return -1;
}
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
{
DNXHDEncContext *ctx = avctx->priv_data;
const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
memset(buf, 0, 640);
memcpy(buf, header_prefix, 5);
buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
buf[6] = 0x80; // crc flag off
buf[7] = 0xa0; // reserved
AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
AV_WB16(buf + 0x1a, avctx->width); // SPL
AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
buf[0x22] = 0x88 + (ctx->interlaced<<2);
AV_WB32(buf + 0x28, ctx->cid); // CID
buf[0x2c] = ctx->interlaced ? 0 : 0x80;
buf[0x5f] = 0x01; // UDL
buf[0x167] = 0x02; // reserved
AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
buf[0x16d] = ctx->m.mb_height; // Ns
buf[0x16f] = 0x10; // reserved
ctx->msip = buf + 0x170;
return 0;
}
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
{
int nbits;
if (diff < 0) {
nbits = av_log2_16bit(-2*diff);
diff--;
} else {
nbits = av_log2_16bit(2*diff);
}
put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
(ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
}
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
{
int last_non_zero = 0;
int slevel, i, j;
dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
ctx->m.last_dc[n] = block[0];
for (i = 1; i <= last_index; i++) {
j = ctx->m.intra_scantable.permutated[i];
slevel = block[j];
if (slevel) {
int run_level = i - last_non_zero - 1;
int rlevel = (slevel<<1)|!!run_level;
put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
if (run_level)
put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
last_non_zero = i;
}
}
put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
}
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
{
const uint8_t *weight_matrix;
int level;
int i;
weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
for (i = 1; i <= last_index; i++) {
int j = ctx->m.intra_scantable.permutated[i];
level = block[j];
if (level) {
if (level < 0) {
level = (1-2*level) * qscale * weight_matrix[i];
if (ctx->cid_table->bit_depth == 10) {
if (weight_matrix[i] != 8)
level += 8;
level >>= 4;
} else {
if (weight_matrix[i] != 32)
level += 32;
level >>= 6;
}
level = -level;
} else {
level = (2*level+1) * qscale * weight_matrix[i];
if (ctx->cid_table->bit_depth == 10) {
if (weight_matrix[i] != 8)
level += 8;
level >>= 4;
} else {
if (weight_matrix[i] != 32)
level += 32;
level >>= 6;
}
}
block[j] = level;
}
}
}
static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
{
int score = 0;
int i;
for (i = 0; i < 64; i++)
score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
return score;
}
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
{
int last_non_zero = 0;
int bits = 0;
int i, j, level;
for (i = 1; i <= last_index; i++) {
j = ctx->m.intra_scantable.permutated[i];
level = block[j];
if (level) {
int run_level = i - last_non_zero - 1;
bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
last_non_zero = i;
}
}
return bits;
}
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
{
const int bs = ctx->block_width_l2;
const int bw = 1 << bs;
const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
DSPContext *dsp = &ctx->m.dsp;
dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
if (ctx->interlaced) {
ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
} else {
dsp->clear_block(ctx->blocks[4]);
dsp->clear_block(ctx->blocks[5]);
dsp->clear_block(ctx->blocks[6]);
dsp->clear_block(ctx->blocks[7]);
}
} else {
dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
}
}
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
{
if (i&2) {
ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
ctx->m.q_intra_matrix = ctx->qmatrix_c;
return 1 + (i&1);
} else {
ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
ctx->m.q_intra_matrix = ctx->qmatrix_l;
return 0;
}
}
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x;
int qscale = ctx->qscale;
LOCAL_ALIGNED_16(DCTELEM, block, [64]);
ctx = ctx->thread[threadnr];
ctx->m.last_dc[0] =
ctx->m.last_dc[1] =
ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int ssd = 0;
int ac_bits = 0;
int dc_bits = 0;
int i;
dnxhd_get_blocks(ctx, mb_x, mb_y);
for (i = 0; i < 8; i++) {
DCTELEM *src_block = ctx->blocks[i];
int overflow, nbits, diff, last_index;
int n = dnxhd_switch_matrix(ctx, i);
memcpy(block, src_block, 64*sizeof(*block));
last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
diff = block[0] - ctx->m.last_dc[n];
if (diff < 0) nbits = av_log2_16bit(-2*diff);
else nbits = av_log2_16bit( 2*diff);
assert(nbits < ctx->cid_table->bit_depth + 4);
dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
ctx->m.last_dc[n] = block[0];
if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
ctx->m.dsp.idct(block);
ssd += dnxhd_ssd_block(block, src_block);
}
}
ctx->mb_rc[qscale][mb].ssd = ssd;
ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
}
return 0;
}
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x;
ctx = ctx->thread[threadnr];
init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
ctx->m.last_dc[0] =
ctx->m.last_dc[1] =
ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int qscale = ctx->mb_qscale[mb];
int i;
put_bits(&ctx->m.pb, 12, qscale<<1);
dnxhd_get_blocks(ctx, mb_x, mb_y);
for (i = 0; i < 8; i++) {
DCTELEM *block = ctx->blocks[i];
int last_index, overflow;
int n = dnxhd_switch_matrix(ctx, i);
last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
//START_TIMER;
dnxhd_encode_block(ctx, block, last_index, n);
//STOP_TIMER("encode_block");
}
}
if (put_bits_count(&ctx->m.pb)&31)
put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
flush_put_bits(&ctx->m.pb);
return 0;
}
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
{
int mb_y, mb_x;
int offset = 0;
for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
int thread_size;
ctx->slice_offs[mb_y] = offset;
ctx->slice_size[mb_y] = 0;
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
ctx->slice_size[mb_y] += ctx->mb_bits[mb];
}
ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
ctx->slice_size[mb_y] >>= 3;
thread_size = ctx->slice_size[mb_y];
offset += thread_size;
}
}
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x;
ctx = ctx->thread[threadnr];
if (ctx->cid_table->bit_depth == 8) {
uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
ctx->mb_cmp[mb].value = varc;
ctx->mb_cmp[mb].mb = mb;
}
} else { // 10-bit
int const linesize = ctx->m.linesize >> 1;
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum = 0;
int sqsum = 0;
int mean, sqmean;
int i, j;
// Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
// Turn 16-bit pixels into 10-bit ones.
int const sample = (unsigned)pix[j] >> 6;
sum += sample;
sqsum += sample * sample;
// 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
}
pix += linesize;
}
mean = sum >> 8; // 16*16 == 2^8
sqmean = sqsum >> 8;
ctx->mb_cmp[mb].value = sqmean - mean * mean;
ctx->mb_cmp[mb].mb = mb;
}
}
return 0;
}
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
{
int lambda, up_step, down_step;
int last_lower = INT_MAX, last_higher = 0;
int x, y, q;
for (q = 1; q < avctx->qmax; q++) {
ctx->qscale = q;
avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
}
up_step = down_step = 2<<LAMBDA_FRAC_BITS;
lambda = ctx->lambda;
for (;;) {
int bits = 0;
int end = 0;
if (lambda == last_higher) {
lambda++;
end = 1; // need to set final qscales/bits
}
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) {
unsigned min = UINT_MAX;
int qscale = 1;
int mb = y*ctx->m.mb_width+x;
for (q = 1; q < avctx->qmax; q++) {
unsigned score = ctx->mb_rc[q][mb].bits*lambda+
((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
if (score < min) {
min = score;
qscale = q;
}
}
bits += ctx->mb_rc[qscale][mb].bits;
ctx->mb_qscale[mb] = qscale;
ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
}
bits = (bits+31)&~31; // padding
if (bits > ctx->frame_bits)
break;
}
//av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
// lambda, last_higher, last_lower, bits, ctx->frame_bits);
if (end) {
if (bits > ctx->frame_bits)
return -1;
break;
}
if (bits < ctx->frame_bits) {
last_lower = FFMIN(lambda, last_lower);
if (last_higher != 0)
lambda = (lambda+last_higher)>>1;
else
lambda -= down_step;
down_step = FFMIN((int64_t)down_step*5, INT_MAX);
up_step = 1<<LAMBDA_FRAC_BITS;
lambda = FFMAX(1, lambda);
if (lambda == last_lower)
break;
} else {
last_higher = FFMAX(lambda, last_higher);
if (last_lower != INT_MAX)
lambda = (lambda+last_lower)>>1;
else if ((int64_t)lambda + up_step > INT_MAX)
return -1;
else
lambda += up_step;
up_step = FFMIN((int64_t)up_step*5, INT_MAX);
down_step = 1<<LAMBDA_FRAC_BITS;
}
}
//av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
ctx->lambda = lambda;
return 0;
}
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
{
int bits = 0;
int up_step = 1;
int down_step = 1;
int last_higher = 0;
int last_lower = INT_MAX;
int qscale;
int x, y;
qscale = ctx->qscale;
for (;;) {
bits = 0;
ctx->qscale = qscale;
// XXX avoid recalculating bits
ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++)
bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
bits = (bits+31)&~31; // padding
if (bits > ctx->frame_bits)
break;
}
//av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
// ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
if (bits < ctx->frame_bits) {
if (qscale == 1)
return 1;
if (last_higher == qscale - 1) {
qscale = last_higher;
break;
}
last_lower = FFMIN(qscale, last_lower);
if (last_higher != 0)
qscale = (qscale+last_higher)>>1;
else
qscale -= down_step++;
if (qscale < 1)
qscale = 1;
up_step = 1;
} else {
if (last_lower == qscale + 1)
break;
last_higher = FFMAX(qscale, last_higher);
if (last_lower != INT_MAX)
qscale = (qscale+last_lower)>>1;
else
qscale += up_step++;
down_step = 1;
if (qscale >= ctx->m.avctx->qmax)
return -1;
}
}
//av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
ctx->qscale = qscale;
return 0;
}
#define BUCKET_BITS 8
#define RADIX_PASSES 4
#define NBUCKETS (1 << BUCKET_BITS)
static inline int get_bucket(int value, int shift)
{
value >>= shift;
value &= NBUCKETS - 1;
return NBUCKETS - 1 - value;
}
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
{
int i, j;
memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
for (i = 0; i < size; i++) {
int v = data[i].value;
for (j = 0; j < RADIX_PASSES; j++) {
buckets[j][get_bucket(v, 0)]++;
v >>= BUCKET_BITS;
}
assert(!v);
}
for (j = 0; j < RADIX_PASSES; j++) {
int offset = size;
for (i = NBUCKETS - 1; i >= 0; i--)
buckets[j][i] = offset -= buckets[j][i];
assert(!buckets[j][0]);
}
}
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
{
int shift = pass * BUCKET_BITS;
int i;
for (i = 0; i < size; i++) {
int v = get_bucket(data[i].value, shift);
int pos = buckets[v]++;
dst[pos] = data[i];
}
}
static void radix_sort(RCCMPEntry *data, int size)
{
int buckets[RADIX_PASSES][NBUCKETS];
RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
radix_count(data, size, buckets);
radix_sort_pass(tmp, data, size, buckets[0], 0);
radix_sort_pass(data, tmp, size, buckets[1], 1);
if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
radix_sort_pass(tmp, data, size, buckets[2], 2);
radix_sort_pass(data, tmp, size, buckets[3], 3);
}
av_free(tmp);
}
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
{
int max_bits = 0;
int ret, x, y;
if ((ret = dnxhd_find_qscale(ctx)) < 0)
return -1;
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) {
int mb = y*ctx->m.mb_width+x;
int delta_bits;
ctx->mb_qscale[mb] = ctx->qscale;
ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
if (!RC_VARIANCE) {
delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
ctx->mb_cmp[mb].mb = mb;
ctx->mb_cmp[mb].value = delta_bits ?
((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
: INT_MIN; //avoid increasing qscale
}
}
max_bits += 31; //worst padding
}
if (!ret) {
if (RC_VARIANCE)
avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
radix_sort(ctx->mb_cmp, ctx->m.mb_num);
for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
int mb = ctx->mb_cmp[x].mb;
max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
ctx->mb_qscale[mb] = ctx->qscale+1;
ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
}
}
return 0;
}
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
{
int i;
for (i = 0; i < 3; i++) {
ctx->frame.data[i] = frame->data[i];
ctx->frame.linesize[i] = frame->linesize[i];
}
for (i = 0; i < ctx->m.avctx->thread_count; i++) {
ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
}
ctx->frame.interlaced_frame = frame->interlaced_frame;
ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
}
static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
{
DNXHDEncContext *ctx = avctx->priv_data;
int first_field = 1;
int offset, i, ret;
if (buf_size < ctx->cid_table->frame_size) {
av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
return -1;
}
dnxhd_load_picture(ctx, data);
encode_coding_unit:
for (i = 0; i < 3; i++) {
ctx->src[i] = ctx->frame.data[i];
if (ctx->interlaced && ctx->cur_field)
ctx->src[i] += ctx->frame.linesize[i];
}
dnxhd_write_header(avctx, buf);
if (avctx->mb_decision == FF_MB_DECISION_RD)
ret = dnxhd_encode_rdo(avctx, ctx);
else
ret = dnxhd_encode_fast(avctx, ctx);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"picture could not fit ratecontrol constraints, increase qmax\n");
return -1;
}
dnxhd_setup_threads_slices(ctx);
offset = 0;
for (i = 0; i < ctx->m.mb_height; i++) {
AV_WB32(ctx->msip + i * 4, offset);
offset += ctx->slice_size[i];
assert(!(ctx->slice_size[i] & 3));
}
avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
if (ctx->interlaced && first_field) {
first_field = 0;
ctx->cur_field ^= 1;
buf += ctx->cid_table->coding_unit_size;
buf_size -= ctx->cid_table->coding_unit_size;
goto encode_coding_unit;
}
ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
return ctx->cid_table->frame_size;
}
static int dnxhd_encode_end(AVCodecContext *avctx)
{
DNXHDEncContext *ctx = avctx->priv_data;
int max_level = 1<<(ctx->cid_table->bit_depth+2);
int i;
av_free(ctx->vlc_codes-max_level*2);
av_free(ctx->vlc_bits -max_level*2);
av_freep(&ctx->run_codes);
av_freep(&ctx->run_bits);
av_freep(&ctx->mb_bits);
av_freep(&ctx->mb_qscale);
av_freep(&ctx->mb_rc);
av_freep(&ctx->mb_cmp);
av_freep(&ctx->slice_size);
av_freep(&ctx->slice_offs);
av_freep(&ctx->qmatrix_c);
av_freep(&ctx->qmatrix_l);
av_freep(&ctx->qmatrix_c16);
av_freep(&ctx->qmatrix_l16);
for (i = 1; i < avctx->thread_count; i++)
av_freep(&ctx->thread[i]);
return 0;
}
AVCodec ff_dnxhd_encoder = {
.name = "dnxhd",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_DNXHD,
.priv_data_size = sizeof(DNXHDEncContext),
.init = dnxhd_encode_init,
.encode = dnxhd_encode_picture,
.close = dnxhd_encode_end,
.capabilities = CODEC_CAP_SLICE_THREADS,
.pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_YUV422P10, PIX_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
.priv_class = &class,
};